跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/01 05:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡敏雯
研究生(外文):Min-Wen Chien
論文名稱:羊乳生長因子之分離與鑑定
論文名稱(外文):Isolation and identification of growth factor in goat milk
指導教授:吳輔祐
指導教授(外文):Fu-Yu Wu
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:生物技術研究所碩士班
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:78
中文關鍵詞:羊乳生長因子
外文關鍵詞:goat milkgrowth factor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
生長因子可調節母體乳腺的發育,而乳中的生長因子能調節新生兒胃腸道之發育。人乳中含有多種生長因子,包含上皮細胞生長因子(EGF)、類胰島素生長因子(IGF)、肝細胞生長因子(HGF)和纖維母細胞生長因子(FGF)等。羊乳也證實具有促進細胞生長之能力。飲用羊乳可幫助口腔、咽喉、食道、胃、腸等之上皮細胞快速生長,以修補老化、壞死的上皮細胞,同時防止細菌入侵,此或許可以解釋民間有關於羊乳健胃、利腸、有益咽喉之說。但羊乳中促進細胞生長之因子,至今尚未被分離鑑定。
本研究以3H-thymidine為DNA合成的追蹤劑,測試羊乳分離各分液促進小鼠乳腺上皮(MME)細胞生長之活性。羊乳離心除去乳脂及沈澱之囊泡,調酸至pH 4.2再離心除去沈澱的酪蛋白。上清液調回pH 7.0後加70%飽和度的(NH4)2SO4,可於沉澱中收集到高活性的蛋白。經50、30及3 kDa超過濾膜分離,超過90%的活性集中在>50 kDa的分液。利用Rotofor IEF Cell等電點分離羊乳>50 kDa的粗抽物,呈現兩個高活性的波峰,分別約在pH值4.5與6.5。利用Superdex 200 HR 10/30膠體過濾色層分析分離羊乳>50 kDa的粗抽物,其促進細胞生長之活性在13~18 ml流洗出。使用Growth Factor Antibody Array偵測羊乳>50 kDa的粗抽物,主要含有EGF、IGF-II、bFGF與FGF-4。
Abstract
Growth factors may modulate maternal mammary gland development, while growth factors in milk may modulate neonatal gastrointestinal development. Human milk contains many growth factors, including epidermal growth factor (EGF), insulin-like growth factor (IGF), hepatocyte growth factor (HGF), and fibroblast growth factor (FGF). Goat milk has also been demonstrated to have growth factor activity. Drinking goat milk may promote the growth of epithelial cells in oral cavity, pharynx, esophagus, stomach and intestine, to replace the old or damaged cells and prevent microbial infection. The above functions may explain folk's believing that goat milk is good for gastrointestine and pharynx. However, the growth factors in goat milk have not been isolated or identified.
This research used 3H-thymidine as tracer for DNA synthesis, to detect growth promoting activity in goat milk isolating fractions using mouse mammary epithelial (MME) cell. Goat milk was centrifuged to remove fat and precipitate. Sample pH was adjusted to 4.2 and was centrifuged to separate casein. Adjusting pH to 7.0 and adding 70% saturation of (NH4)2SO4, resulted in precipitate of high growth factor activity. Using 50、30 and 3 kDa ultrafiltration, more than 90% of activity was retained in >50 kDa fraction. Isoelectric focusing of >50 kDa crude extract using Rotofor IEF Cell resulted in 2 activity peaks with pH around 4.5 and 6.5. Loading the >50 kDa crude extract to Superdex 200 HR 10/30 gel permeation chromatography, the activity eluted between 13 to 18 ml. Detection using Growth Factor Antibody Array, the >50 kDa crude extract mainly contained EGF、IGF-II、bFGF and FGF-4.
目次
封面---------------------------------------------------------------i
學位論文授權書------------------------------------------------------ii
指導教授推薦函------------------------------------------------------iii
口試委員審定書------------------------------------------------------iv
誌謝---------------------------------------------------------------1
中文摘要------------------------------------------------------------2
英文摘要------------------------------------------------------------3
目錄---------------------------------------------------------------4
參考文獻
Bastian, S. E., Dunbar, A. J., Priebe, I. K., Owens, P. C. & Goddard, C. Measurement of betacellulin levels in bovine serum, colostrum and milk. J. Endocrinol. 168, 203-12 (2001).
Baumrucker, C. R. & Erondu, N. E. Insulin-like growth factor (IGF) system in the bovine mammary gland and milk. J. Mammary Gland Biol. Neoplasia. 5, 53-64 (2000).
Bell, G. I., Fong, N. M., Stempien, M. M., Wormsted, M. A., Caput, D., Ku, L., Urdea, M. S., Rall, L. B. & Sanchez-Pescador, R. Human epidermal growth factor precursor: cDNA sequence, expression in vitro and gene organization. Nucleic Acids Res. 14, 8427-46 (1986).
Bikfalvi, A., Klein, S., Pintucci, G. & Rifkin, D. B. Biological roles of fibroblast growth factor-2. Endocr. Rev. 18, 26-45 (1997).
Bocchinfuso, W. P. & Korach, K. S. Mammary gland development and tumorigenesis in estrogen receptor knockout mice. J. Mammary Gland Biol. Neoplasia. 2, 323-34 (1997).
Boisgard, R., Chanat, E., Laviallc, F., Pauloin, A. & Ollivicr-Bousquct, M. Roads taken by milk proteins in mammary epithelial cells. Livestock Production Science. 70, 49-61 (2001).
Boonstra, J., Rijken, P., Humbel, B., Cremers, F., Verkleij, A. & van Bergen en Henegouwen, P. The epidermal growth factor. Cell Biol. Int. 19, 413-30 (1995).
Brisken, C., Park, S., Vass, T., Lydon, J. P., O'Malley, B. W. & Weinberg, R. A. A paracrine role for the epithelial progesterone receptor in mammary gland development. Proc. Natl. Acad. Sci. USA. 95, 5076-81 (1998).
Britton, J. R. & Kastin, A. J. Biologically active polypeptides in milk. Am. J. Med. Sci. 301, 124-32 (1991).
Brown, C. F., Teng, C. T., Pentecost, B. T. & DiAugustine, R. P. Epidermal growth factor precursor in mouse lactating mammary gland alveolar cells. Mol. Endocrinol. 3, 1077-83 (1989).
Brown, K. D. & Blakeley, D. M. Partial purification and characterization of a growth factor present in goat's colostrum. Similarities with platelet-derived growth factor. Biochem. J. 219, 609-17 (1984).
Bussolino, F., Di Renzo, M. F., Ziche, M., Bocchietto, E., Olivero, M., Naldini, L., Gaudino, G., Tamagnone, L., Coffer, A. & Comoglio, P. M. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J. Cell Biol. 119, 629-41 (1992).
Cao, Y., Ji. R. W., Davidson, D., Schaller, J., Marti, D., Sohndel, S., McCance, S. G., O'Reilly, M. S., Llinas, M. & Folkman, J. Kringle domains of human angiostatin. Characterization of the anti-proliferative activity on endothelial cells. J. Biol. Chem. 271, 29461-7 (1996).
Carpenter, G. Epidermal growth factor is a major growth-promoting agent in human milk. Science. 210, 198-9 (1980).
Carpenter, G. & Cohen, S. Epidermal growth factor. Annu. Rev. Biochem. 48, 193-216 (1979).
Carpenter, G. & Cohen, S. Epidermal growth factor. J. Biol. Chem. 265, 7709-12 (1990).
Carpenter, G. & Wahl, M. I. The epidermal growth factor family. In"Peptide Growth Factors and Their Receptors I" Edited by M. B. Sporn and A. B. Roberts. 69-171. (1991).
Chirgadze, D. Y., Hepple, J., Byrd, R. A., Sowdhamini, R., Blundell, T. L. & Gherardi, E. Insights into the structure of hepatocyte growth factor /scatter factor (HGF/SF) and implications for receptor activation. FEBS Lett. 430, 126-9. (1998).
Coffer, A., Fellows, J., Young, S., Pappin, D. & Rahman, D. Purification and characterization of biologically active scatter factor from ras-transformed NIH 3T3 conditioned medium. Biochem. J. 278, 35-41 (1991).
Cohen, S. Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J. Biol. Chem. 237, 1555-62 (1962).
Cohen, S. & Carpenter, G. Human epidermal growth factor: isolation and chemical and biological properties. Proc. Natl. Acad. Sci. USA. 72, 1317-21 (1975).
Cohick, W. S. Role of the insulin-like growth factors and their binding proteins in lactation. J. Dairy Sci. 81, 1769-77 (1998).
Cunha, G. R., Young, P., Hom, Y. K., Cooke, P. S., Taylor, J. A. & Lubahn, D. B. Elucidation of a role for stromal steroid hormone receptors in mammary gland growth and development using tissue recombinants. J. Mammary Gland Biol. Neoplasia. 2, 393-402 (1997).
Date, K., Matsumoto, K., Shimura, H., Tanaka, M. & Nakamura, T. HGF/NK4 is a specific antagonist for pleiotrophic actions of hepatocyte growth factor. FEBS Lett. 420, 1-6 (1997).
Dehnhard, M., Claus, R., Munz, O. & Weiler, U. Course of epidermal growth factor (EGF) and insulin-like growth factor I (IGF-I) in mammary secretions of the goat during end-pregnancy and early lactation. J. Vet. Med. A. 47, 533-40 (2000).
Dunbar, A. J. & Goddard, C. Structure-function and biological role of betacellulin. Int. J. Biochem. Cell Biol. 32, 805-15 (2000).
Dunbar, A. J., Priebe, I. K., Belford, D. A. & Goddard, C. Identification of betacellulin as a major peptide growth factor in milk: purification, characterization and molecular cloning of bovine betacellulin. Biochem. J. 344, 713-21 (1999).
Elmlinger, M. W., Hochhaus, F., Loui, A., Frommer, K. W., Obladen, M. & Ranke, M. B. Insulin-Like Growth Factors and Binding Proteins in Early Milk from Mothers of Preterm and Term Infants. Horm. Res. 68, 124-131 (2007).
Fendrick, J. L., Raafat, A. M. & Haslam, S. Z. Mammary gland growth and development from the postnatal period to postmenopause: ovarian steroid receptor ontogeny and regulation in the mouse. J. Mammary Gland Biol. Neoplasia. 3, 7-22 (1998).
Forsyth, I. A. The mammary gland. Baillieres. Clin. Endocrinol. Metab. 5, 809-32 (1991).
Francis, G. L., Regester, G. O., Webb, H. A. & Ballard, F. J. Extraction from cheese whey by cation-exchange chromatography of factors that stimulate the growth of mammalian cells. J. Dairy Sci. 78, 1209-18 (1995).
Francis, G. L., Upton, F. M., Ballard, F. J., McNeil, K. A. & Wallace, J. C. Insulin-like growth factors 1 and 2 in bovine colostrum. Sequences and biological activities compared with those of a potent truncated form. Biochem. J. 251, 95-103 (1988).
Fukuyama, R., Ichijoh, Y., Minoshima, S., Kitamura, N. & Shimizu, N. Regional localization of the hepatocyte growth factor (HGF) gene to human chromosome 7 band q21.1. Genomics. 11, 410-5 (1991).
Funakoshi, H. & Nakamura, T. Hepatocyte growth factor: from diagnosis to clinical applications. Clin. Chim. Acta. 327, 1-23 (2003).
Gray, A., Dull, T. J. & Ullrich, A. Nucleotide sequence of epidermal growth factor cDNA predicts a 128,000-molecular weight protein precursor. Nature. 303, 722-5 (1983).
Grosvenor, C. E., Picciano, M. F. & Baumrucker, C. R. Hormones and growth factors in milk. Endocr. Rev. 14, 710-28 (1993).
Hartmann, G. N., L. Weidner, K. M. Sachs, M. Vigna, E. Comoglio, P. M. & Birchmeier, W. A functional domain in the heavy chain of scatter factor/hepatocyte growth factor binds the c-Met receptor and induces cell dissociation but not mitogenesis. Proc. Natl. Acad. Sci. USA. 89, 11574-8 (1992).
Haslam, S. Z., Counterman, L. J. & Nummy, K. A. Effects of epidermal growth factor, estrogen, and progestin on DNA synthesis in mammary cells in vivo are determined by the developmental state of the gland. J. Cell Physiol. 155, 72-8 (1993).
Haslam, S. Z. & Nummy, K. A. The ontogeny and cellular distribution of estrogen receptors in normal mouse mammary gland. J. Steroid. Biochem. Mol. Biol. 42, 589-95 (1992).
Haslam, S. Z. & Woodward, T. L. Host microenvironment in breast cancer development: epithelial-cell-stromal-cell interactions and steroid hormone action in normal and cancerous mammary gland. Breast Cancer Res. 5, 208-15 (2003).
Hirai, C. Ichiba, H., Saito, M., Shintaku, H., Yamano, T. & Kusuda, S. Trophic effect of multiple growth factors in amniotic fluid or human milk on cultured human fetal small intestinal cells. J. Pediatr. Gastroenterol. Nutr. 34, 524-8 (2002).
Hunziker, W. & Kraehenbuhl, J. P. Epithelial transcytosis of immunoglobulins. J. Mammary Gland Biol. Neoplasia. 3, 287-302 (1998).
Iacopetta, B. J., Grieu, F., Horisberger, M. & Sunahara, G. I. Epidermal growth factor in human and bovine milk. Acta. Paediatr. 81, 287-91 (1992).
Itoh, H., Itakura, A., Kurauchi, O., Okamura, M., Nakamura, H. & Mizutani, S. Hepatocyte growth factor in human breast milk acts as a trophic factor. Horm. Metab. Res. 34, 16-20 (2002).
Itoh, N. & Ornitz, D. M. Evolution of the Fgf and Fgfr gene families. Trends. Genet. 20, 563-9 (2004).
Jansson, L., Karlson, F. A. & Westermark, B. Mitogenic activity and epidermal growth factor content in human milk. Acta. Paediatr. Scand. 74, 250-3 (1985).
Jiang, W., Hiscox, S., Matsumoto, K. & Nakamura, T. Hepatocyte growth factor/scatter factor, its molecular, cellular and clinical implications in cancer. Crit. Rev. Oncol. Hematol. 29, 209-48 (1999).
Kirchhofer, D., Yao, X., Peek, M., Eigenbrot, C., Lipari, M. T., Billeci, K. L., Maun, H. R., Moran, P., Santell, L., Wiesmann, C. & Lazarus, R. A. Structural and functional basis of the serine protease-like hepatocyte growth factor beta-chain in Met binding and signaling. J. Biol. Chem. 279, 39915-24. (2004).
Klint, P. & Claesson-Welsh, L. Signal transduction by fibroblast growth factor receptors. Front. Biosci. 4, D165-77 (1999).
Konishi, T., T.akehara, T., Tsuji, T., Ohsato, K., Matsumoto, K. & Nakamura, T. Scatter factor from human embryonic lung fibroblasts is probably identical to hepatocyte growth factor. Biochem. Biophys. Res. Commun. 180, 765-73 (1991).
Kuba, K., Matsumoto, K., Date, K., Shimura, H., Tanaka, M. & Nakamura, T. HGF/NK4, a four-kringle antagonist of hepatocyte growth factor, is an angiogenesis inhibitor that suppresses tumor growth and metastasis in mice. Cancer Res. 60, 6737-43 (2000).
Kverka, M., Burianova, J., Lodinova-Zadnikova, R., Kocourkova, I., Cinova, J., Tuckova, L. & Tlaskalova-Hogenova, H. Cytokine profiling in human colostrum and milk by protein array. Clin. Chem. 53, 955-62 (2007).
Lawson, J., Wheldrake, J. F. & Dunbar, A. J. Genomic structure and promoter characterization of the gene encoding the ErbB ligand betacellulin. Biochim. Biophys. Acta. 1576, 183-90 (2002).
Liu, Y., Michalopoulos, G. K. & Zarnegar, R. Molecular cloning and characterization of cDNA encoding mouse hepatocyte growth factor. Biochim. Biophys. Acta. 1216, 299-303 (1993).
Ma, P. C., Maulik, G., Christensen, J. & Salgia, R. c-Met: structure, functions and potential for therapeutic inhibition. Cancer Metastasis Rev. 22, 309-25 (2003).
Martini, F. Fundamentals of anatomy and physiology. Prentice-Hall, Inc. P-96 (1989).
Matsumoto, K. & Nakamura, T. Hepatocyte growth factor (HGF) as a tissue organizer for organogenesis and regeneration. Biochem. Biophys. Res. Commun. 239, 639-44 (1997).
Matsumoto, K. & Nakamura, T. Mechanisms and significance of bifunctional NK4 in cancer treatment. Biochem. Biophys. Res. Commun. 333, 316-27 (2005).
Matsumoto, K. & Nakamura, T. NK4 (HGF-antagonist/angiogenesis inhibitor) in cancer biology and therapeutics. Cancer Sci. 94, 321-7 (2003).
Matsumoto, K., Takehara, T., Inoue, H., Hagiya, M., Shimizu, S. & Nakamura, T. Deletion of kringle domains or the N-terminal hairpin structure in hepatocyte growth factor results in marked decreases in related biological activities. Biochem. Biophys. Res. Commun. 181, 691-9 (1991).
Matsuoka, Y. & Idota, T. The concentration of epidermal growth factor in Japanese mother's milk. J. Nutr. Sci. Vitaminol. 41, 241-51 (1995).
Miyazawa, K., Shimomura, T., Kitamura, A., Kondo, J., Morimoto, Y. & Kitamura, N. Molecular cloning and sequence analysis of the cDNA for a human serine protease reponsible for activation of hepatocyte growth factor. Structural similarity of the protease precursor to blood coagulation factor XII. J. Biol. Chem. 268, 10024-8 (1993).
Mizuno, K., Inoue, H., Hagiya, M., Shimizu, S., Nose, T., Shimohigashi, Y. & Nakamura, T. Hairpin loop and second kringle domain are essential sites for heparin binding and biological activity of hepatocyte growth factor. J. Biol. Chem. 269, 1131-6 (1994).
Mroczkowski, B. & Reich, M. Identification of biologically active epidermal growth factor precursor in human fluids and secretions. Endocrinology. 132, 417-25 (1993).
Murray, J. C., DeHaven, C. R. & Bell, G. I. RFLPs for epidermal growth factor (EGF), a single copy sequence at 4q25-4q27. Nucleic Acids Res. 14, 5117 (1986).
Nakabayashi, M., Morishita, R., Nakagami, H., Kuba, K., Matsumoto, K., Nakamura, T., Tano, Y. & Kaneda, Y. HGF/NK4 inhibited VEGF-induced angiogenesis in in vitro cultured endothelial cells and in vivo rabbit model. Diabetologia. 46, 115-23 (2003).
Nakamura, T., Nawa, K. & Ichihara, A. Partial purification and characterization of hepatocyte growth factor from serum of hepatectomized rats. Biochem. Biophys. Res. Commun. 122, 1450-9 (1984).
Nakamura, T., Nishizawa, T., Hagiya, M., Seki, T., Shimonishi, M., Sugimura, A., Tashiro, K. & Shimizu, S. Molecular cloning and expression of human hepatocyte growth factor. Nature. 342, 440-3 (1989).
Naldini, L., Weidner, K. M., Vigna, E., Gaudino, G., Bardelli, A., Ponzetto, C., Narsimhan, R. P., Hartmann, G., Zarnegar, R. & Michalopoulos, G. K. Scatter factor and hepatocyte growth factor are indistinguishable ligands for the MET receptor. Embo. J. 10, 2867-78 (1991).
Niranjan, B., Buluwela, L., Yant, J., Perusinghe, N., Atherton, A., