|
1.Gallagher, R., Collins, S., Trujillo, J., McCredie, K., Ahearn, M., Tsai, S., Metzgar, R., Aulakh, G., Ting, R., Ruscetti, F., and Gallo, R. Characterization of the continuous, differentiating myeloid cell line (HL-60) from a patient with acute promyelocytic leukemia. Blood, 54: 713-733, 1979. 2.Collins, S. J. The HL-60 promyelocytic leukemia cell line: proliferation, differentiation, and cellular oncogene expression. Blood, 70: 1233-1244, 1987. 3.Drexler, H. G., Quentmeier, H., MacLeod, R. A., Uphoff, C. C., and Hu, Z. B. Leukemia cell lines: in vitro models for the study of acute promyelocytic leukemia. Leuk Res, 19: 681-691, 1995. 4.Tsiftsoglou, A. S., Pappas, I. S., and Vizirianakis, I. S. Mechanisms involved in the induced differentiation of leukemia cells. Pharmacol Ther, 100: 257-290, 2003. 5.Rovera, G., O'Brien, T. G., and Diamond, L. Induction of differentiation in human promyelocytic leukemia cells by tumor promoters. Science, 204: 868-870, 1979. 6.Aihara, H., Asaoka, Y., Yoshida, K., and Nishizuka, Y. Sustained activation of protein kinase C is essential to HL-60 cell differentiation to macrophage. Proc Natl Acad Sci U S A, 88: 11062-11066, 1991. 7.Tonetti, D. A., Henning-Chubb, C., Yamanishi, D. T., and Huberman, E. Protein kinase C-beta is required for macrophage differentiation of human HL-60 leukemia cells. J Biol Chem, 269: 23230-23235, 1994. 8.Tonetti, D. A., Horio, M., Collart, F. R., and Huberman, E. Protein kinase C beta gene expression is associated with susceptibility of human promyelocytic leukemia cells to phorbol ester-induced differentiation. Cell Growth Differ, 3: 739-745, 1992. 9.Breitman, T. R., Selonick, S. E., and Collins, S. J. Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid. Proc Natl Acad Sci U S A, 77: 2936-2940, 1980. 10.Collins, S. J., Robertson, K. A., and Mueller, L. Retinoic acid-induced granulocytic differentiation of HL-60 myeloid leukemia cells is mediated directly through the retinoic acid receptor (RAR-alpha). Mol Cell Biol, 10: 2154-2163, 1990. 11.Mangelsdorf, D. J. Vitamin A receptors. Nutr Rev, 52: S32-44, 1994. 12.Abe, E., Miyaura, C., Sakagami, H., Takeda, M., Konno, K., Yamazaki, T., Yoshiki, S., and Suda, T. Differentiation of mouse myeloid leukemia cells induced by 1 alpha,25-dihydroxyvitamin D3. Proc Natl Acad Sci U S A, 78: 4990-4994, 1981. 13.McCarthy, D. M., San Miguel, J. F., Freake, H. C., Green, P. M., Zola, H., Catovsky, D., and Goldman, J. M. 1,25-dihydroxyvitamin D3 inhibits proliferation of human promyelocytic leukaemia (HL60) cells and induces monocyte-macrophage differentiation in HL60 and normal human bone marrow cells. Leuk Res, 7: 51-55, 1983. 14.Lee, Y., Inaba, M., DeLuca, H. F., and Mellon, W. S. Immunological identification of 1,25-dihydroxyvitamin D3 receptors in human promyelocytic leukemic cells (HL-60) during homologous regulation. J Biol Chem, 264: 13701-13705, 1989. 15.McTernan, P. G., Sheppard, M. C., and Williams, G. R. Hormone-induced changes in nuclear receptor stoichiometry in HL60 cells correlate with induction of monocyte or neutrophil differentiation. J Endocrinol, 156: 135-148, 1998. 16.Laiosa, C. V., Stadtfeld, M., and Graf, T. Determinants of lymphoid-myeloid lineage diversification. Annu Rev Immunol, 24: 705-738, 2006. 17.Graf, T. Differentiation plasticity of hematopoietic cells. Blood, 99: 3089-3101, 2002. 18.Orkin, S. H. and Zon, L. I. Hematopoiesis and stem cells: plasticity versus developmental heterogeneity. Nat Immunol, 3: 323-328, 2002. 