跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/14 06:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳信全
研究生(外文):Hsin-Chuan Chen
論文名稱:衛星核酸干擾竹嵌紋病毒複製之決定因子的結構與序列分析
論文名稱(外文):Structure and Sequence Analyses of the Determinants Required for Satellite RNA-mediated Interference with Bamboo Mosaic Virus Replication
指導教授:林納生
指導教授(外文):Na-Sheng Lin
學位類別:博士
校院名稱:國防醫學院
系所名稱:生命科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:86
中文關鍵詞:竹嵌紋病毒衛星核酸
外文關鍵詞:Bamboo mosaic virussatellite RNA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
竹嵌紋病毒 ( Bamboo mosaic virus, BaMV ) 為單股正極的RNA病毒,其會使竹葉產生嵌紋狀病徵。有的BaMV分離株還包含衛星核酸 (satellite RNA),簡稱 satBaMV。SatBaMV為次病毒分子,必需依賴BaMV的幫助才能複製、移動及包被。由親源關係的分析發現,自然界的satBaMV分離株可概分為兩群,且在其5’端非轉譯區 (untranslated region, UTR)含有一高度變異區 (hypervariable region, HV region)。雖然此區核酸序列的歧異度高達20%,但大多能摺疊成一保守的二級結構,稱之為apical hairpin stem loop (AHSL)。有的satBaMV分離株會干擾BaMV的複製並減輕其在宿主植物所引起之病徵,例如BSL6;有的則影響不大,例如BSF4。而決定此生物特性之因子位於satBaMV 5’ UTR。在本研究中,我們進一步確認了BSL6干擾BaMV複製的主要決定因子位於其HV region,且與AHSL結構的維持有關。根據生物特性的分析結果,亦歸納出能夠干擾BaMV複製之satBaMV分離株在其AHSL上具有相同結構與序列的中環 (internal loop)。除了AHSL的結構外,中環上特定之核苷酸 (nucleotides) 在satBaMV干擾BaMV複製過程中扮演著重要的角色。分析satBaMV之間以及satBaMV與BaMV的競爭關係得知,具干擾能力之satBaMV有較大的競爭優勢。有趣的是,在BaMV 5’端亦發現與satBaMV類似AHSL之結構 (AHSL-like structure)。因此,我們推測AHSLs結構可能與BaMV及satBaMV的複製有關, BSL6則是藉由其AHSL結構對複製所需之因子的高競爭力,進而影響BaMV的複製。另外,以satBaMV為載體表現基因靜默抑制蛋白 (gene silencing suppressor) 並不影響其干擾BaMV複製的能力。
Satellite RNAs associated with Bamboo mosaic virus (satBaMV) are subviral agents depending on BaMV for replication, encapsidation and systemic movement. Natural satBaMV isolates can be categorized into 2 major phylogenetic groups. A hypervariable (HV) region with divergence of up to 20% in the 5’ untranslated region (UTR) of satBaMV isolates, folds into a conserved apical hairpin stem loop (AHSL) structure containing an apical loop and 2 internal loops. Among the satBaMV isolates, BSL6 reduces the accumulation of BaMV RNAs and attenuates the BaMV-induced symptoms in co-inoculated plants, whereas BSF4 does not. The determinants of the downregulation of BaMV replication were mapped to the 5’ UTR of BSL6. In this study, we confirmed the predicted secondary structure of BSL6 5’ UTR by enzymatic probing and demonstrated that the major determinants of satellite RNA-mediated interference were in the HV region. The integrity of the AHSL structure of interfering satBaMV was essential for the interference of BaMV accumulation. Concurrent analyses of natural satBaMV isolates revealed that all of the interfering isolates contained the same structures and sequences in the internal loops. Refined analyses indicated that, besides the AHSL structure, C60 and 81UGC83 in the internal loops play a crucial role in the downregulation. Given that interfering satBaMV is more competent than noninterfering satBaMV and BaMV during replication, and the 5’ end of BaMVs harboring satBaMV co-evolved the AHSL-like structure with satBaMV, we propose that the 5’ AHSL of BSL6 may be a potent determinant for recruiting the limited quantities of cellular and/or viral factors required for the replication of BaMV and satBaMV. Moreover, the downregulation event by satBaMV was not affected by a viral gene-silencing suppressor inserted into BaMV or satBaMV RNA.
