(18.206.177.17) 您好!臺灣時間:2021/04/11 02:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:胡齡月
研究生(外文):Ling-Yueh Hu
論文名稱:探索TPA誘發HL-60細胞分化過程中所調控之迅早期基因;並深入探討SnoN基因扮演之角色
論文名稱(外文):Early TPA-responsive Gene Discovery during HL-60 Promyeloid Cell Differentiation: Functional Characterization of SnoN Gene
指導教授:林文昌林文昌引用關係
學位類別:博士
校院名稱:國防醫學院
系所名稱:生命科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:英文
論文頁數:105
中文關鍵詞:細胞分化基因表現量TPA誘導劑迅早期基因SnoN
外文關鍵詞:HL-60TPASnoN
相關次數:
  • 被引用被引用:0
  • 點閱點閱:246
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要利用人類急性淋巴癌細胞株HL-60分化的細胞模式來探討細胞分化過程基因的調控。首先致力於開發新的實驗流程並結合基因微陣列技術,進行篩選及探討TPA誘導HL-60細胞分化過程之迅早期所誘發的基因。簡單來說,細胞先經過Nocodazole將細胞週期同期化之後,並以cycloheximde前處理1小時,再用TPA(實驗組)或DMSO (對照組)處理。細胞週期同期化可以避免細胞週期相關的基因在篩選過程中造成干擾;而cycloheximde可以抑制在TPA處理的過程中合成新的蛋白質,因而避免活化TPA間接調控的基因,經過如此的前處理過程,從細胞所取得的RNA中迅早期所誘發的基因所佔的比重相對的增加。接著利用基因微陣列的方法解讀這些受TPA調控的基因,經過不同的篩選條件和real-time PCR的反覆驗證後,得到56個TPA迅早期誘發的基因。為了將來能建構血球細胞分化的基因調控網路,本研究偏重在一些負責調控基因表現的基因,並且這些基因還未曾被提到參與血球細胞分化。並進一步驗證其中3個基因(NFIL3、SnoN、JMJD3) 在一般細胞培養條件下,TPA確實會誘發這3個基因的表現,並且呈現和劑量及時間都有明顯的正相關之結果。TPA對於這3個基因的調控機制,經過不同蛋白質激酶抑制劑(protein kinase inhibitor)的試驗後,發現這3個基因的表現都會受到PKC和MEK/ERK訊息的調控。以上的實驗結果顯示,有別於以往的基因篩選的實驗,本研究提供一個有效率的實驗流程有助於篩選出直接受調控的基因。而在本研究新發現受TPA直接調控的基因很可能在HL-60細胞分化過程中也扮演著相關的角色。
因此接下來選定SnoN基因為對象,深入探討SnoN的功能對於HL-60細胞分化的影響。SnoN基因最早被定義為致癌基因,它的作用機制主要被歸因於SnoN經由抑制Smads活化下游基因轉錄作用,進而對於TGF的訊息傳遞產生負調控的現象。然而SnoN對於myeloid細胞分化的角色還沒被探討過。因此本研究用HL-60細胞分化的模式探討SnoN對於細胞分化的重要性。結果發現在3種不同分化誘導劑 (TPA、VD3、ATRA) 處理的早期, SnoN蛋白質表現量都有明顯增加,暗示這3種分化誘導劑可能透過共通的機制去調控SnoN基因的表現,例如活化ERK。在TPA和VD3處理的細胞內SnoN基因的蛋白質表現量隨著時間持續增加,然而在ATRA處理的細胞內SnoN所增加的表現量一直維持在一定的量,暗示TPA和VD3可能額外透過其他的機制去調控SnoN基因的表現,例如Smads。在HL-60細胞中持續表現SnoN的干擾核糖核酸後,在3種分化誘導劑 (TPA、VD3、ATRA)刺激之下,細胞分化的效果顯著的增加。因此SnoN的表現可能是在細胞分化的早期扮演抑制作用。此外,HL-60細胞同時用VD3 和 TGF處理,TGF顯著的增加VD3對細胞分化的作用,但是在SnoN表現被抑制的細胞內並沒有觀察到這種協同作用。根據本研究的結果顯示SnoN在HL-60細胞分化的早期可能是扮演抑制的角色,而這個作用很可能是透過SnoN對於TGF/Smads訊息的抑制作用。
Human promyeloid leukemia cell line (HL-60) is a good model to study cell differentiation. HL-60 cells can be induced to differentiate into monocytes/ macrophages or granulocytes. We have adopted a special experimental strategy to identify early responsive genes during 12-O-tetradecanoylphorbol-13-acetate (TPA) induced macrophage-like differentiation of HL-60 cells. This was performed in HL-60 cells which were synchronized by nocodazole and treated with TPA in the presence of a protein synthesis inhibitor, cycloheximide, to prevent activation of secondary targets, therefore increase the probability of detecting early gene transcripts in total RNA pool. The gene expression alternation was then analyzed by microarray. The selection criteria of candidate genes were adjusted by real-time PCR validation to increase its reliability. Finally, 56 genes were identified as early TPA-responsive genes by this multi-screening step approach. In order to figure out the transcriptional regulatory network in the future, I selective focused on the transcriptional regulators which are never reported to involve in myeloid differentiation. Among these genes, three candidate transcriptional regulators NFIL3, SnoN, and JMJD3 was shown to be dosage- and time- dependent increased with TPA treatment and was found to be directly regulated by TPA through PKC and MEK/ERK signaling pathway. These results revealed that this screening-method provides a useful and efficient approach to identify early TPA-responsive genes and these genes might involve in the regulation of TPA-induced differentiation program of HL-60 cells as primary regulators.
SnoN is originally to be identified as an oncogene and it is an important negative regulator of TGF signaling through Smad proteins. However the roles of SnoN in myeloid differentiation have not been defined. Thus, this study further characterized the roles of the candidate gene SnoN during differentiation of HL-60 cells. It is interesting to find that the induction of SnoN in HL-60 cells was not lineage specific. Either by TPA and VD3 treatment to induce monocyte/macrophage or by ATRA treatment to induce granulocyte can observe the upregualtion of SnoN. Upregulation of SnoN by all these differentiating agents at the early stage of differentiation might be through a common pathway, such as ERK signaling. Additionally, SnoN was sustained increased expression at the late stage of monocye/macrophage differentiation by TPA and VD3 treatment, and it might through Samds pathway. Expression the knockdown construct bearing the shRNA for SnoN in HL-60 cells exhibited an enhanced differentiation by all three differentiating agents at the early stage. SnoN might serve as a repressor of differentiation at early stage in HL-60 cells. Combined with VD3 and TGF treatment can synergistically increased differentiation of HL-60 cells, but did not in HLiSno cells. Loss of repressor SnoN can enhance VD3-induced differentiation might through TGF/Smads signaling pathway. These findings suggested that SnoN may act as a non-lineage-specific repressor at early stage of differentiation in HL-60 cell through repression of TGF/Smads signaling pathway in part.
Contents ------------------------------------------------------------------------------------------ I
Table Contents --------------------------------------------------------------------------------- III
Figure Contents ------------------------------------------------------------------------------- IV
中文摘要 -------------------------------------------------------------------------------------- VI
Abstract --------------------------------------------------------------------------------------- VIII
Overview ----------------------------------------------------------------------------------------- 1
Materials and Methods ------------------------------------------------------------------------- 8
Cell culture and induction of differentiation ----------------------------------------------- 8
Differentiation assays ------------------------------------------------------------------------- 8
RNA extraction and RT-PCR --------------------------------------------------------------- 10
Schema for isolating early TPA-responsive genes -------------------------------------- 10
Microarray analysis -------------------------------------------------------------------------- 11
Quantitative real-time PCR assay --------------------------------------------------------- 13
Plasmid constructs --------------------------------------------------------------------------- 13
Transfection and virus infection ----------------------------------------------------------- 15
Nuclear protein extraction ------------------------------------------------------------------ 15
Immunoprecipitation assay ----------------------------------------------------------------- 16
Western blotting analysis (Immuno-blotting) -------------------------------------------- 16
Antibodies for Western blotting analysis ------------------------------------------------- 17
Cell Cycle analysis -------------------------------------------------------------------------- 17
Statistical analysis --------------------------------------------------------------------------- 17
Part I. Identification of early-TPA responsive genes during HL-60 cell
differentiation -------------------------------------------------------------------------- 18
Introduction (I) ----------------------------------------------------------------------------- 19
Results (I) ----------------------------------------------------------------------------------- 21
Discussion (I) ------------------------------------------------------------------------------- 28
Part II. Functional characterization of SnoN during HL-60 cell differentiation ------ 31
Introduction (II) ---------------------------------------------------------------------------- 32
Results (II) ---------------------------------------------------------------------------------- 34
Discussion (II) ------------------------------------------------------------------------------ 43
Concluding Remarks ------------------------------------------------------------------------- 48
References -------------------------------------------------------------------------------------- 49
Tables ------------------------------------------------------------------------------------------- 63
Figures ------------------------------------------------------------------------------------------ 72
Appendix --------------------------------------------------------------------------------------- 95
1.Gallagher, R., Collins, S., Trujillo, J., McCredie, K., Ahearn, M., Tsai, S., Metzgar, R., Aulakh, G., Ting, R., Ruscetti, F., and Gallo, R. Characterization of the continuous, differentiating myeloid cell line (HL-60) from a patient with acute promyelocytic leukemia. Blood, 54: 713-733, 1979.
2.Collins, S. J. The HL-60 promyelocytic leukemia cell line: proliferation, differentiation, and cellular oncogene expression. Blood, 70: 1233-1244, 1987.
3.Drexler, H. G., Quentmeier, H., MacLeod, R. A., Uphoff, C. C., and Hu, Z. B. Leukemia cell lines: in vitro models for the study of acute promyelocytic leukemia. Leuk Res, 19: 681-691, 1995.
4.Tsiftsoglou, A. S., Pappas, I. S., and Vizirianakis, I. S. Mechanisms involved in the induced differentiation of leukemia cells. Pharmacol Ther, 100: 257-290, 2003.
5.Rovera, G., O'Brien, T. G., and Diamond, L. Induction of differentiation in human promyelocytic leukemia cells by tumor promoters. Science, 204: 868-870, 1979.
6.Aihara, H., Asaoka, Y., Yoshida, K., and Nishizuka, Y. Sustained activation of protein kinase C is essential to HL-60 cell differentiation to macrophage. Proc Natl Acad Sci U S A, 88: 11062-11066, 1991.
7.Tonetti, D. A., Henning-Chubb, C., Yamanishi, D. T., and Huberman, E. Protein kinase C-beta is required for macrophage differentiation of human HL-60 leukemia cells. J Biol Chem, 269: 23230-23235, 1994.
8.Tonetti, D. A., Horio, M., Collart, F. R., and Huberman, E. Protein kinase C beta gene expression is associated with susceptibility of human promyelocytic leukemia cells to phorbol ester-induced differentiation. Cell Growth Differ, 3: 739-745, 1992.
9.Breitman, T. R., Selonick, S. E., and Collins, S. J. Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid. Proc Natl Acad Sci U S A, 77: 2936-2940, 1980.
10.Collins, S. J., Robertson, K. A., and Mueller, L. Retinoic acid-induced granulocytic differentiation of HL-60 myeloid leukemia cells is mediated directly through the retinoic acid receptor (RAR-alpha). Mol Cell Biol, 10: 2154-2163, 1990.
11.Mangelsdorf, D. J. Vitamin A receptors. Nutr Rev, 52: S32-44, 1994.
12.Abe, E., Miyaura, C., Sakagami, H., Takeda, M., Konno, K., Yamazaki, T., Yoshiki, S., and Suda, T. Differentiation of mouse myeloid leukemia cells induced by 1 alpha,25-dihydroxyvitamin D3. Proc Natl Acad Sci U S A, 78: 4990-4994, 1981.
13.McCarthy, D. M., San Miguel, J. F., Freake, H. C., Green, P. M., Zola, H., Catovsky, D., and Goldman, J. M. 1,25-dihydroxyvitamin D3 inhibits proliferation of human promyelocytic leukaemia (HL60) cells and induces monocyte-macrophage differentiation in HL60 and normal human bone marrow cells. Leuk Res, 7: 51-55, 1983.
14.Lee, Y., Inaba, M., DeLuca, H. F., and Mellon, W. S. Immunological identification of 1,25-dihydroxyvitamin D3 receptors in human promyelocytic leukemic cells (HL-60) during homologous regulation. J Biol Chem, 264: 13701-13705, 1989.
15.McTernan, P. G., Sheppard, M. C., and Williams, G. R. Hormone-induced changes in nuclear receptor stoichiometry in HL60 cells correlate with induction of monocyte or neutrophil differentiation. J Endocrinol, 156: 135-148, 1998.
16.Laiosa, C. V., Stadtfeld, M., and Graf, T. Determinants of lymphoid-myeloid lineage diversification. Annu Rev Immunol, 24: 705-738, 2006.
17.Graf, T. Differentiation plasticity of hematopoietic cells. Blood, 99: 3089-3101, 2002.
18.Orkin, S. H. and Zon, L. I. Hematopoiesis and stem cells: plasticity versus developmental heterogeneity. Nat Immunol, 3: 323-328, 2002.
19.Seo, J., Kim, M., and Kim, J. Identification of novel genes differentially expressed in PMA-induced HL-60 cells using cDNA microarrays. Mol Cells, 10: 733-739, 2000.
20.Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E. S., and Golub, T. R. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci U S A, 96: 2907-2912, 1999.
21.Zheng, X., Ravatn, R., Lin, Y., Shih, W. C., Rabson, A., Strair, R., Huberman, E., Conney, A., and Chin, K. V. Gene expression of TPA induced differentiation in HL-60 cells by DNA microarray analysis. Nucleic Acids Res, 30: 4489-4499, 2002.
22.Sherman, M. L., Stone, R. M., Datta, R., Bernstein, S. H., and Kufe, D. W. Transcriptional and post-transcriptional regulation of c-jun expression during monocytic differentiation of human myeloid leukemic cells. J Biol Chem, 265: 3320-3323, 1990.
23.Dahl, R., Kieslinger, M., Beug, H., and Hayman, M. J. Transformation of hematopoietic cells by the Ski oncoprotein involves repression of retinoic acid receptor signaling. Proc Natl Acad Sci U S A, 95: 11187-11192, 1998.
24.Ueki, N. and Hayman, M. J. Signal-dependent N-CoR requirement for repression by the Ski oncoprotein. J Biol Chem, 278: 24858-24864, 2003.
25.Lee, S. K., Na, S. Y., Jung, S. Y., Choi, J. E., Jhun, B. H., Cheong, J., Meltzer, P. S., Lee, Y. C., and Lee, J. W. Activating protein-1, nuclear factor-kappaB, and serum response factor as novel target molecules of the cancer-amplified transcription coactivator ASC-2. Mol Endocrinol, 14: 915-925, 2000.
26.Bailey, P., Downes, M., Lau, P., Harris, J., Chen, S. L., Hamamori, Y., Sartorelli, V., and Muscat, G. E. The nuclear receptor corepressor N-CoR regulates differentiation: N-CoR directly interacts with MyoD. Mol Endocrinol, 13: 1155-1168, 1999.
27.Ayer, D. E., Lawrence, Q. A., and Eisenman, R. N. Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell, 80: 767-776, 1995.
28.Laherty, C. D., Yang, W. M., Sun, J. M., Davie, J. R., Seto, E., and Eisenman, R. N. Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell, 89: 349-356, 1997.
29.Lai, A., Lee, J. M., Yang, W. M., DeCaprio, J. A., Kaelin, W. G., Jr., Seto, E., and Branton, P. E. RBP1 recruits both histone deacetylase-dependent and -independent repression activities to retinoblastoma family proteins. Mol Cell Biol, 19: 6632-6641, 1999.
30.Lin, R. J., Nagy, L., Inoue, S., Shao, W., Miller, W. H., Jr., and Evans, R. M. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature, 391: 811-814, 1998.
31.Blobel, G. A. CBP and p300: versatile coregulators with important roles in hematopoietic gene expression. J Leukoc Biol, 71: 545-556, 2002.
32.Melnick, A. and Licht, J. D. Histone deacetylases as therapeutic targets in hematologic malignancies. Curr Opin Hematol, 9: 322-332, 2002.
33.Rosmarin, A. G., Yang, Z., and Resendes, K. K. Transcriptional regulation in myelopoiesis: Hematopoietic fate choice, myeloid differentiation, and leukemogenesis. Exp Hematol, 33: 131-143, 2005.
34.Urnov, F. D. and Wolffe, A. P. A necessary good: nuclear hormone receptors and their chromatin templates. Mol Endocrinol, 15: 1-16, 2001.
35.Nomura, N., Sasamoto, S., Ishii, S., Date, T., Matsui, M., and Ishizaki, R. Isolation of human cDNA clones of ski and the ski-related gene, sno. Nucleic Acids Res, 17: 5489-5500, 1989.
36.Stavnezer, E., Barkas, A. E., Brennan, L. A., Brodeur, D., and Li, Y. Transforming Sloan-Kettering viruses generated from the cloned v-ski oncogene by in vitro and in vivo recombinations. J Virol, 57: 1073-1083, 1986.
37.Boyer, P. L., Colmenares, C., Stavnezer, E., and Hughes, S. H. Sequence and biological activity of chicken snoN cDNA clones. Oncogene, 8: 457-466, 1993.
38.Zheng, G., Teumer, J., Colmenares, C., Richmond, C., and Stavnezer, E. Identification of a core functional and structural domain of the v-Ski oncoprotein responsible for both transformation and myogenesis. Oncogene, 15: 459-471, 1997.
39.Colmenares, C., Sutrave, P., Hughes, S. H., and Stavnezer, E. Activation of the c-ski oncogene by overexpression. J Virol, 65: 4929-4935, 1991.
40.Heyman, H. C. and Stavnezer, E. A carboxyl-terminal region of the ski oncoprotein mediates homodimerization as well as heterodimerization with the related protein SnoN. J Biol Chem, 269: 26996-27003, 1994.
41.Cohen, S. B., Zheng, G., Heyman, H. C., and Stavnezer, E. Heterodimers of the SnoN and Ski oncoproteins form preferentially over homodimers and are more potent transforming agents. Nucleic Acids Res, 27: 1006-1014, 1999.
42.Nomura, T., Khan, M. M., Kaul, S. C., Dong, H. D., Wadhwa, R., Colmenares, C., Kohno, I., and Ishii, S. Ski is a component of the histone deacetylase complex required for transcriptional repression by Mad and thyroid hormone receptor. Genes Dev, 13: 412-423, 1999.
43.Cohen, S. B., Nicol, R., and Stavnezer, E. A domain necessary for the transforming activity of SnoN is required for specific DNA binding, transcriptional repression and interaction with TAF(II)110. Oncogene, 17: 2505-2513, 1998.
44.Tokitou, F., Nomura, T., Khan, M. M., Kaul, S. C., Wadhwa, R., Yasukawa, T., Kohno, I., and Ishii, S. Viral ski inhibits retinoblastoma protein (Rb)-mediated transcriptional repression in a dominant negative fashion. J Biol Chem, 274: 4485-4488, 1999.
45.Akiyoshi, S., Inoue, H., Hanai, J., Kusanagi, K., Nemoto, N., Miyazono, K., and Kawabata, M. c-Ski acts as a transcriptional co-repressor in transforming growth factor-beta signaling through interaction with smads. J Biol Chem, 274: 35269-35277, 1999.
46.Luo, K., Stroschein, S. L., Wang, W., Chen, D., Martens, E., Zhou, S., and Zhou, Q. The Ski oncoprotein interacts with the Smad proteins to repress TGFbeta signaling. Genes Dev, 13: 2196-2206, 1999.
47.Stroschein, S. L., Wang, W., Zhou, S., Zhou, Q., and Luo, K. Negative feedback regulation of TGF-beta signaling by the SnoN oncoprotein. Science, 286: 771-774, 1999.
48.Xu, W., Angelis, K., Danielpour, D., Haddad, M. M., Bischof, O., Campisi, J., Stavnezer, E., and Medrano, E. E. Ski acts as a co-repressor with Smad2 and Smad3 to regulate the response to type beta transforming growth factor. Proc Natl Acad Sci U S A, 97: 5924-5929, 2000.
49.Colmenares, C. and Stavnezer, E. The ski oncogene induces muscle differentiation in quail embryo cells. Cell, 59: 293-303, 1989.
50.Colmenares, C., Teumer, J. K., and Stavnezer, E. Transformation-defective v-ski induces MyoD and myogenin expression but not myotube formation. Mol Cell Biol, 11: 1167-1170, 1991.
51.Beug, H., Dahl, R., Steinlein, P., Meyer, S., Deiner, E. M., and Hayman, M. J. In vitro growth of factor-dependent multipotential hematopoietic cells is induced by the nuclear oncoprotein v-Ski. Oncogene, 11: 59-72, 1995.
