跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/04 22:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林政隆
研究生(外文):Cheng-Long Lin
論文名稱:傳染性疾病居家隔離空間之通風系統對室內氣懸感染機制之影響
論文名稱(外文):The effects of ventilation system to the transmission mechanism of indoor aerosol in the residential quarantine period space for infective diseases
指導教授:喻新喻新引用關係
指導教授(外文):Hsin Yu
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:土木工程學系碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:103
中文關鍵詞:居家隔離空間數值模擬通風系統計算流體力學
外文關鍵詞:residential quarantine period spacenumerical simulationventilation systemcomputational fluid dynamics
相關次數:
  • 被引用被引用:4
  • 點閱點閱:278
  • 評分評分:
  • 下載下載:54
  • 收藏至我的研究室書目清單書目收藏:0
2003年嚴重急性呼吸道症候群(SARS)造成全球恐慌, SARS疫情可以快速的擴散,人員移動所造成的疫情傳播是主要的原因以外,氣流的流動方向也對傳播有一定的影響力。醫院採用隔離病房收容具有高度傳染力的病患,為了避免病患在治療期間傳染給醫院其他人員,隔離病房在空調設計上均有特殊的規範要求。
本研究考慮傳染性疾病在居家隔離空間使用一般家用環境控制設備時對室內的氣懸感染會有何影響,本文主要分析不同通風設計時對居家隔離空間內部氣流之影響,並將國內外現有的規範設計方式做一系列之比較以供參考,並以商用套裝軟體FLUENT6.2分析居家隔離空間內部流場分佈情形,模擬中以二氧化碳(CO2)作為病患所呼出含有病菌空氣的指標,模擬案例分為三種主要的通風模式,並分析速度、溫度與污染物濃度分佈情形,以得到最佳的居家隔離空間通風配置方式。
研究結果顯示在通風模式的選擇方面以相同邊通風換氣模式與不同邊通風模式對於污染物的排除,其效果較置換通風佳,其中以相同邊通風換氣模式較為理想;在相同邊通風模式下不論風速大小均可將室內污染物有效排除,但冷氣機以及風扇出口風速在4.17 m/s至7.47 m/s的固定風速操作時,人體會受到1.82 m/s至3.31 m/s風速吹襲。如果將冷氣機與風扇的風速依建築技術規則之最小通風量而設定為1.16 m/s時,則吹向人體的風速可降至較適合人體的風速範圍。通風機械選擇冷氣機可以讓病人獲得較佳的舒適感。
本研究所提出之一般居家隔離空間通風機械設計配置之建議,可提供設計者預測室內流場以便進行合適之通風設計。一般居家隔離空間理想之設計應確保病人呼出之污染物能迅速有效地排除,而不迴流至室內空間內其他區域,如此才能確保居家隔離空間中室內其他照護人員之健康。
In 2003, a viral respiratory illness-Severe acute respiratory syndrome (SARS) caused the global crisis. The illness of SARS was transmitted rapidly and broadly by the spread of person-to-person contact and the movement of people. In addition, there is a possible method of spreading by air movement or by other ways. In health care facilities, isolation rooms are usually arranged for treated patients that have infectious diseases and must be constricted by special design of air-conditioning and ventilating systems.
This study considers the effects of ventilation system using the residential facilities to the transmission mechanism of indoor aerosol in the residential quarantine period space for infective diseases. This study focuses on the effect of the design of ventilation system on the internal flow field and the removal of contaminant pollution. A computational fluid dynamics software-FLUENT 6.2 is employed to simulate the internal airflow field of the residential quarantine period space. The Carbon dioxide (CO2) is adopted as the index of contaminant source. Three layouts of ventilation system are simulated and the airspeed field, the temperature distribution, and the contaminant distribution are analyzed to find the best ventilation system for the residential quarantine period space.
The results of simulation concluded that both the inlet and outlet on the same wall or on the opposite wall are better for contaminant removal than the displacement ventilation system. The inlet and outlet on the same wall is the best for contaminant removal despite the variation of inlet airspeed. When the inlet airspeed ranged from 4.17 m/s to 7.47 m/s, the person in the ventilated room with the inlet and outlet on the same wall will feel the indoor airflow of 1.82 m/s to 3.31 m/s. If the inlet speed of air-conditioner or fan is slower as 1.16 m/s, which is derived from the minimum requirement of air change in the residential house, the person in the room will feel comfortable with low airspeed. The air-conditioner is better choice than the fan because of the thermal environment is also controlled by the air-conditioner.