19.Seo, J., Kim, M., and Kim, J. Identification of novel genes differentially expressed in PMA-induced HL-60 cells using cDNA microarrays. Mol Cells, 10: 733-739, 2000. 20.Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E. S., and Golub, T. R. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci U S A, 96: 2907-2912, 1999. 21.Zheng, X., Ravatn, R., Lin, Y., Shih, W. C., Rabson, A., Strair, R., Huberman, E., Conney, A., and Chin, K. V. Gene expression of TPA induced differentiation in HL-60 cells by DNA microarray analysis. Nucleic Acids Res, 30: 4489-4499, 2002. 22.Sherman, M. L., Stone, R. M., Datta, R., Bernstein, S. H., and Kufe, D. W. Transcriptional and post-transcriptional regulation of c-jun expression during monocytic differentiation of human myeloid leukemic cells. J Biol Chem, 265: 3320-3323, 1990. 23.Dahl, R., Kieslinger, M., Beug, H., and Hayman, M. J. Transformation of hematopoietic cells by the Ski oncoprotein involves repression of retinoic acid receptor signaling. Proc Natl Acad Sci U S A, 95: 11187-11192, 1998. 24.Ueki, N. and Hayman, M. J. Signal-dependent N-CoR requirement for repression by the Ski oncoprotein. J Biol Chem, 278: 24858-24864, 2003. 25.Lee, S. K., Na, S. Y., Jung, S. Y., Choi, J. E., Jhun, B. H., Cheong, J., Meltzer, P. S., Lee, Y. C., and Lee, J. W. Activating protein-1, nuclear factor-kappaB, and serum response factor as novel target molecules of the cancer-amplified transcription coactivator ASC-2. Mol Endocrinol, 14: 915-925, 2000. 26.Bailey, P., Downes, M., Lau, P., Harris, J., Chen, S. L., Hamamori, Y., Sartorelli, V., and Muscat, G. E. The nuclear receptor corepressor N-CoR regulates differentiation: N-CoR directly interacts with MyoD. Mol Endocrinol, 13: 1155-1168, 1999. 27.Ayer, D. E., Lawrence, Q. A., and Eisenman, R. N. Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell, 80: 767-776, 1995. 28.Laherty, C. D., Yang, W. M., Sun, J. M., Davie, J. R., Seto, E., and Eisenman, R. N. Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell, 89: 349-356, 1997. 29.Lai, A., Lee, J. M., Yang, W. M., DeCaprio, J. A., Kaelin, W. G., Jr., Seto, E., and Branton, P. E. RBP1 recruits both histone deacetylase-dependent and -independent repression activities to retinoblastoma family proteins. Mol Cell Biol, 19: 6632-6641, 1999. 30.Lin, R. J., Nagy, L., Inoue, S., Shao, W., Miller, W. H., Jr., and Evans, R. M. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature, 391: 811-814, 1998. 31.Blobel, G. A. CBP and p300: versatile coregulators with important roles in hematopoietic gene expression. J Leukoc Biol, 71: 545-556, 2002. 32.Melnick, A. and Licht, J. D. Histone deacetylases as therapeutic targets in hematologic malignancies. Curr Opin Hematol, 9: 322-332, 2002. 33.Rosmarin, A. G., Yang, Z., and Resendes, K. K. Transcriptional regulation in myelopoiesis: Hematopoietic fate choice, myeloid differentiation, and leukemogenesis. Exp Hematol, 33: 131-143, 2005. 34.Urnov, F. D. and Wolffe, A. P. A necessary good: nuclear hormone receptors and their chromatin templates. Mol Endocrinol, 15: 1-16, 2001. 35.Nomura, N., Sasamoto, S., Ishii, S., Date, T., Matsui, M., and Ishizaki, R. Isolation of human cDNA clones of ski and the ski-related gene, sno. Nucleic Acids Res, 17: 5489-5500, 1989. 36.Stavnezer, E., Barkas, A. E., Brennan, L. A., Brodeur, D., and Li, Y. Transforming Sloan-Kettering viruses generated from the cloned v-ski oncogene by in vitro and in vivo recombinations. J Virol, 57: 1073-1083, 1986. 