跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2025/01/19 07:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳武福
研究生(外文):WU-FU CHEN
論文名稱:新生鼠缺氧引發腦部神經細胞病變之致病機轉與藥理保護作用
論文名稱(外文):The Pathogenesis and Pharmacological Protection of Perinatal Hypoxia-induced Neuronal Alterations in the Rat Brain
指導教授:汪志雄汪志雄引用關係楊生湳
指導教授(外文):Chih-Shung WongSan-Nan Yang
學位類別:博士
校院名稱:國防醫學院
系所名稱:醫學科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:65
中文關鍵詞:新生兒缺氧腦病變N-甲基-D-天門冬胺酸受體突觸後緻密結構-95環腺苷酸反應單元結合蛋白多巴胺受體抽搐感受性水迷宮試驗大腦皮質冬胺酸危險性區域性大白鼠
外文關鍵詞:Perinatal hypoxiaEncephalopathyNMDA receptorPSD-95CREBDopamine receptorSeizure susceptibilityWater-maze
相關次數:
  • 被引用被引用:0
  • 點閱點閱:363
  • 評分評分:
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
新生兒缺氧是造成新生兒腦部傷害的主要原因之一,會造成新生兒終其一生具毀滅性的神經功能障礙後遺症,如增加日後發生癲癇發作之危險性以及有關學習與記憶執行力的損害。突觸後緻密結構蛋白質(PSD) 是一種細胞支架的特殊結構,位於中樞神經興奮性突觸後膜之下。PSD密切參與控制突觸功能與調節突觸後神經,是一種對興奮性刺激反應的動態性結構。 PSD-95以PDZ區域結合受體蛋白質C端四個胺基酸來聯結N-甲基-D-天門冬胺酸(NMDA)受體的NR2A與NR2B次單元,因而活化了NMDA受體媒介的反應物質,如學習及記憶相關之轉錄因子-磷酸化的環腺苷酸反應單元結合蛋白 (pCREBSerine-133)。
本論文之目的主要是研究新生鼠缺氧環境所誘發出日後抽搐感受性增加以及有關學習與記憶執行力損害的大白鼠,其中樞海馬回及大腦皮質神經細胞PSD-95、NMDA受體次單元和pCREBSerine-133的蛋白質質體表現所受到的影響,並且探討是否經由活化多巴胺D1/D5受體可以影響這些蛋白質質體的表現以及上述研究目標是否伴隨成鼠抽搐發生機率之降低以及有關學習與記憶執行力的改善。
本論文之第一部分,在成鼠(P45)時施與pentylenetetrazol (PTZ)之注射以誘發抽搐,用於評估抽搐感受性之病變可能性。論文之第二部分,利用水迷宮試驗來探討實驗動物有關學習與記憶執行力損害的情形。本論文並應用免疫組織化學染色法、共軛免疫沈澱法及西方墨點技術來探討抽搐感受性增加以及有關學習與記憶執行力損害的大白鼠,在成鼠(P45)時其三個代表性腦區(海馬迴CA1區、中腦和顳葉皮質)的神經細胞損傷的情形,以及PSD-95、NMDAR次單元(NR1、NR2A 和NR2B)和pCREBSerine-133的蛋白質質體表現之改變情況。論文並進一步評估活化多巴胺D1/D5受體對實驗動物之療效。
本論文之結果顯示抽搐感受性增加以及有關學習與記憶執行力損害的大白鼠,在成鼠(P45)時其神經細胞損傷的腦區,主要是在中腦,而不在顳葉皮質和海馬迴CA1區。然而,pCREBSerine-133蛋白質質體表現的降低,在三個代表性腦區都可以觀察得到。新生鼠缺氧亦導致中腦和海馬迴CA1區(顳葉皮質除外)的PSD-95蛋白質質體表現降低; 此外,共軛免疫沈澱法及西方墨點技術也顯示PSD-95和NMDA受體次單元的蛋白質質體表現明顯地被週產期缺氧所改變。此外,本論文顯示,在P17-24以可通透中樞神經之選擇性致效劑A68930(2mg/kg)活化多巴胺D1/D5受體途徑,不僅能改善水迷宮試驗的認知執行力,而且能提升PSD-95/NMDA受體的表現及其下游訊息CREBserine-133的磷酸化能力。
綜合以上結果顯示抽搐感受性增加以及有關學習與記憶執行力損害的大白鼠,其PSD-95和NMDA受體次單元分子間的動態連接能力可被在新生鼠時的缺氧所改變。另外, PSD-95以及pCREBSerine-133的蛋白質質體的表現降低亦呈現區域性差異(spatial-preferential difference),進而參與新生兒腦部缺氧病變的形成,例如增加抽搐感受性以及有關學習與記憶執行力損害的細胞機轉基礎。更重要的是,於新生兒缺氧後,活化多巴胺D1/D5受體有意義地減輕長期神經缺陷,顯示此種訊息途徑的有利活動,可能對新生兒缺氧引發腦病變提供有用之治療策略。
英文摘要
Perinatal hypoxia is an important cause of brain injury in the newborn and has consequences that are potentially devastating and life-long, such as increased risks of epilepsy and impaired performance as regards learning and memory in later life for the affected individual. The postsynaptic density (PSD) is a cytoskeletal specialization involved in the anchoring of neurotransmitter receptors and in regulating the response of postsynaptic neurons to synaptic stimulation. The postsynaptic protein PSD-95 binds to the N-methyl-D-aspartate receptor (NMDAR) subunit, and hence activates cascades of NMDAR-mediated events, such as cyclic adenosine monophosphate (cAMP)-responsive element binding protein phosphorylation at serine-133 (pCREBSerine-133).
Here we studied the effect of perinatal hypoxia on protein interactions involving PSD-95 and the NMDAR, as well as pCREBSerine-133 expression at an age when the animals show increased seizure susceptibility and impaired performance as regards learning and memory. We also assessed the therapeutic efficacy of dopamine D1/D5 receptor (D1/D5R) activation for such study animals.
Rats were assigned randomly to the control rats or the rats exposed to transient global hypoxia on postnatal day 10 (P10). The first part of this study have focused on the seizure susceptibility for the affected individual treated with pentylenetetrazol (PTZ) intraperitoneally on P45. In the second part of this study, the water maze test was applied to the test animals following earlier experimentation . We analyzed the levels of neuronal loss, pCREBSerine-133, PSD-95, and NMDAR expressions in the midbrain, temporal cortex, and hippocampal CA1 subfield by using immunohistochemistry, co-immunoprecipitation, and immunoblotting techniques, respectively. We also assessed the therapeutic efficacy of dopamine D1/D5 receptor (D1/D5R) activation for such study animals.
The rats with prior exposure to perinatal hypoxia exhibited increased seizure susceptibility to PTZ and impaired performance as regards learning and memory in later life, compared with the control rats. Associated with this long-term change in seizure susceptibility and in impaired performance as regards learning and memory in later life, selective neuronal loss was observed in the midbrain region while pCREBSerine-133 expression was reduced in the midbrain, temporal cortex, and hippocampal CA1 subfield. Perinatal hypoxia led to a decrease in PSD-95 expression in the both midbrain and hippocampal CA1 subfield, with the exception of temporal cortex. Furthermore, the association between PSD-95 and NMDAR subunits (NR1, NR2A, and NR2B) in the hippocampal CA1 was also markedly altered by perinatal hypoxia. In addition, activation of the D1/D5R via A68930 (a selective, CNS-permeable agonist of D1/D5Rs) administration (2 mg/kg/day, P17–23 inclusively) markedly attenuated the hypoxia-induced deleterious effects, suggesting an effective therapeutic efficacy for A68930.
This study demonstrates that the decrease in several protein complexes that are essential components of the postsynaptic apparatus is associated with the observed increase in seizure susceptibility and an increased risk of impaired performance as regards learning and memory in later life for the affected individual. The results indicate that reductions in PSD-95 expression, PSD-95 binding of NMDAR subunits, and subsequent NMDAR-mediated CREB phosphorylation, particularly in hippocampal CA1, are long-term consequences of perinatal hypoxia and may, at least in part, contribute to perinatal hypoxia-induced increased risks of epilepsy and impaired performance as regards learning and memory. More importantly, D1/D5R activation following perinatal hypoxia may be an alternative therapeutic strategy to that which is currently available and may offer significant clinical potential for hypoxia
sufferers.
目錄
正文目錄……………………………………………………………..Ⅱ
圖目錄………………………………………………………………..Ⅳ
英文縮寫……………………………………………………………..Ⅴ
附錄目錄……………………………………………………………..Ⅶ
中文摘要……………………………………………………………..Ⅷ
英文摘要……………………………………………………………..XI















正文目錄
第一章、緒言
第一節、新生兒之腦部發育與缺氧反應……………………..2
第二節、N-甲基-D-天門冬胺酸受體…………………………3
第三節、突觸後緻密結構 ……………………………………4
第四節、缺氧對NMDA受體和PSD-95的影響…………….6
第五節、學習及記憶相關之轉錄因子………………………...7
第六節、本論文研究的目的…………………………………...9
第二章、材料與方法
第一節、實驗動物……………………………………………..11
第二節、動物模式之建立: 誘導缺氧反應…………………...11
第三節、抽搐感受性…………………………………………..12
第四節、水迷宮試驗…………………………………………..12
第五節、免疫組織化學染色法………………………………...13
第六節、腦組織切片之製備 ………………………………….14
第七節、共軛免疫沈澱法及西方墨點技術……………………16
第八節、數據分析………………………………………………17
第三章、探討新生鼠缺氧所引發腦部PSD-95/NMDA受體複合物及長期抽搐感受性之改變
第一節、實驗模式之背景 ……………………………………..19
第二節、實驗步驟………………………………………………22
第三節、實驗結果………………………………………………24
第四節、討論……………………………………………………32
第五節、後記……………………………………………………36
第四章、新生鼠缺氧引發海馬迴CA1區突觸後緻密結構蛋白質質體表現的改變
第一節、實驗模式之背景 ……………………………………..37
第二節、實驗步驟………………………………………………38
第三節、實驗結果………………………………………………42
第四節、討論……………………………………………………50
第五節、後記……………………………………………………55
第五章、結論與展望…………………………………………………56
參考文獻………………………………………………………………57
附錄……………………………………………………………………65








圖目錄
第三章之圖目錄
圖1、為實驗設計之圖解摘要………………………………………23
圖2、新生鼠缺氧後長期之腦組織切片結果………………………27
圖3、P45時 Neu-N免疫組織化學染色細胞總數………………...28
圖4、缺氧對三個腦區之PSD-95長期(P45)表現的效應………....29
圖5、缺氧對三個腦區之pCREBSerine-133長期(P45)表現的效應….30
圖6、 PSD-95和NMDA受體之次單元共軛免疫沈澱法………..31
第四章之圖目錄
圖1. 實驗設計架構之描敘………………………………………….41
圖2. 以A68930(2mg/kg)活化多巴胺D1/D5受體對缺氧實驗
動物之長期空間學習與記憶之效應………………………….46
圖3. 以A68930(2mg/kg)活化多巴胺D1/D5受體對缺氧實驗
動物CREBserine-133的磷酸化與PSD-95的表現程度之效應…47
圖4. 在有選擇性多巴胺D1/D5受體拮抗劑SCH23390的情況
下,活化多巴胺D1/D5受體對缺氧實驗動物CREBserine-133
的磷酸化與PSD-95的表現程度之效應………………………48
圖5. 活化多巴胺D1/D5受體對缺氧實驗動物NMDA受體次單元的效應…………………………………………………………….49
英文縮寫
aCSF artificial cerebrospinal fluid
ATF activating transcription factor
AMPA α-amino-3-hydroxy-5-methyl-4- isoxazoleproprionate
CaMK calmodulin kinase
cAMP 3'-5'-cyclic adenosine monophosphate
CRE cAMP response element
CREB cAMP response element binding protein
D1/D5R dopamine D1/D5 receptor
GABA γ-aminobutylic acid
ERK extracellular-signal regulated kinase
LTP long-term potentiation
MAPK mitogen-activated protein kinase
NMDA N-methyl-D-aspartate
PBS phosphate-buffered saline
PDZ PSD-95/discs large/zone occludens
PTZ pentylenetetrazol
nNOS neuronal nitric oxide synthase
pCREBSerine-133 Phosphorylated CREBSerine-133
PKA protein kinase A
PKC protein kinase C
PP-1 protein phosphatase-1
PP-2A protein phosphatase-2A
PSD postsynaptic density
PMSF phenylmethylsulphonylfluoride
PVDF poly-vinylidene difluoride filter
RSK ribosomal S6 kinase
SAP synapse-associated protein
SDS sodium dodecylsulfate
SynGap synatic RAS-GTPase activating protein








附錄目錄
附錄一、刊登於Epilepsia之論文
附錄二、刊登於Experimental Neurology之論文
REFERENCES
Aarts M, Liu Y, Liu L, Besshoh S, Arundine M, Gurd JW, Wang YT, Salter MW, Tymianski M (2002) Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions. Science 298:846-850.
Alberini CM, Ghirardi M, Huang YY, Nguyen PV, Kandel ER (1995) A molecular switch for the consolidation of long-term memory: cAMP-inducible gene expression. Ann N Y Acad Sci 758:261-286.
Alvarez P, Zola-Morgan S, Squire LR (1995) Damage limited to the hippocampal region produces long-lasting memory impairment in monkeys. J Neurosci 15:3796-3807.
Augustine GJ, Charlton MP, Smith SJ (1987) Calcium action in synaptic transmitter release. Annu Rev Neurosci 10:633-693.
Bach ME, Barad M, Son H, Zhuo M, Lu YF, Shih R, Mansuy I, Hawkins RD, Kandel ER (1999) Age-related defects in spatial memory are correlated with defects in the late phase of hippocampal long-term potentiation in vitro and are attenuated by drugs that enhance the cAMP signaling pathway. Proc Natl Acad Sci U S A 96:5280-5285.
Bading H (1999) Nuclear calcium-activated gene expression: possible roles in neuronal plasticity and epileptogenesis. Epilepsy Res 36:225-231.
Bayer SA (1980) Development of the hippocampal region in the rat. I. Neurogenesis examined with 3H-thymidine autoradiography. J Comp Neurol 190:87-114.
Bayer SA, Yackel JW, Puri PS (1982) Neurons in the rat dentate gyrus granular layer substantially increase during juvenile and adult life. Science 216:890-892.
Bender RA, Lauterborn JC, Gall CM, Cariaga W, Baram TZ (2001) Enhanced CREB phosphorylation in immature dentate gyrus granule cells precedes neurotrophin expression and indicates a specific role of CREB in granule cell differentiation. Eur J Neurosci 13:679-686.