正文目錄 (Contents)
中文摘要 ………………………………………………………………………… 1
英文摘要 (Abstract) …………………………………………………………… 2
緒言 (Introduction) …………………………………………………………… 3
材料與方法 (Materials and Methods) …………………………………………… 10
結果 (Results)
Section I. Downregulation of BaMV requires the 5’ AHSL structure and sequence of satBaMV. …………………………………………………………………… 21
Section II. Replication competence of BaMV and satBaMV variants requires the conserved AHSL structure in their 5’ UTR. …………………………………… 36
Section III. SatBaMV-mediated interference with BaMV replication in the presence of viral suppressor …………………………………………………………… 43
討論 (Discussion) ……………………………………………………………… 45
參考文獻 (References) …………………………………………………………… 52
Annamalai, P., Hsu, Y. H., Liu, Y. P., Tsai, C. H., and Lin, N. S. (2003). Structural and mutational analyses of cis-acting sequences in the 5'-untranslated region of satellite RNA of bamboo mosaic potexvirus. Virology 311(1), 229-39.
Aranda, M. A., Fraile, A., and Garcia-Arenal, F. (1993). Genetic variability and evolution of the satellite RNA of cucumber mosaic virus during natural epidemics. J Virol 67(10), 5896-901.
Baeyens, K. J., De Bondt, H. L., and Holbrook, S. R. (1995). Structure of an RNA double helix including uracil-uracil base pairs in an internal loop. Nat Struct Biol 2(1), 56-62.
Bancroft, J. B., Rouleau, M., Johnston, R., Prins, L., and Mackie, G. A. (1991). The entire nucleotide sequence of foxtail mosaic virus RNA. J Gen Virol 72 ( Pt 9), 2173-81.
Baulcombe, D. C., G. R. Saunders, M. W. Bevan, M. A. Mayo, and B. D. Harrison. (1986). Expression of biologically active viral satellite RNA from the nuclear genome of transformed plants. Nature 321, 446-449.
Buck, K. W. (1996). Comparison of the replication of positive-stranded RNA viruses of plants and animals. Adv Virus Res 47, 159-251.
Chang, B. Y., Lin, N. S., Liou, D. Y., Chen, J. P., Liou, G. G., and Hsu, Y. H. (1997). Subcellular localization of the 28 kDa protein of the triple-gene-block of bamboo mosaic potexvirus. J Gen Virol 78 ( Pt 5), 1175-9.
Chang, R. C., Chen, J. C., and Shaw, J. F. (1996). Facile purification of highly active recombinant Staphylococcus hyicus lipase fragment and characterization of a putative lid region. Biochem Biophys Res Commun 228(3), 774-9.
Chen, I. H., Meng, M., Hsu, Y. H., and Tsai, C. H. (2003). Functional analysis of the cloverleaf-like structure in the 3' untranslated region of bamboo mosaic potexvirus RNA revealed dual roles in viral RNA replication and long distance movement. Virology 315(2), 415-24.
Cheng, C. P., and Tsai, C. H. (1999). Structural and functional analysis of the 3' untranslated region of bamboo mosaic potexvirus genomic RNA. J Mol Biol 288(4), 555-65.
Cheng, J. H., Peng, C. W., Hsu, Y. H., and Tsai, C. H. (2002). The synthesis of minus-strand RNA of bamboo mosaic potexvirus initiates from multiple sites within the poly(A) tail. J Virol 76(12), 6114-20.
Chernysheva, O. A., and White, K. A. (2005). Modular arrangement of viral cis-acting RNA domains in a tombusvirus satellite RNA. Virology 332(2), 640-9.
Chiu, W. W., Hsu, Y. H., and Tsai, C. H. (2002). Specificity analysis of the conserved hexanucleotides for the replication of bamboo mosaic potexvirus RNA. Virus Res 83(1-2), 159-67.
Cillo, F., Finetti-Sialer, M. M., Papanice, M. A., and Gallitelli, D. (2004). Analysis of mechanisms involved in the Cucumber mosaic virus satellite RNA-mediated transgenic resistance in tomato plants. Mol Plant Microbe Interact 17(1), 98-108.
Deiman, B. A., Koenen, A. K., Verlaan, P. W., and Pleij, C. W. (1998). Minimal template requirements for initiation of minus-strand synthesis in vitro by the RNA-dependent RNA polymerase of turnip yellow mosaic virus. J Virol 72(5), 3965-72.
Deiman, B. A., Kortlever, R. M., and Pleij, C. W. (1997). The role of the pseudoknot at the 3' end of turnip yellow mosaic virus RNA in minus-strand synthesis by the viral RNA-dependent RNA polymerase. J Virol 71(8), 5990-6.
Deleris, A., Gallego-Bartolome, J., Bao, J., Kasschau, K. D., Carrington, J. C., and Voinnet, O. (2006). Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science 313(5783), 68-71.
Domingo, E., and Holland, J. J. (1994). Mutation rates and rapid evolution of RNA viruses. In S. S. Morse (ed.), The Evolutionary Biology of Viruses. New York, Raven Press, 161-184.
Du, Z., Ulyanov, N. B., Yu, J., Andino, R., and James, T. L. (2004). NMR structures of loop B RNAs from the stem-loop IV domain of the enterovirus internal ribosome entry site: a single C to U substitution drastically changes the shape and flexibility of RNA. Biochemistry 43(19), 5757-71.
Gallitelli, D., Vovlas, C., Martelli, G., Montasser, M. S., Tousignant, M. E., and Kaper, J. M. (1991). Satellite-mediated protection of tomato against cucumber mosaic virus. II. Field test under natural epidemic conditions in southern Italy. . Plant Dis. 75, 93-95.
Garcia-Arenal, F., and Palukaitis, P. (1999). Structure and functional relationships of satellite RNAs of cucumber mosaic virus. Curr Top Microbiol Immunol 239, 37-63.
Guan, H., Song, C., and Simon, A. E. (1997). RNA promoters located on (-)-strands of a subviral RNA associated with turnip crinkle virus. Rna 3(12), 1401-12.
Guo, L., Allen, E. M., and Miller, W. A. (2001). Base-pairing between untranslated regions facilitates translation of uncapped, nonpolyadenylated viral RNA. Mol Cell 7(5), 1103-9.
Hemmer, O., Oncino, C., and Fritsch, C. (1993). Efficient replication of the in vitro transcripts from cloned cDNA of tomato black ring virus satellite RNA requires the 48K satellite RNA-encoded protein. Virology 194(2), 800-6.
Houser-Scott, F., Ansel-McKinney, P., Cai, J. M., and Gehrke, L. (1997). In vitro genetic selection analysis of alfalfa mosaic virus coat protein binding to 3'-terminal AUGC repeats in the viral RNAs. J Virol 71(3), 2310-9.
Houser-Scott, F., Baer, M. L., Liem, K. F., Jr., Cai, J. M., and Gehrke, L. (1994). Nucleotide sequence and structural determinants of specific binding of coat protein or coat protein peptides to the 3' untranslated region of alfalfa mosaic virus RNA 4. J Virol 68(4), 2194-205.
Hsu, Y. H., Chen, H. C., Cheng, J., Annamali, P., Lin, B. Y., Wu, C. T., Yeh, W. B., and Lin, N. S. (2006). Crucial role of the 5' conserved structure of bamboo mosaic virus satellite RNA in downregulation of helper viral RNA replication. J Virol 80(5), 2566-2574.
Hsu, Y. H., Lee, Y. S., Liu, J. S., and Lin, N. S. (1998). Differential interactions of bamboo mosaic potexvirus satellite RNAs, helper virus, and host plants. Mol Plant Microbe Interact 11, 1207-1213.
Huang, C. Y., Huang, Y. L., Meng, M., Hsu, Y. H., and Tsai, C. H. (2001). Sequences at the 3' untranslated region of bamboo mosaic potexvirus RNA interact with the viral RNA-dependent RNA polymerase. J Virol 75(6), 2818-24.
Huang, Y. L., Han, Y. T., Chang, Y. T., Hsu, Y. H., and Meng, M. (2004). Critical residues for GTP methylation and formation of the covalent m7GMP-enzyme intermediate in the capping enzyme domain of bamboo mosaic virus. J Virol 78(3), 1271-80.