37.Boyer, P. L., Colmenares, C., Stavnezer, E., and Hughes, S. H. Sequence and biological activity of chicken snoN cDNA clones. Oncogene, 8: 457-466, 1993. 38.Zheng, G., Teumer, J., Colmenares, C., Richmond, C., and Stavnezer, E. Identification of a core functional and structural domain of the v-Ski oncoprotein responsible for both transformation and myogenesis. Oncogene, 15: 459-471, 1997. 39.Colmenares, C., Sutrave, P., Hughes, S. H., and Stavnezer, E. Activation of the c-ski oncogene by overexpression. J Virol, 65: 4929-4935, 1991. 40.Heyman, H. C. and Stavnezer, E. A carboxyl-terminal region of the ski oncoprotein mediates homodimerization as well as heterodimerization with the related protein SnoN. J Biol Chem, 269: 26996-27003, 1994. 41.Cohen, S. B., Zheng, G., Heyman, H. C., and Stavnezer, E. Heterodimers of the SnoN and Ski oncoproteins form preferentially over homodimers and are more potent transforming agents. Nucleic Acids Res, 27: 1006-1014, 1999. 42.Nomura, T., Khan, M. M., Kaul, S. C., Dong, H. D., Wadhwa, R., Colmenares, C., Kohno, I., and Ishii, S. Ski is a component of the histone deacetylase complex required for transcriptional repression by Mad and thyroid hormone receptor. Genes Dev, 13: 412-423, 1999. 43.Cohen, S. B., Nicol, R., and Stavnezer, E. A domain necessary for the transforming activity of SnoN is required for specific DNA binding, transcriptional repression and interaction with TAF(II)110. Oncogene, 17: 2505-2513, 1998. 44.Tokitou, F., Nomura, T., Khan, M. M., Kaul, S. C., Wadhwa, R., Yasukawa, T., Kohno, I., and Ishii, S. Viral ski inhibits retinoblastoma protein (Rb)-mediated transcriptional repression in a dominant negative fashion. J Biol Chem, 274: 4485-4488, 1999. 45.Akiyoshi, S., Inoue, H., Hanai, J., Kusanagi, K., Nemoto, N., Miyazono, K., and Kawabata, M. c-Ski acts as a transcriptional co-repressor in transforming growth factor-beta signaling through interaction with smads. J Biol Chem, 274: 35269-35277, 1999. 46.Luo, K., Stroschein, S. L., Wang, W., Chen, D., Martens, E., Zhou, S., and Zhou, Q. The Ski oncoprotein interacts with the Smad proteins to repress TGFbeta signaling. Genes Dev, 13: 2196-2206, 1999. 47.Stroschein, S. L., Wang, W., Zhou, S., Zhou, Q., and Luo, K. Negative feedback regulation of TGF-beta signaling by the SnoN oncoprotein. Science, 286: 771-774, 1999. 48.Xu, W., Angelis, K., Danielpour, D., Haddad, M. M., Bischof, O., Campisi, J., Stavnezer, E., and Medrano, E. E. Ski acts as a co-repressor with Smad2 and Smad3 to regulate the response to type beta transforming growth factor. Proc Natl Acad Sci U S A, 97: 5924-5929, 2000. 49.Colmenares, C. and Stavnezer, E. The ski oncogene induces muscle differentiation in quail embryo cells. Cell, 59: 293-303, 1989. 50.Colmenares, C., Teumer, J. K., and Stavnezer, E. Transformation-defective v-ski induces MyoD and myogenin expression but not myotube formation. Mol Cell Biol, 11: 1167-1170, 1991. 51.Beug, H., Dahl, R., Steinlein, P., Meyer, S., Deiner, E. M., and Hayman, M. J. In vitro growth of factor-dependent multipotential hematopoietic cells is induced by the nuclear oncoprotein v-Ski. Oncogene, 11: 59-72, 1995. 52.Imoto, I., Pimkhaokham, A., Fukuda, Y., Yang, Z. Q., Shimada, Y., Nomura, N., Hirai, H., Imamura, M., and Inazawa, J. SNO is a probable target for gene amplification at 3q26 in squamous-cell carcinomas of the esophagus. Biochem Biophys Res Commun, 286: 559-565, 2001. 