Bergamasco B, Benna P, Ferrero P, Gavinelli R (1984) Neonatal hypoxia and epileptic risk: a clinical prospective study. Epilepsia 25:131-136.
Berke JD, Hyman SE (2000) Addiction, dopamine, and the molecular mechanisms of memory. Neuron 25:515-532.
Bi X, Rong Y, Chen J, Dang S, Wang Z, Baudry M (1998) Calpain-mediated regulation of NMDA receptor structure and function. Brain Res 790:245-253.
Bito H, Takemoto-Kimura S (2003) Ca(2+)/CREB/CBP-dependent gene regulation: a shared mechanism critical in long-term synaptic plasticity and neuronal survival. Cell Calcium 34:425-430.
Bito H, Deisseroth K, Tsien RW (1996) CREB phosphorylation and dephosphorylation: a Ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression. Cell 87:1203-1214.
Brindle PK, Montminy MR (1992) The CREB family of transcription activators. Curr Opin Genet Dev 2:199-204.
Buwalda B, Nyakas C, Vosselman HJ, Luiten PG (1995) Effects of early postnatal anoxia on adult learning and emotion in rats. Behav Brain Res 67:85-90.
Chang YC, Huang AM, Kuo YM, Wang ST, Chang YY, Huang CC (2003) Febrile seizures impair memory and cAMP response-element binding protein activation. Ann Neurol 54:706-718.
Chen WF, Chang H, Huang LT, Lai MC, Yang CH, Wan TH, Yang SN (2006) Alterations in long-term seizure susceptibility and the complex of PSD-95 with NMDA receptor from animals previously exposed to perinatal hypoxia. Epilepsia 47:288-296.
Clifford JJ, Tighe O, Croke DT, Kinsella A, Sibley DR, Drago J, Waddington JL (1999) Conservation of behavioural topography to dopamine D1-like receptor agonists in mutant mice lacking the D1A receptor implicates a D1-like receptor not coupled to adenylyl cyclase. Neuroscience 93:1483-1489.
Cowan WM, Stanfield BB, Kishi K (1980) The development of the dentate gyrus. Curr Top Dev Biol 15 Pt 1:103-157.
Crino P, Khodakhah K, Becker K, Ginsberg S, Hemby S, Eberwine J (1998) Presence and phosphorylation of transcription factors in developing dendrites. Proc Natl Acad Sci U S A 95:2313-2318.
Davis S, Vanhoutte P, Pages C, Caboche J, Laroche S (2000) The MAPK/ERK cascade targets both Elk-1 and cAMP response element-binding protein to control long-term potentiation-dependent gene expression in the dentate gyrus in vivo. J Neurosci 20:4563-4572.
De Riu PL, Mameli P, Becciu A, Simula ME, Mameli O (1995) Effect of fetal hypoxia on seizure susceptibility in rats. Physiol Behav 57:315-318.
Decker MJ, Hue GE, Caudle WM, Miller GW, Keating GL, Rye DB (2003) Episodic neonatal hypoxia evokes executive dysfunction and regionally specific alterations in markers of dopamine signaling. Neuroscience 117:417-425.
Deisseroth K, Bito H, Tsien RW (1996) Signaling from synapse to nucleus: postsynaptic CREB phosphorylation during multiple forms of hippocampal synaptic plasticity. Neuron 16:89-101.
Deisseroth K, Heist EK, Tsien RW (1998) Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons. Nature 392:198-202.
Deveney AM, Waddington JL (1997) Psychopharmacological distinction between novel full-efficacy "D1-like" dopamine receptor agonists. Pharmacol Biochem Behav 58:551-558.
du Plessis AJ, Volpe JJ (2002) Perinatal brain injury in the preterm and term newborn. Curr Opin Neurol 15:151-157.
Dzhala V, Ben-Ari Y, Khazipov R (2000) Seizures accelerate anoxia-induced neuronal death in the neonatal rat hippocampus. Ann Neurol 48:632-640.
English JD, Sweatt JD (1997) A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation. J Biol Chem 272:19103-19106.
Fullerton HJ, Chetkovich DM, Wu YW, Smith WS, Johnston SC (2002) Deaths from stroke in US children, 1979 to 1998. Neurology 59:34-39.
Gilmore JH, Watts VJ, Lawler CP, Noll EP, Nichols DE, Mailman RB (1995) "Full" dopamine D1 agonists in human caudate: biochemical properties and therapeutic implications. Neuropharmacology 34:481-488.
Gonzalez GA, Montminy MR (1989) Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59:675-680.
Grafe MR (1994) Developmental changes in the sensitivity of the neonatal rat brain to hypoxic/ischemic injury. Brain Res 653:161-166.
Hagiwara M, Brindle P, Harootunian A, Armstrong R, Rivier J, Vale W, Tsien R, Montminy MR (1993) Coupling of hormonal stimulation and transcription via the cyclic AMP-responsive factor CREB is rate limited by nuclear entry of protein kinase A. Mol Cell Biol 13:4852-4859.