Jacquemond, M., Amselem, J., and Tepfer, M. (1988). A gene coding for a monomeric form of cucumber mosaic virus satellite RNA confers tolerance to CMV. Mol Plant Microbe Interact 1(8), 311-6.
Kao, C. C., and Sun, J. H. (1996). Initiation of minus-strand RNA synthesis by the brome mosaicvirus RNA-dependent RNA polymerase: use of oligoribonucleotide primers. J Virol 70(10), 6826-30.
Kaper, J. M. (1982). Rapid synthesis of double-stranded cucumber mosaic virus-associated RNA 5: mechanism controlling viral pathogenesis? Biochem Biophys Res Commun 105(3), 1014-22.
Kim, K. H., Kwon, S. J., and Hemenway, C. (2002). Cellular protein binds to sequences near the 5' terminus of potato virus X RNA that are important for virus replication. Virology 301(2), 305-12.
Kong, Q., Oh, J. W., and Simon, A. E. (1995). Symptom attenuation by a normally virulent satellite RNA of turnip crinkle virus is associated with the coat protein open reading frame. Plant Cell 7(10), 1625-34.
Kong, Q., Wang, J., and Simon, A. E. (1997). Satellite RNA-mediated resistance to turnip crinkle virus in Arabidopsis involves a reduction in virus movement. Plant Cell 9(11), 2051-63.
Kwon, S. J., and Kim, K. H. (2006). The SL1 stem-loop structure at the 5'-end of potato virus X RNA is required for efficient binding to host proteins and for viral infectivity. Mol Cells 21(1), 63-75.
Lai, M. M. (1998). Cellular factors in the transcription and replication of viral RNA genomes: a parallel to DNA-dependent RNA transcription. Virology 244(1), 1-12.
Li, Y. I., Chen, Y. J., Hsu, Y. H., and Meng, M. (2001a). Characterization of the AdoMet-dependent guanylyltransferase activity that is associated with the N terminus of bamboo mosaic virus replicase. J Virol 75(2), 782-8.
Li, Y. I., Cheng, Y. M., Huang, Y. L., Tsai, C. H., Hsu, Y. H., and Meng, M. (1998). Identification and characterization of the Escherichia coli-expressed RNA-dependent RNA polymerase of bamboo mosaic virus. J Virol 72(12), 10093-9.
Li, Y. I., Shih, T. W., Hsu, Y. H., Han, Y. T., Huang, Y. L., and Meng, M. (2001b). The helicase-like domain of plant potexvirus replicase participates in formation of RNA 5' cap structure by exhibiting RNA 5'-triphosphatase activity. J Virol 75(24), 12114-20.
Lin, J. W., Chiu, H. N., Chen, I. H., Chen, T. C., Hsu, Y. H., and Tsai, C. H. (2005). Structural and functional analysis of the cis-acting elements required for plus-strand RNA synthesis of Bamboo mosaic virus. J Virol 79(14), 9046-53.
Lin, J. W., Ding, M. P., Hsu, Y. H., and Tsai, C. H. (2007). Chloroplast phosphoglycerate kinase, a gluconeogenetic enzyme, is required for efficient accumulation of Bamboo mosaic virus. Nucleic Acids Res 35(2), 424-32.
Lin, M. K., Chang, B. Y., Liao, J. T., Lin, N. S., and Hsu, Y. H. (2004). Arg-16 and Arg-21 in the N-terminal region of the triple-gene-block protein 1 of Bamboo mosaic virus are essential for virus movement. J Gen Virol 85(Pt 1), 251-9.
Lin, N. S., Chai, Y. J., Huang, T. Y., Chang, T. Y., and Hsu, Y. H. (1993). Incidence of bamboo mosaic potexvirus in Taiwan. Plant Dis. 77, 448-450.
Lin, N. S., and Chen, C. C. (1991). Association of Bamboo mosaic virus (BaMV) and BaMV-specific electron-dense crystalline bodies with chloroplasts. Phytopathology 81, 1551-1555.
Lin, N. S., and Hsu, Y. H. (1994). A satellite RNA associated with bamboo mosaic potexvirus. Virology 202(2), 707-14.
Lin, N. S., Huang, T. Z., and Hsu, Y. H. (1992). Infection of barely protoplasts with bamboo mosaic virus RNA. Bot. Bull. Acad. Sin. 33, 271-275.
Lin, N. S., Lee, Y. S., Lin, B. Y., Lee, C. W., and Hsu, Y. H. (1996). The open reading frame of bamboo mosaic potexvirus satellite RNA is not essential for its replication and can be replaced with a bacterial gene. Proc Natl Acad Sci U S A 93(7), 3138-42.
Lin, N. S., Lin, B. Y., Lo, N. W., Hu, C. C., Chow, T. Y., and Hsu, Y. H. (1994). Nucleotide sequence of the genomic RNA of bamboo mosaic potexvirus. J Gen Virol 75 ( Pt 9), 2513-8.
Liu, J. S., Hsu, Y. H., Huang, T. Y., and Lin, N. S. (1997). Molecular evolution and phylogeny of satellite RNA associated with bamboo mosaic potexvirus. J Mol Evol 44(2), 207-13.
Liu, Y. Y., and Cooper, J. I. (1993). The multiplication in plants of arabis mosaic virus satellite RNA requires the encoded protein. J Gen Virol 74 ( Pt 7), 1471-4.
Masuta, C., and Takanami, Y. (1989). Determination of sequence and structural requirements for pathogenicity of a cucumber mosaic virus satellite RNA (Y-satRNA). Plant Cell 1(12), 1165-73.
Miller, E. D., Kim, K. H., and Hemenway, C. (1999). Restoration of a stem-loop structure required for potato virus X RNA accumulation indicates selection for a mismatch and a GNRA tetraloop. Virology 260(2), 342-53.
Miller, E. D., Plante, C. A., Kim, K. H., Brown, J. W., and Hemenway, C. (1998). Stem-loop structure in the 5' region of potato virus X genome required for plus-strand RNA accumulation. J Mol Biol 284(3), 591-608.
Montasser, M. S., Tousignant, M. E., and Kaper, J. M. (1991). Satellite-mediated protection of tomato against cucumber mosaic virus. I. Greenhouse experiments and simulated epidemic conditions in the field. . Plant Dis. 75, 86-92.
Moriones, E., Diaz, I., Rodriguez-Cerezo, E., Fraile, A., and Garcia-Arenal, F. (1992). Differential interactions among strains of tomato aspermy virus and satellite RNAs of cucumber mosaic virus. Virology 186(2), 475-80.
Naidu, R. A., Collins, G. B., and Ghabrial, S. A. (1992). Peanut stunt virus satellite RNA: analysis of sequences that affect symptom attenuation in tobacco. Virology 189(2), 668-77.
Osman, T. A., and Buck, K. W. (1996). Complete replication in vitro of tobacco mosaic virus RNA by a template-dependent, membrane-bound RNA polymerase. J Virol 70(9), 6227-34.
Panavas, T., Pogany, J., and Nagy, P. D. (2002). Analysis of minimal promoter sequences for plus-strand synthesis by the Cucumber necrosis virus RNA-dependent RNA polymerase. Virology 296(2), 263-74.
Pantaleo, V., Szittya, G., and Burgyan, J. (2007). Molecular bases of viral RNA targeting by viral small interfering RNA-programmed RISC. J Virol 81(8), 3797-806.
Pogany, J., White, K. A., and Nagy, P. D. (2005). Specific binding of tombusvirus replication protein p33 to an internal replication element in the viral RNA is essential for replication. J Virol 79(8), 4859-69.
Qu, F., Ren, T., and Morris, T. J. (2003). The coat protein of turnip crinkle virus suppresses posttranscriptional gene silencing at an early initiation step. J Virol 77(1), 511-22.
Reusken, C. B., and Bol, J. F. (1996). Structural elements of the 3'-terminal coat protein binding site in alfalfa mosaic virus RNAs. Nucleic Acids Res 24(14), 2660-5.
Roossinck, M. J., and Palukaitis, P. (1995). Genetic analysis of helper virus-specific selective amplification of cucumber mosaic virus satellite RNAs. J Mol Evol 40(1), 25-9.
Roossinck, M. J., Sleat, D., and Palukaitis, P. (1992). Satellite RNAs of plant viruses: structures and biological effects. Microbiol Rev 56(2), 265-79.
Silhavy, D., Molnar, A., Lucioli, A., Szittya, G., Hornyik, C., Tavazza, M., and Burgyan, J. (2002). A viral protein suppresses RNA silencing and binds silencing-generated, 21- to 25-nucleotide double-stranded RNAs. Embo J 21(12), 3070-80.
Simon, A. E., Roossinck, M. J., and Havelda, Z. (2004). Plant virus satellite and defective interfering RNAs: new paradigms for a new century. Annu Rev Phytopathol 42, 415-37.
Singh, R. N., and Dreher, T. W. (1997). Turnip yellow mosaic virus RNA-dependent RNA polymerase: initiation of minus strand synthesis in vitro. Virology 233(2), 430-9.
Sit, T. L., Vaewhongs, A. A., and Lommel, S. A. (1998). RNA-mediated trans-activation of transcription from a viral RNA. Science 281(5378), 829-32.
Sleat, D. E., and Palukaitis, P. (1992). A single nucleotide change within a plant virus satellite RNA alters the host specificity of disease induction. Plant J 2(1), 43-9.
Song, C., and Simon, A. E. (1995). Requirement of a 3'-terminal stem-loop in in vitro transcription by an RNA-dependent RNA polymerase. J Mol Biol 254(1), 6-14.
Stupina, V., and Simon, A. E. (1997). Analysis in vivo of turnip crinkle virus satellite RNA C variants with mutations in the 3'-terminal minus-strand promoter. Virology 238(2), 470-7.
Szittya, G., Molnar, A., Silhavy, D., Hornyik, C., and Burgyan, J. (2002). Short defective interfering RNAs of tombusviruses are not targeted but trigger post-transcriptional gene silencing against their helper virus. Plant Cell 14(2), 359-72.
Taliansky, M. E., and Robinson, D. J. (1997). Down-regulation of groundnut rosette virus replication by a variant satellite RNA. Virology 230(2), 228-35.
Taliansky, M. E., Ryabov, E. V., and Robinson, D. J. (1998a). Two Distinct Mechanisms of Transgenic Resistance Mediated by Groundnut Rosette Virus Satellite RNA Sequences. Mol Plant Microbe Interact 11(5), 367-374.
Taliansky, M. E., Ryabov, E. V., and Robinson, D. J. (1998b). Two distinct mechanisms of transgenic resistance mediated by groundnut rosette virus satellite RNA sequences. Molecular Plant-Microbe Interactions 11(5), 367-374.
Taliansky, M. E., Ryabov, E. V., Robinson, D. J., and Palukaitis, P. (1998). Tomato cell death mediated by complementary plant viral satellite RNA sequences. Mol Plant Microbe Interact 11(12), 1214-1222.
Thomas, C. L., Leh, V., Lederer, C., and Maule, A. J. (2003). Turnip crinkle virus coat protein mediates suppression of RNA silencing in Nicotiana benthamiana. Virology 306(1), 33-41.
Tien, P., and Wu, G. S. (1991). Satellite RNA for the biocontrol of plant disease. Adv Virus Res 39, 321-39.
Tsai, C. H., Cheng, C. P., Peng, C. W., Lin, B. Y., Lin, N. S., and Hsu, Y. H. (1999). Sufficient length of a poly(A) tail for the formation of a potential pseudoknot is required for efficient replication of bamboo mosaic potexvirus RNA. J Virol 73(4), 2703-9.
Tsai, M. S., Hsu, Y. H., and Lin, N. S. (1999). Bamboo mosaic potexvirus satellite RNA (satBaMV RNA)-encoded P20 protein preferentially binds to satBaMV RNA. J Virol 73(4), 3032-9.
Voinnet, O., Lederer, C., and Baulcombe, D. C. (2000). A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell 103(1), 157-67.
Wang, J., and Simon, A. E. (1999). Symptom attenuation by a satellite RNA in vivo is dependent on reduced levels of virus coat protein. Virology 259(1), 234-45.
White, K. A., Bancroft, J. B., and Mackie, G. A. (1992). Mutagenesis of a hexanucleotide sequence conserved in potexvirus RNAs. Virology 189(2), 817-20.