53.Zhang, F., Lundin, M., Ristimaki, A., Heikkila, P., Lundin, J., Isola, J., Joensuu, H., and Laiho, M. Ski-related novel protein N (SnoN), a negative controller of transforming growth factor-beta signaling, is a prognostic marker in estrogen receptor-positive breast carcinomas. Cancer Res, 63: 5005-5010, 2003. 54.Zhu, Q., Krakowski, A. R., Dunham, E. E., Wang, L., Bandyopadhyay, A., Berdeaux, R., Martin, G. S., Sun, L., and Luo, K. Dual Role of SnoN in mammalian tumorigenesis. Mol Cell Biol, 2006. 55.Shinagawa, T., Dong, H. D., Xu, M., Maekawa, T., and Ishii, S. The sno gene, which encodes a component of the histone deacetylase complex, acts as a tumor suppressor in mice. Embo J, 19: 2280-2291, 2000. 56.Mimura, N., Ichikawa, K., Asano, A., Nagase, T., and Ishii, S. A transient increase of snoN transcript by growth arrest upon serum deprivation and cell-to-cell contact. FEBS Lett, 397: 253-259, 1996. 57.Pearson-White, S., Deacon, D., Crittenden, R., Brady, G., Iscove, N., and Quesenberry, P. J. The ski/sno protooncogene family in hematopoietic development. Blood, 86: 2146-2155, 1995. 58.Ritter, M., Kattmann, D., Teichler, S., Hartmann, O., Samuelsson, M. K., Burchert, A., Bach, J. P., Kim, T. D., Berwanger, B., Thiede, C., Jager, R., Ehninger, G., Schafer, H., Ueki, N., Hayman, M. J., Eilers, M., and Neubauer, A. Inhibition of retinoic acid receptor signaling by Ski in acute myeloid leukemia. Leukemia, 20: 437-443, 2006. 59.Beadling, C. and Smith, K. A. DNA array analysis of interleukin-2-regulated immediate/early genes. Med Immunol, 1: 2, 2002. 60.Irizarry, R. A., Hobbs, B., Collin, F., Beazer-Barclay, Y. D., Antonellis, K. J., Scherf, U., and Speed, T. P. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics, 4: 249-264, 2003. 61.Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res, 29: e45, 2001. 62.Sarker, K. P., Wilson, S. M., and Bonni, S. SnoN is a cell type-specific mediator of transforming growth factor-beta responses. J Biol Chem, 280: 13037-13046, 2005. 63.Rovera, G., Santoli, D., and Damsky, C. Human promyelocytic leukemia cells in culture differentiate into macrophage-like cells when treated with a phorbol diester. Proc Natl Acad Sci U S A, 76: 2779-2783, 1979. 64.Macfarlane, D. E. and Manzel, L. Activation of beta-isozyme of protein kinase C (PKC beta) is necessary and sufficient for phorbol ester-induced differentiation of HL-60 promyelocytes. Studies with PKC beta-defective PET mutant. J Biol Chem, 269: 4327-4331, 1994. 65.Kharbanda, S., Nakamura, T., Stone, R., Hass, R., Bernstein, S., Datta, R., Sukhatme, V. P., and Kufe, D. Expression of the early growth response 1 and 2 zinc finger genes during induction of monocytic differentiation. J Clin Invest, 88: 571-577, 1991. 66.Auwerx, J., Staels, B., and Sassone-Corsi, P. Coupled and uncoupled induction of fos and jun transcription by different second messengers in cells of hematopoietic origin. Nucleic Acids Res, 18: 221-228, 1990. 67.Valledor, A. F., Borras, F. E., Cullell-Young, M., and Celada, A. Transcription factors that regulate monocyte/macrophage differentiation. J Leukoc Biol, 63: 405-417, 1998. 68.Gunji, W., Kai, T., Sameshima, E., Iizuka, N., Katagi, H., Utsugi, T., Fujimori, F., and Murakami, Y. Global analysis of the expression patterns of transcriptional regulatory factors in formation of embryoid bodies using sensitive oligonucleotide microarray systems. Biochem Biophys Res Commun, 325: 265-275, 2004. 69.Ideker, T., Thorsson, V., Ranish, J. A., Christmas, R., Buhler, J., Eng, J. K., Bumgarner, R., Goodlett, D. R., Aebersold, R., and Hood, L. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science, 292: 929-934, 2001. 70.Tucker, C. L., Gera, J. F., and Uetz, P. Towards an understanding of complex protein networks. Trends Cell Biol, 11: 102-106, 2001. 71.Hickstein, D. D., Smith, A., Fisher, W., Beatty, P. G., Schwartz, B. R., Harlan, J. M., Root, R. K., and Locksley, R. M. Expression of leukocyte adherence-related glycoproteins during differentiation of HL-60 promyelocytic leukemia cells. J Immunol, 138: 513-519, 1987. 72.Rosmarin, A. G., Weil, S. C., Rosner, G. L., Griffin, J. D., Arnaout, M. A., and Tenen, D. G. Differential expression of CD11b/CD18 (Mo1) and myeloperoxidase genes during myeloid differentiation. Blood, 73: 131-136, 1989. 73.Nguyen, H. Q., Hoffman-Liebermann, B., and Liebermann, D. A. The zinc finger transcription factor Egr-1 is essential for and restricts differentiation along the macrophage lineage. Cell, 72: 197-209, 1993. 74.Rovera, G., Olashaw, N., and Meo, P. Terminal differentiation in human promyelocytic leukaemic cells in the absence of DNA synthesis. Nature, 284: 69-70, 1980. 75.Zieve, G. W., Turnbull, D., Mullins, J. M., and McIntosh, J. R. Production of large numbers of mitotic mammalian cells by use of the reversible microtubule inhibitor nocodazole. Nocodazole accumulated mitotic cells. Exp Cell Res, 126: 397-405, 1980. 76.Gaynor, R., Simon, K., and Koeffler, P. Expression of c-jun during macrophage differentiation of HL-60 cells. Blood, 77: 2618-2623, 1991. 77.Lord, K. A., Abdollahi, A., Hoffman-Liebermann, B., and Liebermann, D. A. Proto-oncogenes of the fos/jun family of transcription factors are positive regulators of myeloid differentiation. Mol Cell Biol, 13: 841-851, 1993. 78.Datta, R., Sherman, M. L., Stone, R. M., and Kufe, D. Expression of the jun-B gene during induction of monocytic differentiation. Cell Growth Differ, 2: 43-49, 1991. 79.Muller, R., Curran, T., Muller, D., and Guilbert, L. Induction of c-fos during myelomonocytic differentiation and macrophage proliferation. Nature, 314: 546-548, 1985. 80.Steube, K. G., Meyer, C., and Drexler, H. G. Multiple regulation of constitutive and induced interleukin 8 secretion in human myelomonocytic cell lines. Cytokine, 12: 1236-1239, 2000. 81.Sharma, V., Xu, M., and Ritter, L. M. Biochemical characterization of MIP-1 alpha nuclear protein. Biochem Biophys Res Commun, 248: 716-721, 1998. 82.Horiguchi, J., Spriggs, D., Imamura, K., Stone, R., Luebbers, R., and Kufe, D. Role of arachidonic acid metabolism in transcriptional induction of tumor necrosis factor gene expression by phorbol ester. Mol Cell Biol, 9: 252-258, 1989. 83.Kozopas, K. M., Yang, T., Buchan, H. L., Zhou, P., and Craig, R. W. MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc Natl Acad Sci U S A, 90: 3516-3520, 1993. 84.Gavin, I. M., Glesne, D., Zhao, Y., Kubera, C., and Huberman, E. Spermine acts as a negative regulator of macrophage differentiation in human myeloid leukemia cells. Cancer Res, 64: 7432-7438, 2004. 85.Kosaka, S., Takahashi, S., Masamura, K., Kanehara, H., Sakai, J., Tohda, G., Okada, E., Oida, K., Iwasaki, T., Hattori, H., Kodama, T., Yamamoto, T., and Miyamori, I. Evidence of macrophage foam cell formation by very low-density lipoprotein receptor: interferon-gamma inhibition of very low-density lipoprotein receptor expression and foam cell formation in macrophages. Circulation, 103: 1142-1147, 2001. 86.Segel, G. B., Woodlock, T. J., Xu, J., Li, L., Felgar, R. E., Ryan, D. H., Lichtman, M. A., and Wang, N. Early gene activation in chronic leukemic B lymphocytes induced toward a plasma cell phenotype. Blood Cells Mol Dis, 30: 277-287, 2003. 87.Ryu, M. S., Lee, M. S., Hong, J. W., Hahn, T. R., Moon, E., and Lim, I. K. TIS21/BTG2/PC3 is expressed through PKC-delta pathway and inhibits binding of cyclin B1-Cdc2 and its activity, independent of p53 expression. Exp Cell Res, 299: 159-170, 2004. 88.Guo, M., Joiakim, A., Dudley, D. T., and Reiners, J. J. Suppression of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-mediated CYP1A1 and CYP1B1 induction by 12-O-tetradecanoylphorbol-13-acetate: role of transforming growth factor beta and mitogen-activated protein kinases. Biochem Pharmacol, 62: 1449-1457, 2001. 89.Shimizu, N., Ohta, M., Fujiwara, C., Sagara, J., Mochizuki, N., Oda, T., and Utiyama, H. A gene coding for a zinc finger protein is induced during 12-O-tetradecanoylphorbol-13-acetate-stimulated HL-60 cell differentiation. J Biochem (Tokyo), 111: 272-277, 1992. 90.Edashige, K., Sato, E. F., Akimaru, K., Kasai, M., and Utsumi, K. Differentiation of HL-60 cells by phorbol ester is correlated with up-regulation of protein kinase C-alpha. Arch Biochem Biophys, 299: 200-205, 1992. 91.He, H., Wang, X., Gorospe, M., Holbrook, N. J., and Trush, M. A. Phorbol ester-induced mononuclear cell differentiation is blocked by the mitogen-activated protein kinase kinase (MEK) inhibitor PD98059. Cell Growth Differ, 10: 307-315, 1999. 92.Das, D., Pintucci, G., and Stern, A. MAPK-dependent expression of p21(WAF) and p27(kip1) in PMA-induced differentiation of HL60 cells. FEBS Lett, 472: 50-52, 2000. 93.Miranda, M. B., McGuire, T. F., and Johnson, D. E. Importance of MEK-1/-2 signaling in monocytic and granulocytic differentiation of myeloid cell lines. Leukemia, 16: 683-692, 2002. 94.Kim, M. S., Lim, W. K., Cha, J. G., An, N. H., Yoo, S. J., Park, J. H., Kim, H. M., and Lee, Y. M. The activation of PI 3-K and PKC zeta in PMA-induced differentiation of HL-60 cells. Cancer Lett, 171: 79-85, 2001. 95.Shivdasani, R. A. and Orkin, S. H. The transcriptional control of hematopoiesis. Blood, 87: 4025-4039, 1996. 96.Lee, K. H., Chang, M. Y., Ahn, J. I., Yu, D. H., Jung, S. S., Choi, J. H., Noh, Y. H., Lee, Y. S., and Ahn, M. J. Differential gene expression in retinoic acid-induced differentiation of acute promyelocytic leukemia cells, NB4 and HL-60 cells. Biochem Biophys Res Commun, 296: 1125-1133, 2002. 97.Herschman, H. R. Primary response genes induced by growth factors and tumor promoters. Annu Rev Biochem, 60: 281-319, 1991. 98.Hofbauer, R. and Denhardt, D. T. Cell cycle-regulated and proliferation stimulus-responsive genes. Crit Rev Eukaryot Gene Expr, 1: 247-300, 1991. 99.Kannan, K., Amariglio, N., Rechavi, G., Jakob-Hirsch, J., Kela, I., Kaminski, N., Getz, G., Domany, E., and Givol, D. DNA microarrays identification of primary and secondary target genes regulated by p53. Oncogene, 20: 2225-2234, 2001. 100.O'Connell, B. C., Cheung, A. F., Simkevich, C. P., Tam, W., Ren, X., Mateyak, M. K., and Sedivy, J. M. A large scale genetic analysis of c-Myc-regulated gene expression patterns. J Biol Chem, 278: 12563-12573, 2003. 101.Ikushima, S., Inukai, T., Inaba, T., Nimer, S. D., Cleveland, J. L., and Look, A. T. Pivotal role for the NFIL3/E4BP4 transcription factor in interleukin 3-mediated survival of pro-B lymphocytes. Proc Natl Acad Sci U S A, 94: 2609-2614, 1997. 102.Kuribara, R., Kinoshita, T., Miyajima, A., Shinjyo, T., Yoshihara, T., Inukai, T., Ozawa, K., Look, A. T., and Inaba, T. Two distinct interleukin-3-mediated signal pathways, Ras-NFIL3 (E4BP4) and Bcl-xL, regulate the survival of murine pro-B lymphocytes. Mol Cell Biol, 19: 2754-2762, 1999. 103.Mansour, S. J., Matten, W. T., Hermann, A. S., Candia, J. M., Rong, S., Fukasawa, K., Vande Woude, G. F., and Ahn, N. G. Transformation of mammalian cells by constitutively active MAP kinase kinase. Science, 265: 966-970, 1994. 104.Cowley, S., Paterson, H., Kemp, P., and Marshall, C. J. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell, 77: 841-852, 1994. 105.Songyang, Z., Baltimore, D., Cantley, L. C., Kaplan, D. R., and Franke, T. F. Interleukin 3-dependent survival by the Akt protein kinase. Proc Natl Acad Sci U S A, 94: 11345-11350, 1997. 106.Kinoshita, T., Shirouzu, M., Kamiya, A., Hashimoto, K., Yokoyama, S., and Miyajima, A. Raf/MAPK and rapamycin-sensitive pathways mediate the anti-apoptotic function of p21Ras in IL-3-dependent hematopoietic cells. Oncogene, 15: 619-627, 1997. 107.Testa, U., Masciulli, R., Tritarelli, E., Pustorino, R., Mariani, G., Martucci, R., Barberi, T., Camagna, A., Valtieri, M., and Peschle, C. Transforming growth factor-beta potentiates vitamin D3-induced terminal monocytic differentiation of human leukemic cell lines. J Immunol, 150: 2418-2430, 1993. 108.Kanatani, Y., Kasukabe, T., Okabe-Kado, J., Hayashi, S., Yamamoto-Yamaguchi, Y., Motoyoshi, K., Nagata, N., and Honma, Y. Transforming growth factor beta and dexamethasone cooperatively enhance c-jun gene expression and inhibit the growth of human monocytoid leukemia cells. Cell Growth Differ, 7: 187-196, 1996. 109.Yanagisawa, J., Yanagi, Y., Masuhiro, Y., Suzawa, M., Watanabe, M., Kashiwagi, K., Toriyabe, T., Kawabata, M., Miyazono, K., and Kato, S. Convergence of transforming growth factor-beta and vitamin D signaling pathways on SMAD transcriptional coactivators. Science, 283: 1317-1321, 1999. 110.Liu, X., Sun, Y., Weinberg, R. A., and Lodish, H. F. Ski/Sno and TGF-beta signaling. Cytokine Growth Factor Rev, 12: 1-8, 2001. 111.Luo, K. Ski and SnoN: negative regulators of TGF-beta signaling. Curr Opin Genet Dev, 14: 65-70, 2004. 112.Nagase, T., Mizuguchi, G., Nomura, N., Ishizaki, R., Ueno, Y., and Ishii, S. Requirement of protein co-factor for the DNA-binding function of the human ski proto-oncogene product. Nucleic Acids Res, 18: 337-343, 1990. 113.Kozmik, Z., Pfeffer, P., Kralova, J., Paces, J., Paces, V., Kalousova, A., and Cvekl, A. Molecular cloning and expression of the human and mouse homologues of the Drosophila dachshund gene. Dev Genes Evol, 209: 537-545, 1999. 114.Wilson, J. J., Malakhova, M., Zhang, R., Joachimiak, A., and Hegde, R. S. Crystal structure of the dachshund homology domain of human SKI. Structure, 12: 785-792, 2004. 115.Wu, K., Yang, Y., Wang, C., Davoli, M. A., D'Amico, M., Li, A., Cveklova, K., Kozmik, Z., Lisanti, M. P., Russell, R. G., Cvekl, A., and Pestell, R. G. DACH1 inhibits transforming growth factor-beta signaling through binding Smad4. J Biol Chem, 278: 51673-51684, 2003. 116.Chen, J. D. and Evans, R. M. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature, 377: 454-457, 1995. 117.Natsuka, S., Akira, S., Nishio, Y., Hashimoto, S., Sugita, T., Isshiki, H., and Kishimoto, T. Macrophage differentiation-specific expression of NF-IL6, a transcription factor for interleukin-6. Blood, 79: 460-466, 1992. 118.Pan, Z., Hetherington, C. J., and Zhang, D. E. CCAAT/enhancer-binding protein activates the CD14 promoter and mediates transforming growth factor beta signaling in monocyte development. J Biol Chem, 274: 23242-23248, 1999. 119.Skalnik, D. G. Transcriptional mechanisms regulating myeloid-specific genes. Gene, 284: 1-21, 2002. 120.Marshall, C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell, 80: 179-185, 1995. 121.Kharbanda, S., Saleem, A., Emoto, Y., Stone, R., Rapp, U., and Kufe, D. Activation of Raf-1 and mitogen-activated protein kinases during monocytic differentiation of human myeloid leukemia cells. J Biol Chem, 269: 872-878, 1994. 122.Marcinkowska, E., Wiedlocha, A., and Radzikowski, C. 1,25-Dihydroxyvitamin D3 induced activation and subsequent nuclear translocation of MAPK is upstream regulated by PKC in HL-60 cells. Biochem Biophys Res Commun, 241: 419-426, 1997. 123.Isakov, N. Regulation of T-cell-derived protein kinase C activity by vitamin A derivatives. Cell Immunol, 115: 288-298, 1988. 124.Yen, A., Roberson, M. S., Varvayanis, S., and Lee, A. T. Retinoic acid induced mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK) kinase-dependent MAP kinase activation needed to elicit HL-60 cell differentiation and growth arrest. Cancer Res, 58: 3163-3172, 1998. 125.Zhu, Q., Pearson-White, S., and Luo, K. Requirement for the SnoN oncoprotein in transforming growth factor beta-induced oncogenic transformation of fibroblast cells. Mol Cell Biol, 25: 10731-10744, 2005. 126.Biggs, J. R. and Kraft, A. S. The role of the Smad3 protein in phorbol ester-induced promoter expression. J Biol Chem, 274: 36987-36994, 1999. 127.Cao, Z., Flanders, K. C., Bertolette, D., Lyakh, L. A., Wurthner, J. U., Parks, W. T., Letterio, J. J., Ruscetti, F. W., and Roberts, A. B. Levels of phospho-Smad2/3 are sensors of the interplay between effects of TGF-beta and retinoic acid on monocytic and granulocytic differentiation of HL-60 cells. Blood, 101: 498-507, 2003. 128.Defacque, H., Piquemal, D., Basset, A., Marti, J., and Commes, T. Transforming growth factor-beta1 is an autocrine mediator of U937 cell growth arrest and differentiation induced by vitamin D3 and retinoids. J Cell Physiol, 178: 109-119, 1999. 129.Hmama, Z., Nandan, D., Sly, L., Knutson, K. L., Herrera-Velit, P., and Reiner, N. E. 1alpha,25-dihydroxyvitamin D(3)-induced myeloid cell differentiation is regulated by a vitamin D receptor-phosphatidylinositol 3-kinase signaling complex. J Exp Med, 190: 1583-1594, 1999. 130.He, J., Tegen, S. B., Krawitz, A. R., Martin, G. S., and Luo, K. The transforming activity of Ski and SnoN is dependent on their ability to repress the activity of Smad proteins. J Biol Chem, 278: 30540-30547, 2003. 131.Wu, J. W., Krawitz, A. R., Chai, J., Li, W., Zhang, F., Luo, K., and Shi, Y. Structural mechanism of Smad4 recognition by the nuclear oncoprotein Ski: insights on Ski-mediated repression of TGF-beta signaling. Cell, 111: 357-367, 2002. 132.Rubio, M. A., Lopez-Rodriguez, C., Nueda, A., Aller, P., Armesilla, A. L., Vega, M. A., and Corbi, A. L. Granulocyte-macrophage colony-stimulating factor, phorbol ester, and sodium butyrate induce the CD11c integrin gene promoter activity during myeloid cell differentiation. Blood, 86: 3715-3724, 1995. 133.Nagy, L., Kao, H. Y., Chakravarti, D., Lin, R. J., Hassig, C. A., Ayer, D. E., Schreiber, S. L., and Evans, R. M. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell, 89: 373-380, 1997.
|