52.Imoto, I., Pimkhaokham, A., Fukuda, Y., Yang, Z. Q., Shimada, Y., Nomura, N., Hirai, H., Imamura, M., and Inazawa, J. SNO is a probable target for gene amplification at 3q26 in squamous-cell carcinomas of the esophagus. Biochem Biophys Res Commun, 286: 559-565, 2001.
53.Zhang, F., Lundin, M., Ristimaki, A., Heikkila, P., Lundin, J., Isola, J., Joensuu, H., and Laiho, M. Ski-related novel protein N (SnoN), a negative controller of transforming growth factor-beta signaling, is a prognostic marker in estrogen receptor-positive breast carcinomas. Cancer Res, 63: 5005-5010, 2003.
54.Zhu, Q., Krakowski, A. R., Dunham, E. E., Wang, L., Bandyopadhyay, A., Berdeaux, R., Martin, G. S., Sun, L., and Luo, K. Dual Role of SnoN in mammalian tumorigenesis. Mol Cell Biol, 2006.
55.Shinagawa, T., Dong, H. D., Xu, M., Maekawa, T., and Ishii, S. The sno gene, which encodes a component of the histone deacetylase complex, acts as a tumor suppressor in mice. Embo J, 19: 2280-2291, 2000.
56.Mimura, N., Ichikawa, K., Asano, A., Nagase, T., and Ishii, S. A transient increase of snoN transcript by growth arrest upon serum deprivation and cell-to-cell contact. FEBS Lett, 397: 253-259, 1996.
57.Pearson-White, S., Deacon, D., Crittenden, R., Brady, G., Iscove, N., and Quesenberry, P. J. The ski/sno protooncogene family in hematopoietic development. Blood, 86: 2146-2155, 1995.
58.Ritter, M., Kattmann, D., Teichler, S., Hartmann, O., Samuelsson, M. K., Burchert, A., Bach, J. P., Kim, T. D., Berwanger, B., Thiede, C., Jager, R., Ehninger, G., Schafer, H., Ueki, N., Hayman, M. J., Eilers, M., and Neubauer, A. Inhibition of retinoic acid receptor signaling by Ski in acute myeloid leukemia. Leukemia, 20: 437-443, 2006.
59.Beadling, C. and Smith, K. A. DNA array analysis of interleukin-2-regulated immediate/early genes. Med Immunol, 1: 2, 2002.
60.Irizarry, R. A., Hobbs, B., Collin, F., Beazer-Barclay, Y. D., Antonellis, K. J., Scherf, U., and Speed, T. P. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics, 4: 249-264, 2003.
61.Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res, 29: e45, 2001.
62.Sarker, K. P., Wilson, S. M., and Bonni, S. SnoN is a cell type-specific mediator of transforming growth factor-beta responses. J Biol Chem, 280: 13037-13046, 2005.
63.Rovera, G., Santoli, D., and Damsky, C. Human promyelocytic leukemia cells in culture differentiate into macrophage-like cells when treated with a phorbol diester. Proc Natl Acad Sci U S A, 76: 2779-2783, 1979.
64.Macfarlane, D. E. and Manzel, L. Activation of beta-isozyme of protein kinase C (PKC beta) is necessary and sufficient for phorbol ester-induced differentiation of HL-60 promyelocytes. Studies with PKC beta-defective PET mutant. J Biol Chem, 269: 4327-4331, 1994.
65.Kharbanda, S., Nakamura, T., Stone, R., Hass, R., Bernstein, S., Datta, R., Sukhatme, V. P., and Kufe, D. Expression of the early growth response 1 and 2 zinc finger genes during induction of monocytic differentiation. J Clin Invest, 88: 571-577, 1991.
66.Auwerx, J., Staels, B., and Sassone-Corsi, P. Coupled and uncoupled induction of fos and jun transcription by different second messengers in cells of hematopoietic origin. Nucleic Acids Res, 18: 221-228, 1990.
67.Valledor, A. F., Borras, F. E., Cullell-Young, M., and Celada, A. Transcription factors that regulate monocyte/macrophage differentiation. J Leukoc Biol, 63: 405-417, 1998.
68.Gunji, W., Kai, T., Sameshima, E., Iizuka, N., Katagi, H., Utsugi, T., Fujimori, F., and Murakami, Y. Global analysis of the expression patterns of transcriptional regulatory factors in formation of embryoid bodies using sensitive oligonucleotide microarray systems. Biochem Biophys Res Commun, 325: 265-275, 2004.
69.Ideker, T., Thorsson, V., Ranish, J. A., Christmas, R., Buhler, J., Eng, J. K., Bumgarner, R., Goodlett, D. R., Aebersold, R., and Hood, L. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science, 292: 929-934, 2001.
70.Tucker, C. L., Gera, J. F., and Uetz, P. Towards an understanding of complex protein networks. Trends Cell Biol, 11: 102-106, 2001.
71.Hickstein, D. D., Smith, A., Fisher, W., Beatty, P. G., Schwartz, B. R., Harlan, J. M., Root, R. K., and Locksley, R. M. Expression of leukocyte adherence-related glycoproteins during differentiation of HL-60 promyelocytic leukemia cells. J Immunol, 138: 513-519, 1987.
72.Rosmarin, A. G., Weil, S. C., Rosner, G. L., Griffin, J. D., Arnaout, M. A., and Tenen, D. G. Differential expression of CD11b/CD18 (Mo1) and myeloperoxidase genes during myeloid differentiation. Blood, 73: 131-136, 1989.
73.Nguyen, H. Q., Hoffman-Liebermann, B., and Liebermann, D. A. The zinc finger transcription factor Egr-1 is essential for and restricts differentiation along the macrophage lineage. Cell, 72: 197-209, 1993.
74.Rovera, G., Olashaw, N., and Meo, P. Terminal differentiation in human promyelocytic leukaemic cells in the absence of DNA synthesis. Nature, 284: 69-70, 1980.
75.Zieve, G. W., Turnbull, D., Mullins, J. M., and McIntosh, J. R. Production of large numbers of mitotic mammalian cells by use of the reversible microtubule inhibitor nocodazole. Nocodazole accumulated mitotic cells. Exp Cell Res, 126: 397-405, 1980.
76.Gaynor, R., Simon, K., and Koeffler, P. Expression of c-jun during macrophage differentiation of HL-60 cells. Blood, 77: 2618-2623, 1991.
77.Lord, K. A., Abdollahi, A., Hoffman-Liebermann, B., and Liebermann, D. A. Proto-oncogenes of the fos/jun family of transcription factors are positive regulators of myeloid differentiation. Mol Cell Biol, 13: 841-851, 1993.
78.Datta, R., Sherman, M. L., Stone, R. M., and Kufe, D. Expression of the jun-B gene during induction of monocytic differentiation. Cell Growth Differ, 2: 43-49, 1991.
79.Muller, R., Curran, T., Muller, D., and Guilbert, L. Induction of c-fos during myelomonocytic differentiation and macrophage proliferation. Nature, 314: 546-548, 1985.
80.Steube, K. G., Meyer, C., and Drexler, H. G. Multiple regulation of constitutive and induced interleukin 8 secretion in human myelomonocytic cell lines. Cytokine, 12: 1236-1239, 2000.
81.Sharma, V., Xu, M., and Ritter, L. M. Biochemical characterization of MIP-1 alpha nuclear protein. Biochem Biophys Res Commun, 248: 716-721, 1998.
82.Horiguchi, J., Spriggs, D., Imamura, K., Stone, R., Luebbers, R., and Kufe, D. Role of arachidonic acid metabolism in transcriptional induction of tumor necrosis factor gene expression by phorbol ester. Mol Cell Biol, 9: 252-258, 1989.
83.Kozopas, K. M., Yang, T., Buchan, H. L., Zhou, P., and Craig, R. W. MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc Natl Acad Sci U S A, 90: 3516-3520, 1993.
84.Gavin, I. M., Glesne, D., Zhao, Y., Kubera, C., and Huberman, E. Spermine acts as a negative regulator of macrophage differentiation in human myeloid leukemia cells. Cancer Res, 64: 7432-7438, 2004.
85.Kosaka, S., Takahashi, S., Masamura, K., Kanehara, H., Sakai, J., Tohda, G., Okada, E., Oida, K., Iwasaki, T., Hattori, H., Kodama, T., Yamamoto, T., and Miyamori, I. Evidence of macrophage foam cell formation by very low-density lipoprotein receptor: interferon-gamma inhibition of very low-density lipoprotein receptor expression and foam cell formation in macrophages. Circulation, 103: 1142-1147, 2001.
86.Segel, G. B., Woodlock, T. J., Xu, J., Li, L., Felgar, R. E., Ryan, D. H., Lichtman, M. A., and Wang, N. Early gene activation in chronic leukemic B lymphocytes induced toward a plasma cell phenotype. Blood Cells Mol Dis, 30: 277-287, 2003.
87.Ryu, M. S., Lee, M. S., Hong, J. W., Hahn, T. R., Moon, E., and Lim, I. K. TIS21/BTG2/PC3 is expressed through PKC-delta pathway and inhibits binding of cyclin B1-Cdc2 and its activity, independent of p53 expression. Exp Cell Res, 299: 159-170, 2004.
88.Guo, M., Joiakim, A., Dudley, D. T., and Reiners, J. J. Suppression of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-mediated CYP1A1 and CYP1B1 induction by 12-O-tetradecanoylphorbol-13-acetate: role of transforming growth factor beta and mitogen-activated protein kinases. Biochem Pharmacol, 62: 1449-1457, 2001.
89.Shimizu, N., Ohta, M., Fujiwara, C., Sagara, J., Mochizuki, N., Oda, T., and Utiyama, H. A gene coding for a zinc finger protein is induced during 12-O-tetradecanoylphorbol-13-acetate-stimulated HL-60 cell differentiation. J Biochem (Tokyo), 111: 272-277, 1992.
90.Edashige, K., Sato, E. F., Akimaru, K., Kasai, M., and Utsumi, K. Differentiation of HL-60 cells by phorbol ester is correlated with up-regulation of protein kinase C-alpha. Arch Biochem Biophys, 299: 200-205, 1992.
91.He, H., Wang, X., Gorospe, M., Holbrook, N. J., and Trush, M. A. Phorbol ester-induced mononuclear cell differentiation is blocked by the mitogen-activated protein kinase kinase (MEK) inhibitor PD98059. Cell Growth Differ, 10: 307-315, 1999.
92.Das, D., Pintucci, G., and Stern, A. MAPK-dependent expression of p21(WAF) and p27(kip1) in PMA-induced differentiation of HL60 cells. FEBS Lett, 472: 50-52, 2000.
93.Miranda, M. B., McGuire, T. F., and Johnson, D. E. Importance of MEK-1/-2 signaling in monocytic and granulocytic differentiation of myeloid cell lines. Leukemia, 16: 683-692, 2002.
94.Kim, M. S., Lim, W. K., Cha, J. G., An, N. H., Yoo, S. J., Park, J. H., Kim, H. M., and Lee, Y. M. The activation of PI 3-K and PKC zeta in PMA-induced differentiation of HL-60 cells. Cancer Lett, 171: 79-85, 2001.
95.Shivdasani, R. A. and Orkin, S. H. The transcriptional control of hematopoiesis. Blood, 87: 4025-4039, 1996.
96.Lee, K. H., Chang, M. Y., Ahn, J. I., Yu, D. H., Jung, S. S., Choi, J. H., Noh, Y. H., Lee, Y. S., and Ahn, M. J. Differential gene expression in retinoic acid-induced differentiation of acute promyelocytic leukemia cells, NB4 and HL-60 cells. Biochem Biophys Res Commun, 296: 1125-1133, 2002.
97.Herschman, H. R. Primary response genes induced by growth factors and tumor promoters. Annu Rev Biochem, 60: 281-319, 1991.
98.Hofbauer, R. and Denhardt, D. T. Cell cycle-regulated and proliferation stimulus-responsive genes. Crit Rev Eukaryot Gene Expr, 1: 247-300, 1991.
99.Kannan, K., Amariglio, N., Rechavi, G., Jakob-Hirsch, J., Kela, I., Kaminski, N., Getz, G., Domany, E., and Givol, D. DNA microarrays identification of primary and secondary target genes regulated by p53. Oncogene, 20: 2225-2234, 2001.
100.O'Connell, B. C., Cheung, A. F., Simkevich, C. P., Tam, W., Ren, X., Mateyak, M. K., and Sedivy, J. M. A large scale genetic analysis of c-Myc-regulated gene expression patterns. J Biol Chem, 278: 12563-12573, 2003.
101.Ikushima, S., Inukai, T., Inaba, T., Nimer, S. D., Cleveland, J. L., and Look, A. T. Pivotal role for the NFIL3/E4BP4 transcription factor in interleukin 3-mediated survival of pro-B lymphocytes. Proc Natl Acad Sci U S A, 94: 2609-2614, 1997.
102.Kuribara, R., Kinoshita, T., Miyajima, A., Shinjyo, T., Yoshihara, T., Inukai, T., Ozawa, K., Look, A. T., and Inaba, T. Two distinct interleukin-3-mediated signal pathways, Ras-NFIL3 (E4BP4) and Bcl-xL, regulate the survival of murine pro-B lymphocytes. Mol Cell Biol, 19: 2754-2762, 1999.
103.Mansour, S. J., Matten, W. T., Hermann, A. S., Candia, J. M., Rong, S., Fukasawa, K., Vande Woude, G. F., and Ahn, N. G. Transformation of mammalian cells by constitutively active MAP kinase kinase. Science, 265: 966-970, 1994.
104.Cowley, S., Paterson, H., Kemp, P., and Marshall, C. J. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell, 77: 841-852, 1994.
105.Songyang, Z., Baltimore, D., Cantley, L. C., Kaplan, D. R., and Franke, T. F. Interleukin 3-dependent survival by the Akt protein kinase. Proc Natl Acad Sci U S A, 94: 11345-11350, 1997.
106.Kinoshita, T., Shirouzu, M., Kamiya, A., Hashimoto, K., Yokoyama, S., and Miyajima, A. Raf/MAPK and rapamycin-sensitive pathways mediate the anti-apoptotic function of p21Ras in IL-3-dependent hematopoietic cells. Oncogene, 15: 619-627, 1997.
107.Testa, U., Masciulli, R., Tritarelli, E., Pustorino, R., Mariani, G., Martucci, R., Barberi, T., Camagna, A., Valtieri, M., and Peschle, C. Transforming growth factor-beta potentiates vitamin D3-induced terminal monocytic differentiation of human leukemic cell lines. J Immunol, 150: 2418-2430, 1993.
108.Kanatani, Y., Kasukabe, T., Okabe-Kado, J., Hayashi, S., Yamamoto-Yamaguchi, Y., Motoyoshi, K., Nagata, N., and Honma, Y. Transforming growth factor beta and dexamethasone cooperatively enhance c-jun gene expression and inhibit the growth of human monocytoid leukemia cells. Cell Growth Differ, 7: 187-196, 1996.
109.Yanagisawa, J., Yanagi, Y., Masuhiro, Y., Suzawa, M., Watanabe, M., Kashiwagi, K., Toriyabe, T., Kawabata, M., Miyazono, K., and Kato, S. Convergence of transforming growth factor-beta and vitamin D signaling pathways on SMAD transcriptional coactivators. Science, 283: 1317-1321, 1999.
110.Liu, X., Sun, Y., Weinberg, R. A., and Lodish, H. F. Ski/Sno and TGF-beta signaling. Cytokine Growth Factor Rev, 12: 1-8, 2001.
111.Luo, K. Ski and SnoN: negative regulators of TGF-beta signaling. Curr Opin Genet Dev, 14: 65-70, 2004.
112.Nagase, T., Mizuguchi, G., Nomura, N., Ishizaki, R., Ueno, Y., and Ishii, S. Requirement of protein co-factor for the DNA-binding function of the human ski proto-oncogene product. Nucleic Acids Res, 18: 337-343, 1990.
113.Kozmik, Z., Pfeffer, P., Kralova, J., Paces, J., Paces, V., Kalousova, A., and Cvekl, A. Molecular cloning and expression of the human and mouse homologues of the Drosophila dachshund gene. Dev Genes Evol, 209: 537-545, 1999.
114.Wilson, J. J., Malakhova, M., Zhang, R., Joachimiak, A., and Hegde, R. S. Crystal structure of the dachshund homology domain of human SKI. Structure, 12: 785-792, 2004.
115.Wu, K., Yang, Y., Wang, C., Davoli, M. A., D'Amico, M., Li, A., Cveklova, K., Kozmik, Z., Lisanti, M. P., Russell, R. G., Cvekl, A., and Pestell, R. G. DACH1 inhibits transforming growth factor-beta signaling through binding Smad4. J Biol Chem, 278: 51673-51684, 2003.
116.Chen, J. D. and Evans, R. M. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature, 377: 454-457, 1995.
117.Natsuka, S., Akira, S., Nishio, Y., Hashimoto, S., Sugita, T., Isshiki, H., and Kishimoto, T. Macrophage differentiation-specific expression of NF-IL6, a transcription factor for interleukin-6. Blood, 79: 460-466, 1992.
118.Pan, Z., Hetherington, C. J., and Zhang, D. E. CCAAT/enhancer-binding protein activates the CD14 promoter and mediates transforming growth factor beta signaling in monocyte development. J Biol Chem, 274: 23242-23248, 1999.
119.Skalnik, D. G. Transcriptional mechanisms regulating myeloid-specific genes. Gene, 284: 1-21, 2002.
120.Marshall, C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell, 80: 179-185, 1995.
121.Kharbanda, S., Saleem, A., Emoto, Y., Stone, R., Rapp, U., and Kufe, D. Activation of Raf-1 and mitogen-activated protein kinases during monocytic differentiation of human myeloid leukemia cells. J Biol Chem, 269: 872-878, 1994.
122.Marcinkowska, E., Wiedlocha, A., and Radzikowski, C. 1,25-Dihydroxyvitamin D3 induced activation and subsequent nuclear translocation of MAPK is upstream regulated by PKC in HL-60 cells. Biochem Biophys Res Commun, 241: 419-426, 1997.
123.Isakov, N. Regulation of T-cell-derived protein kinase C activity by vitamin A derivatives. Cell Immunol, 115: 288-298, 1988.
124.Yen, A., Roberson, M. S., Varvayanis, S., and Lee, A. T. Retinoic acid induced mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK) kinase-dependent MAP kinase activation needed to elicit HL-60 cell differentiation and growth arrest. Cancer Res, 58: 3163-3172, 1998.
125.Zhu, Q., Pearson-White, S., and Luo, K. Requirement for the SnoN oncoprotein in transforming growth factor beta-induced oncogenic transformation of fibroblast cells. Mol Cell Biol, 25: 10731-10744, 2005.
126.Biggs, J. R. and Kraft, A. S. The role of the Smad3 protein in phorbol ester-induced promoter expression. J Biol Chem, 274: 36987-36994, 1999.
127.Cao, Z., Flanders, K. C., Bertolette, D., Lyakh, L. A., Wurthner, J. U., Parks, W. T., Letterio, J. J., Ruscetti, F. W., and Roberts, A. B. Levels of phospho-Smad2/3 are sensors of the interplay between effects of TGF-beta and retinoic acid on monocytic and granulocytic differentiation of HL-60 cells. Blood, 101: 498-507, 2003.
128.Defacque, H., Piquemal, D., Basset, A., Marti, J., and Commes, T. Transforming growth factor-beta1 is an autocrine mediator of U937 cell growth arrest and differentiation induced by vitamin D3 and retinoids. J Cell Physiol, 178: 109-119, 1999.
129.Hmama, Z., Nandan, D., Sly, L., Knutson, K. L., Herrera-Velit, P., and Reiner, N. E. 1alpha,25-dihydroxyvitamin D(3)-induced myeloid cell differentiation is regulated by a vitamin D receptor-phosphatidylinositol 3-kinase signaling complex. J Exp Med, 190: 1583-1594, 1999.
130.He, J., Tegen, S. B., Krawitz, A. R., Martin, G. S., and Luo, K. The transforming activity of Ski and SnoN is dependent on their ability to repress the activity of Smad proteins. J Biol Chem, 278: 30540-30547, 2003.
131.Wu, J. W., Krawitz, A. R., Chai, J., Li, W., Zhang, F., Luo, K., and Shi, Y. Structural mechanism of Smad4 recognition by the nuclear oncoprotein Ski: insights on Ski-mediated repression of TGF-beta signaling. Cell, 111: 357-367, 2002.
132.Rubio, M. A., Lopez-Rodriguez, C., Nueda, A., Aller, P., Armesilla, A. L., Vega, M. A., and Corbi, A. L. Granulocyte-macrophage colony-stimulating factor, phorbol ester, and sodium butyrate induce the CD11c integrin gene promoter activity during myeloid cell differentiation. Blood, 86: 3715-3724, 1995.
133.Nagy, L., Kao, H. Y., Chakravarti, D., Lin, R. J., Hassig, C. A., Ayer, D. E., Schreiber, S. L., and Evans, R. M. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell, 89: 373-380, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