Wu, B., Vanti, W. B., and White, K. A. (2001). An RNA domain within the 5' untranslated region of the tomato bushy stunt virus genome modulates viral RNA replication. J Mol Biol 305(4), 741-56.
Wu, G., and Kaper, J. M. (1995). Competition of viral and satellite RNAs of cucumber mosaic virus for replication in vitro by viral RNA-dependent RNA polymerase. Res Virol 146(1), 61-7.
Wung, C. H., Hsu, Y. H., Liou, D. Y., Huang, W. C., Lin, N. S., and Chang, B. Y. (1999). Identification of the RNA-binding sites of the triple gene block protein 1 of bamboo mosaic potexvirus. J Gen Virol 80 ( Pt 5), 1119-26.
Yang, C. C., Liu, J. S., Lin, C. P., and Lin, N. S. (1997). Nucleotide sequence and phylogenetic analysis of a bamboo mosaic potexvirus isolate from common bamboo (Bambusa vulgaris McClure). Botanical Bulletin of Academia Sinica 38(2), 77-84.
Yeh, T. Y., Lin, B. Y., Chang, Y. C., Hsu, Y. H., and Lin, N. S. (1999). A defective RNA associated with bamboo mosaic virus and the possible common mechanisms for RNA recombination in potexviruses. Virus Genes 18(2), 121-8.
Yeh, W. B., Hsu, Y. H., Chen, H. C., and Lin, N. S. (2004). A conserved secondary structure in the hypervariable region at the 5' end of Bamboo mosaic virus satellite RNA is functionally interchangeable. Virology 330(1), 105-15.
Zhong, X., Leontis, N., Qian, S., Itaya, A., Qi, Y., Boris-Lawrie, K., and Ding, B. (2006). Tertiary structural and functional analyses of a viroid RNA motif by isostericity matrix and mutagenesis reveal its essential role in replication. J Virol 80(17), 8566-81.
Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13), 3406-15.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 5. 黃永東、趙平宜、廖俊杰,「田口式之多要因直交表實驗設計的改進分析方法研究」,吳鳳學報,民國86年,10-19。
2. 4. 林朝蒼,「田口玄一的品質技術導向」,品質管制月刊,第32卷,第3期,,民國85年50-52。
3. 4. 林朝蒼,「田口玄一的品質技術導向」,品質管制月刊,第32卷,第3期,,民國85年50-52。
4. 4. 林朝蒼,「田口玄一的品質技術導向」,品質管制月刊,第32卷,第3期,,民國85年50-52。
5. 5. 黃永東、趙平宜、廖俊杰,「田口式之多要因直交表實驗設計的改進分析方法研究」,吳鳳學報,民國86年,10-19。
6. 5. 黃永東、趙平宜、廖俊杰,「田口式之多要因直交表實驗設計的改進分析方法研究」,吳鳳學報,民國86年,10-19。
7. 10. 陳志強,“高密度IC封裝-CSP技術封裝”,工業材料,第151期,頁92-99,民國88年7月。
8. 10. 陳志強,“高密度IC封裝-CSP技術封裝”,工業材料,第151期,頁92-99,民國88年7月。
9. 10. 陳志強,“高密度IC封裝-CSP技術封裝”,工業材料,第151期,頁92-99,民國88年7月。
10. 12. 彼德,“晶方尺寸封裝技術(CSP)標準化之推展~多媒體應用不可欠缺之高密度封裝技術”,電子月刊,第二卷第八期,頁119-120,民國85年8月。
11. 12. 彼德,“晶方尺寸封裝技術(CSP)標準化之推展~多媒體應用不可欠缺之高密度封裝技術”,電子月刊,第二卷第八期,頁119-120,民國85年8月。
12. 12. 彼德,“晶方尺寸封裝技術(CSP)標準化之推展~多媒體應用不可欠缺之高密度封裝技術”,電子月刊,第二卷第八期,頁119-120,民國85年8月。
13. 17. 白蓉生,「無鉛銲接的到來與因應」,電路板會刊,二十二期,民國92年。
14. 17. 白蓉生,「無鉛銲接的到來與因應」,電路板會刊,二十二期,民國92年。
15. 17. 白蓉生,「無鉛銲接的到來與因應」,電路板會刊,二十二期,民國92年。