This study proposed the results of simulation and suggested the design of ventilation system in a residential quarantine period space. An ideal design of residential quarantine period space should remove the exhaled contaminant by the patients properly and establish no recirculation of airflow to the other space of the enclosure that assure the health of other person in the residential quarantine period space.
摘要 I
ABSTRACT II
致謝詞 III
目錄 IV
表目錄 VI
圖目錄 VII
符號說明 XI
第一章 緒論 1
1-1 前言 1
1-2 研究目的 3
1-3 論文架構與研究方法、流程 5
第二章 文獻回顧 7
2-1 隔離病房設計規範 7
2-2 居家隔離空間相關空氣品質法規 9
2-3 通風換氣之評估指標與空氣品質影響因子 16
2-4 數值模式研究與應用 20
第三章 數值模擬模式 22
3-1 統御方程式 23
3-2 FLUENT介紹 25
第四章 模式建立與驗證 27
4-1 幾何建構與網格設定 27
4-2 初始條件與邊界條件設定 29
4-3 數值模擬與現場實驗比對 29
4-3-1 流場型態與速度剖面 30
4-3-2 不同位置之噴流最高風速 32
4-3-3 最大噴流速度衰減狀態 33
第五章 模擬分析結果與討論 35
5-1 幾何外型與計算域之假設 35
5-2 邊界條件設定 35
5-3 居家隔離空間環境分析 41
5-3-1 進風口位置對內部環境的影響 42
5-3-2 進風口風速對內部流場的影響 54
5-3-3 不同配置方式對內部環境的影響 74
第六章 結論與建議 96
參考文獻 98
1.Adre, N. and L. D. Albright, 1994, Criterion for establishing similar air flow patterns (isothermal) in slotted-inlet ventilated enclosures. Transactions of the ASAE 37 (1):235-250.
2.Albright, L. D., 1990, Environmental control for animals and plants. American Society of Agricultural Engineers, St. Joseph, MI. pp. 230-241.
3.American Thoracic Society. 1990. Environment controls and lung disease. AM. Rev. Respir. Dis., 142-915.
4.ANSI/ASHRAE Standard 62, 1990, Method of Testing for Room Air Diffusion, Atlanta, American Society of Heating Refrigeration and Air-Conditioning Engineers, Inc.
5.ASHRAE 62, 1999, Ventilation for Acceptable Indoor Air Quality, American Society of Heating Refrigeration and Air-Conditioning Engineers, Inc.
6.ASHRAE, 1993, ASHRAE Handbook Fundamentals SI edition, American Society of Heating Refrigeration and Air-Conditioning Engineers, Inc.
7.Brüel and Kjær, 1991, Measuring Ventilation-using Tracer-gases, pp9-11.
8.CDC, 1994, Guidelines for Design of TB Isolation Room, Centers of Disease Control and Prevention.
9.Chen, Q., 1992, Significant Questions in Predicting Room Air Motion, ASHRAE Transaction, Vol. 98, Part. 1, pp. 927-939.
10.Chen, Q., 1997, Computational Fluid Dynamics for HVAC: Success and Failures, ASHRAE Trans., Vol. 103, Part. 1, pp.178-187.
11.Christianson, L. L., 1989, Building Systems: Room Air and Air Contaminant Distribution, American Society of Heating, Refrigeration and Air-Conditioning Engineers, Inc., USA.
12.CIBSE Technical Publications Committee. 1997. National ventilation in non-domestic buildings. CIBSE Applications Manual AM10.
13.Costello, T. A., N. F. Meador, M. D. Shanklin, 1984, CO2 compared to SF6 as an air infiltration tracer. Transactions of the ASAE 27:844-846.
14.Daisey, J. M., W. J. Angell, and G. Apte, 2003, Indoor air quality, ventilation and health symptoms in schools: an analysis of existing information, Indoor Air 13:53-64.
15.FLUENT 6.1.22, 2003, User’s Guide, FLUENT Inc.
16.Forthmann, E., 1934, Turbulent jet expansion. National Advisory Committee for Aeronautics, Technical Memorandum No. 789. USA.
17.GAMBIT 2.1.6, 2003, User’s Guide, FLUENT Inc.
18.Ghiaus, C. M., and A. G. Ghiaus, 1999, Evaluation of the Indoor Temperature Field using a Given Air Velocity Distribution, Building and Environment, Vol. 34, 1999, pp. 671-679.
19.Gridgen V.15, 2003, User’s Guide, Macrovision Corporation.
20.Henkes, R. A.W. M., and C. J. Hoogendoorn, 1995, Comparison Exercise for Computations of Turbulent Natural Convection in Enclosures, Numerical Heat Transfer, Vol. 28B, pp. 59-78.
21.Hinds, W. C., 1999, Aerosol technology. 2nd edition. John Wiley & Sons, New York.
22.Hines, A.L., T. K. Ghosh, S. K. Loyalka, R. C. Warder, 1993, Indoor air quality and control. PTR Prentice-Hall, Inc., New Jersey.
23.Holmberg, S. and Q. Chen, 2003, Air flow and particle control with different ventilation systems in a classroom, Indoor Air 13:200-204.
24.Hyun, S. and C. Kleinstreuer, 2001, Numerical Simulation of Mixed Convection Heat and Mass Transfer in a Human Inhalation Test Chamber, International Journal of Heat and Mass Transfer, Vol. 44, pp. 2247-2260.
25.Karimipanah, T., M. Sandberg, and H. B. Awbi, 2000, A comparative study of different air distribution systems in a classroom, Proceedings of Roomvent 2000, vol. II, Reading, UK, p. 1013–18
26.Leong, D. K. N., C. S. McCammon, L. E. Monteith, Y. S. Cheng, M. L. Woebkenberg, J. M. Macher, 1998, Air sampling instrument selection guide: indoor air quality. American Conference of Governmental Industrial Hygienists, Inc.
27.Li, Y, 2000, Buoyancy-Driven Natural Ventilation in a Thermally Stratified One-Zone Building, Building and Environment, Vol. 35, pp. 207-214.
28.Li, Y., and L. Baldacchino, 1995, Implementation of Some Higher-Order Convection Schemes on Non-Uniform Grids, International Journal for Numerical Methods in Fluids, Vol. 21, pp. 1201-1220..
29.Li, Y., X. Huang, I. T. S. Yu, T. W. Wong, and H. Qian, 2004, Role of air distribution in SARS transmission during the largest nosocomial outbreak in Hong Kong, Indoor Air, , Vol. 15, pp. 83-95.
30.Murakami, S., M. Kaizuka, H. Yoshino, and S. Kato, 1992, Room Air Convection and Ventilation Effectiveness, International Symposium on Room Air Convection and Ventilation Effectiveness, Tokyo, Japan.
31.Murakami, S., S. Kato, and R. Ooka, 1994, Comparison of Numerical Predictions of Horizontal Nonisothermal Jet in a Room with Three Turbulence Models- EVM, ASM, and DSM, ASHRAE Transaction, Vol. 100, Part. 2, pp. 697-704.
32.Neter, J., W. Wasserman, and M. H. Kutner, 1990, Applied Linear Statistical models. 3rd edition. Richard D. Irwin, Inc., Homewood, IL.
33.Nielson, P.V., 1998, The Selection of Turbulence Models for Prediction of Room Airflow, ASHRAE Trans., Vol. 104, Part. 1B, pp.1119-1127.
34.Rajaratnam, N., 1976, Turbulent jets. Elsevier Scientific Publishing Company, Amsterdam Netherlands, pp. 212-225 .
35.Reist, P. C., 1993, Aerosol science and technology. 2nd edition. McGraw-Hill, Inc., New York.
36.Sandia National Laboratory. 1982, Indoor air quality handbook for designers, builders, and users of energy efficient residences. Sand., 82-1773.
37.Sinha, S. L., R. C. Arora, and S. Roy, 2000, Numerical Simulation of Two-Dimensional Room Air Flow with and without Buoyancy, Energy and Buildings, Vol. 32, pp. 121-129.
38.World Health Organization, 2003, Summary of Probable SARS Cases With Onset If illness From 1 November 2002 to 31 July 2003. from http://www.who.int/csr/sars/country/table2003_09_23.html
39.Xu, W., Q. Chen, and F. T. M. Nieuwstadt, 1998, A New Turbulence Model for Near-Wall Natural Convection, International Journal of Heat and Mass Transfer, Vol. 41, pp. 3161-3176.
40.工業技術研究院能源與資源研究所,2001,「隔離病房空調系統之規劃與設計」,工業技術研究院能源與資源研究所,隔離病房空調系統維護運轉管理實務研討會。
41.江哲銘,1996,「建築技術規則有關通風條文增修訂之研究」,pp33-34。
42.江哲銘,2000,「空氣流場預測在輔助建築設計之應用-採用CFD 數值模擬技術」,中華民國建築師學會第十二屆建築研究發表會論文集。
43.江哲銘、王文安,1994,「台灣地區集合住宅室內空氣環境使用後評估」住宅學報。
44.行政院勞工安全衛生研究所,2003,「負壓隔離病房指引」,行政院勞工委員會勞工安全衛生研究所。
45.行政院衛生署疾病管制局,2003,「九十二年度院內感染監視統計報表第二季及第三季報」,行政院衛生署疾病管制局。
46.行政院環境保護署,2005,「室內空氣建議值」,行政院環境保護署,環保法規94年12月30日公布。
47.周伯丞,1994,「以生活行為模式為變因探討住宅室內空氣環境之研究」,國立成功大學建築研究所碩士論文。
48.周伯丞,2000,「建築軀殼開口部自然通風效果之研究」,國立成功大學建築學系博士論文。
49.林振華,2002,「呼吸道傳染隔離病房通風換氣需求與系統結能之探討」,國立台北科技大學冷凍與低溫科技研究所碩士論文。
50.邱正吉,2004,「隔離病房內部動態氣流模擬分析」,國立台北科技大學冷凍與低溫科技研究所碩士論文。
51.侯秋雄,2001,「農業設施誘導風式自然通風開口有效性研究」,國立台灣大學農業工程學研究所碩士論文。
52.施陽正,徐筱琪,1999,「電腦模擬在空調系統送風規劃之應用」,電機月刊,第101期,第159-167頁。
53.徐偉森,1997,「住宅臥室自然通風效果之研究-濃度衰減法實驗與數值模擬之解析」,國立成功大學建築工程研究所碩士論文。
54.徐瑞堂、徐貴新、陳鴻輝、劉張源編譯,1998,「流體力學」,台北:高立圖書。
55.涂玉峰,1998,「室內空氣環境綜合評估指標之探討—以台灣南部工業區辦公大樓為例」,國立成功大學建築學系碩士論文。
56.陳念祖,2001,「高架地板置換式自然通風對室內通風效率之影響」,國立成功大學建築學系碩士論文。
57.陳若華,1999,「建築群配置方式與自然通風效應之研究」,內政部建築研究所。
58.陳海曙,1990,「室內空氣品質不佳之案例研究」,中華民國建築學會第三屆建築學術研究發表會論文集,pp. 263-266。
59.陳清乾,2000,「廚房高氣窗紗網通孔率對二氧化碳濃度場與換氣率之影響─以熱浮力通風為例」,國立成功大學建築學系碩士論文。
60.陳鵬宇,1996,「住宅單元空間自然通風效果之研究-以集合住宅臥室空間為例」,國立成功大學建築工程研究所碩士論文。
61.喻新,2001,「等溫狀態強制通風空間壁噴流之空氣流特徵」,中國農業工程學報,第47卷,第2期,第65-73頁。
62.彭定吉,1992,「集合住宅室內空氣品質(CO2、CO、粉塵)現場量測方法之探討」,國立成功大學建築工程研究所碩士論文。
63.游家信,2003,「自然通風空間空氣交換有效性與氣狀污染物排除效率之數值研究」,國立台灣大學生物環境系統工程學系暨研究所碩士論文。
64.詹文才,1998,「最新建築技術規則」,台北:詹氏書局。
65.廖崇文,2003,「不同空調通風路徑對室內空氣與溫熱環境影響之研究」,樹德科技大學應用設計研究所碩士論文。
66.賴榮平,1980,「台灣地區建築通風問題之探討」,建築師雜誌,17-33頁。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top