Hagiwara M, Alberts A, Brindle P, Meinkoth J, Feramisco J, Deng T, Karin M, Shenolikar S, Montminy M (1992) Transcriptional attenuation following cAMP induction requires PP-1-mediated dephosphorylation of CREB. Cell 70:105-113.
Hardingham GE, Fukunaga Y, Bading H (2002) Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 5:405-414.
Harum KH, Alemi L, Johnston MV (2001) Cognitive impairment in Coffin-Lowry syndrome correlates with reduced RSK2 activation. Neurology 56:207-214.
Hatalski CG, Baram TZ (1997) Stress-induced transcriptional regulation in the developing rat brain involves increased cyclic adenosine 3',5'-monophosphate-regulatory element binding activity. Mol Endocrinol 11:2016-2024.
Herdegen T, Zimmermann M (1994) Expression of c-Jun and JunD transcription factors represent specific changes in neuronal gene expression following axotomy. Prog Brain Res 103:153-171.
Hersi AI, Rowe W, Gaudreau P, Quirion R (1995) Dopamine D1 receptor ligands modulate cognitive performance and hippocampal acetylcholine release in memory-impaired aged rats. Neuroscience 69:1067-1074.
Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17:31-108.
Holmes GL, Thompson JL (1988) Effects of kainic acid on seizure susceptibility in the developing brain. Brain Res 467:51-59.
Holmes GL, Gairsa JL, Chevassus-Au-Louis N, Ben-Ari Y (1998) Consequences of neonatal seizures in the rat: morphological and behavioral effects. Ann Neurol 44:845-857.
Hu BR, Park M, Martone ME, Fischer WH, Ellisman MH, Zivin JA (1998) Assembly of proteins to postsynaptic densities after transient cerebral ischemia. J Neurosci 18:625-633.
Huang LT, Holmes GL, Lai MC, Hung PL, Wang CL, Wang TJ, Yang CH, Liou CW, Yang SN (2002) Maternal deprivation stress exacerbates cognitive deficits in immature rats with recurrent seizures. Epilepsia 43:1141-1148.
Impey S, Mark M, Villacres EC, Poser S, Chavkin C, Storm DR (1996) Induction of CRE-mediated gene expression by stimuli that generate long-lasting LTP in area CA1 of the hippocampus. Neuron 16:973-982.
Jensen FE (2002) The role of glutamate receptor maturation in perinatal seizures and brain injury. Int J Dev Neurosci 20:339-347.
Jensen FE, Wang C (1996) Hypoxia-induced hyperexcitability in vivo and in vitro in the immature hippocampus. Epilepsy Res 26:131-140.
Jensen FE, Applegate C, Burchfiel J, Lombroso CT (1991a) Differential effects of perinatal hypoxia and anoxia on long term seizure susceptibility in the rat. Life Sci 49:399-407.
Jensen FE, Applegate CD, Holtzman D, Belin TR, Burchfiel JL (1991b) Epileptogenic effect of hypoxia in the immature rodent brain. Ann Neurol 29:629-637.
Jensen FE, Holmes GL, Lombroso CT, Blume HK, Firkusny IR (1992) Age-dependent changes in long-term seizure susceptibility and behavior after hypoxia in rats. Epilepsia 33:971-980.
Jensen FE, Blume H, Alvarado S, Firkusny I, Geary C (1995) NBQX blocks acute and late epileptogenic effects of perinatal hypoxia. Epilepsia 36:966-972.
Jiang X, Mu D, Sheldon RA, Glidden DV, Ferriero DM (2003) Neonatal hypoxia-ischemia differentially upregulates MAGUKs and associated proteins in PSD-93-deficient mouse brain. Stroke 34:2958-2963.
Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030-1038.
Karler R, Calder LD, Bedingfield JB (1994) Cocaine behavioral sensitization and the excitatory amino acids. Psychopharmacology (Berl) 115:305-310.
Kelley AE (2004) Memory and addiction: shared neural circuitry and molecular mechanisms. Neuron 44:161-179.
Kennedy MB (2000) Signal-processing machines at the postsynaptic density. Science 290:750-754.
Kim E, Cho KO, Rothschild A, Sheng M (1996) Heteromultimerization and NMDA receptor-clustering activity of Chapsyn-110, a member of the PSD-95 family of proteins. Neuron 17:103-113.
Kim JH, Huganir RL (1999) Organization and regulation of proteins at synapses. Curr Opin Cell Biol 11:248-254.
Kirson ED, Yaari Y (1996) Synaptic NMDA receptors in developing mouse hippocampal neurones: functional properties and sensitivity to ifenprodil. J Physiol 497 ( Pt 2):437-455.
Koh S, Jensen FE (2001) Topiramate blocks perinatal hypoxia-induced seizures in rat pups. Ann Neurol 50:366-372.
Koh S, Storey TW, Santos TC, Mian AY, Cole AJ (1999) Early-life seizures in rats increase susceptibility to seizure-induced brain injury in adulthood. Neurology 53:915-921.
Komiyama NH, Watabe AM, Carlisle HJ, Porter K, Charlesworth P, Monti J, Strathdee DJ, O'Carroll CM, Martin SJ, Morris RG, O'Dell TJ, Grant SG (2002) SynGAP regulates ERK/MAPK signaling, synaptic plasticity, and learning in the complex with postsynaptic density 95 and NMDA receptor. J Neurosci 22:9721-9732.
Kornau HC, Schenker LT, Kennedy MB, Seeburg PH (1995) Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269:1737-1740.
Lamprecht R (1999) CREB: a message to remember. Cell Mol Life Sci 55:554-563.
Levin ED, McGurk SR, Rose JE, Butcher LL (1990) Cholinergic-dopaminergic interactions in cognitive performance. Behav Neural Biol 54:271-299.
Luine V, Bowling D, Hearns M (1990) Spatial memory deficits in aged rats: contributions of monoaminergic systems. Brain Res 537:271-278.
Martone ME, Jones YZ, Young SJ, Ellisman MH, Zivin JA, Hu BR (1999) Modification of postsynaptic densities after transient cerebral ischemia: a quantitative and three-dimensional ultrastructural study. J Neurosci 19:1988-1997.
Mattson MP (1996) Calcium and Free Radicals: Mediators of neurotrophic factor and excitatory transmitter-regulated developmental plasticity and cell death. Perspect Dev Neurobiol 3:79-91.
Meldrum BS, Akbar MT, Chapman AG (1999) Glutamate receptors and transporters in genetic and acquired models of epilepsy. Epilepsy Res 36:189-204.
Migaud M, Charlesworth P, Dempster M, Webster LC, Watabe AM, Makhinson M, He Y, Ramsay MF, Morris RG, Morrison JH, O'Dell TJ, Grant SG (1998) Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein. Nature 396:433-439.
Morris RG, Anderson E, Lynch GS, Baudry M (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319:774-776.
Murphy DD, Segal M (1997) Morphological plasticity of dendritic spines in central neurons is mediated by activation of cAMP response element binding protein. Proc Natl Acad Sci U S A 94:1482-1487.
Naisbitt S, Kim E, Weinberg RJ, Rao A, Yang FC, Craig AM, Sheng M (1997) Characterization of guanylate kinase-associated protein, a postsynaptic density protein at excitatory synapses that interacts directly with postsynaptic density-95/synapse-associated protein 90. J Neurosci 17:5687-5696.
Niethammer M, Kim E, Sheng M (1996) Interaction between the C terminus of NMDA receptor subunits and multiple members of the PSD-95 family of membrane-associated guanylate kinases. J Neurosci 16:2157-2163.
Nyakas C, Markel E, Schuurman T, Luiten PG (1991) Impaired Learning and Abnormal Open-field Behaviours of Rats After Early Postnatal Anoxia and the Beneficial Effect of the Calcium Antagonist Nimodipine. Eur J Neurosci 3:168-174.
Ostwald K, Hagberg H, Andine P, Karlsson JO (1993) Upregulation of calpain activity in neonatal rat brain after hypoxic-ischemia. Brain Res 630:289-294.
Packard MG, White NM (1991) Dissociation of hippocampus and caudate nucleus memory systems by posttraining intracerebral injection of dopamine agonists. Behav Neurosci 105:295-306.
Palfreyman MG (1994) Glutamate receptors and their regulations an overview. . In: Direct and Allosteric Control of Glutamate Receptors (Palfreyman MG, Reynolds, I. J. and Skolnick, P., ed), Boca Raton, Florida.: CRC Press, pp 1-19.
Panickar KS, Purushotham K, King MA, Rajakumar G, Simpkins JW (1998) Hypoglycemia-induced seizures reduce cyclic AMP response element binding protein levels in the rat hippocampus. Neuroscience 83:1155-1160.
Pi X, Lee J, Li F, Rosenberg HC (2004) Decreased expression of brain cAMP response element-binding protein gene following pentylenetetrazol seizure. Brain Res Mol Brain Res 127:60-67.
Platenik J, Kuramoto N, Yoneda Y (2000) Molecular mechanisms associated with long-term consolidation of the NMDA signals. Life Sci 67:335-364.
Raol YS, Budreck EC, Brooks-Kayal AR (2003) Epilepsy after early-life seizures can be independent of hippocampal injury. Ann Neurol 53:503-511.
Rempel-Clower NL, Zola SM, Squire LR, Amaral DG (1996) Three cases of enduring memory impairment after bilateral damage limited to the hippocampal formation. J Neurosci 16:5233-5255.
Rice JE, 3rd, Vannucci RC, Brierley JB (1981) The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 9:131-141.
Roberson ED, English JD, Adams JP, Selcher JC, Kondratick C, Sweatt JD (1999) The mitogen-activated protein kinase cascade couples PKA and PKC to cAMP response element binding protein phosphorylation in area CA1 of hippocampus. J Neurosci 19:4337-4348.
Romijn HJ, Ruijter JM, Wolters PS (1988) Hypoxia preferentially destroys GABAergic neurons in developing rat neocortex explants in culture. Exp Neurol 100:332-340.
Rothman SM (1983) Synaptic activity mediates death of hypoxic neurons. Science 220:536-537.
Rudy JW, Sutherland RJ (1995) Configural association theory and the hippocampal formation: an appraisal and reconfiguration. Hippocampus 5:375-389.
Salmi P, Ahlenius S (2000) Sedative effects of the dopamine D1 receptor agonist A 68930 on rat open-field behavior. Neuroreport 11:1269-1272.
Sanchez RM, Koh S, Rio C, Wang C, Lamperti ED, Sharma D, Corfas G, Jensen FE (2001) Decreased glutamate receptor 2 expression and enhanced epileptogenesis in immature rat hippocampus after perinatal hypoxia-induced seizures. J Neurosci 21:8154-8163.
Sankar R, Shin DH, Liu H, Mazarati A, Pereira de Vasconcelos A, Wasterlain CG (1998) Patterns of status epilepticus-induced neuronal injury during development and long-term consequences. J Neurosci 18:8382-8393.
Sans N, Petralia RS, Wang YX, Blahos J, 2nd, Hell JW, Wenthold RJ (2000) A developmental change in NMDA receptor-associated proteins at hippocampal synapses. J Neurosci 20:1260-1271.
Sato K, Morimoto K, Ujike H, Yamada T, Yamada N, Kuroda S, Hayabara T (1994) The effects of perinatal anoxia or hypoxia on hippocampal kindling development in rats. Brain Res Bull 35:167-170.
Sattler R, Xiong Z, Lu WY, Hafner M, MacDonald JF, Tymianski M (1999) Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 284:1845-1848.
Sawaguchi T, Goldman-Rakic PS (1991) D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science 251:947-950.
Schultz W, Apicella P, Ljungberg T (1993) Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J Neurosci 13:900-913.
Seamans JK, Durstewitz D, Christie BR, Stevens CF, Sejnowski TJ (2001) Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons. Proc Natl Acad Sci U S A 98:301-306.
Sharp FR, Liu J, Nickolenko J, Bontempi B (1995) NMDA and D1 receptors mediate induction of c-fos and junB genes in striatum following morphine administration: implications for studies of memory. Behav Brain Res 66:225-230.
Silva AJ, Kogan JH, Frankland PW, Kida S (1998) CREB and memory. Annu Rev Neurosci 21:127-148.
Song B, Yan XB, Zhang GY (2004) PSD-95 promotes CaMKII-catalyzed serine phosphorylation of the synaptic RAS-GTPase activating protein SynGAP after transient brain ischemia in rat hippocampus. Brain Res 1005:44-50.
Sperber EF (1996) The relationship between seizures and damage in the maturing brain. Epilepsy Res Suppl 12:365-376.
Stafstrom CE, Chronopoulos A, Thurber S, Thompson JL, Holmes GL (1993) Age-dependent cognitive and behavioral deficits after kainic acid seizures. Epilepsia 34:420-432.
Suzukawa J, Omori K, Yang L, Inagaki C (2003) Continuous administration of antisense oligonucleotides to c-fos reduced the development of seizure susceptibility after ethacrynic acid-induced seizure in mice. Neurosci Lett 349:21-24.
Swann JW, Hablitz JJ (2000) Cellular abnormalities and synaptic plasticity in seizure disorders of the immature nervous system. Ment Retard Dev Disabil Res Rev 6:258-267.
Takagi N, Logan R, Teves L, Wallace MC, Gurd JW (2000) Altered interaction between PSD-95 and the NMDA receptor following transient global ischemia. J Neurochem 74:169-178.
Tezuka T, Umemori H, Akiyama T, Nakanishi S, Yamamoto T (1999) PSD-95 promotes Fyn-mediated tyrosine phosphorylation of the N-methyl-D-aspartate receptor subunit NR2A. Proc Natl Acad Sci U S A 96:435-440.
Tojima T, Kobayashi S, Ito E (2003) Dual role of cyclic AMP-dependent protein kinase in neuritogenesis and synaptogenesis during neuronal differentiation. J Neurosci Res 74:829-837.
Towfighi J, Mauger D, Vannucci RC, Vannucci SJ (1997) Influence of age on the cerebral lesions in an immature rat model of cerebral hypoxia-ischemia: a light microscopic study. Brain Res Dev Brain Res 100:149-160.
Tsien JZ, Huerta PT, Tonegawa S (1996) The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 87:1327-1338.
Vannucci RC (1990) Experimental biology of cerebral hypoxia-ischemia: relation to perinatal brain damage. Pediatr Res 27:317-326.
Veliskova J, Claudio OI, Galanopoulou AS, Lado FA, Ravizza T, Velisek L, Moshe SL (2004) Seizures in the developing brain. Epilepsia 45 Suppl 8:6-12.
Vo N, Goodman RH (2001) CREB-binding protein and p300 in transcriptional regulation. J Biol Chem 276:13505-13508.
Volpe JJ (2001) Neurology of the newborn, 4th ed. Philadelphia: WB Saunders, pp 297-300
Walton MR, Dragunow I (2000) Is CREB a key to neuronal survival? Trends Neurosci 23:48-53.
Wyneken U, Marengo JJ, Villanueva S, Soto D, Sandoval R, Gundelfinger ED, Orrego F (2003) Epilepsy-induced changes in signaling systems of human and rat postsynaptic densities. Epilepsia 44:243-246.
Wyneken U, Smalla KH, Marengo JJ, Soto D, de la Cerda A, Tischmeyer W, Grimm R, Boeckers TM, Wolf G, Orrego F, Gundelfinger ED (2001) Kainate-induced seizures alter protein composition and N-methyl-D-aspartate receptor function of rat forebrain postsynaptic densities. Neuroscience 102:65-74.
Yamada Y, Chochi Y, Takamiya K, Sobue K, Inui M (1999) Modulation of the channel activity of the epsilon2/zeta1-subtype N-methyl D-aspartate receptor by PSD-95. J Biol Chem 274:6647-6652.
Yang SN (2000) Sustained enhancement of AMPA receptor- and NMDA receptor-mediated currents induced by dopamine D1/D5 receptor activation in the hippocampus: an essential role of postsynaptic Ca2+. Hippocampus 10:57-63.
Yang SN, Huang CB, Yang CH, Lai MC, Chen WF, Wang CL, Wu CL, Huang LT (2004) Impaired SynGAP expression and long-term spatial learning and memory in hippocampal CA1 area from rats previously exposed to perinatal hypoxia-induced insults: beneficial effects of A68930. Neurosci Lett 371:73-78.
Yang SN, Huang LT, Wang CL, Chen WF, Yang CH, Lin SZ, Lai MC, Chen SJ, Tao PL (2003) Prenatal administration of morphine decreases CREBSerine-133 phosphorylation and synaptic plasticity range mediated by glutamatergic transmission in the hippocampal CA1 area of cognitive-deficient rat offspring. Hippocampus 13:915-921.
Yang SN, Liu CA, Chung MY, Huang HC, Yeh GC, Wong CS, Lin WW, Yang CH, Tao PL (2006) Alterations of postsynaptic density proteins in the hippocampus of rat offspring from the morphine-addicted mother: Beneficial effect of dextromethorphan. Hippocampus 16:521-530.
Yao WD, Gainetdinov RR, Arbuckle MI, Sotnikova TD, Cyr M, Beaulieu JM, Torres GE, Grant SG, Caron MG (2004) Identification of PSD-95 as a regulator of dopamine-mediated synaptic and behavioral plasticity. Neuron 41:625-638.
Zafirov S, Heimrich B, Frotscher M (1994) Dendritic development of dentate granule cells in the absence of their specific extrinsic afferents. J Comp Neurol 345:472-480.
Zola-Morgan S, Squire LR, Amaral DG (1986) Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J Neurosci 6:2950-2967.
Zubrow AB, Delivoria-Papadopoulos M, Ashraf QM, Fritz KI, Mishra OP (2002) Nitric oxide-mediated Ca2+/calmodulin-dependent protein kinase IV activity during hypoxia in neuronal nuclei from newborn piglets. Neurosci Lett 335:5-8.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 國軍食勤人員油煙中多環芳香烴的暴露與體內氧化壓力之關係
2. 探討缺氧所導致活性氧分子生成對頭頸部鱗狀細胞癌的影響
3. CellularMechanismsResponsiblefortheElectromechanicalEffectsofInsulinonFailingHumanHeart
4. 與DNA甲基化相關之單碳代謝與罹患女性乳癌之風險
5. 探討C/EBP-β異構物對ET-1啟動子調節之影響
6. 透過RANKL,多脂糖和雌激素來研究一氧化氮的訊息在破骨細胞中的作用
7. 研究Zac1對人類乳突病毒蛋白E2轉錄活性的調控
8. 前列腺環素透過增加Bcl-2表現以保護大腦損傷
9. 丘腦投射路徑在前扣帶腦皮質之短期神經可塑性的離體研究
10. 台灣地區華人的紅斑性狼瘡致病基因探討
11. 探索TPA誘發HL-60細胞分化過程中所調控之迅早期基因;並深入探討SnoN基因扮演之角色
12. DNA甲基轉移酶(DNA-methyltranferase)3B基因多形性與罹患子宮頸鱗狀上皮細胞高度病變及子宮頸癌風險相關性之探討:以醫院為基礎之病例對照研究
13. 輔助冠狀動脈心臟病診斷之邏輯斯廻歸、決策樹、類神經網路及複合分析模型效能比較
14. 以海馬迴為模式觀察正常、發育及癲癇發作後,大白鼠海馬迴內CD200的表現情形
15. 第一部份、設計與合成3-(2-Phenyl-4H-thiochromen-4-yildene)-3H-chromene-2,4-dione衍生物作為潛在氧化還原開關第二部份、設計合成以7-二甲基胺-4-羥基香豆素為主體之有機光致變色材料與氧化還原開關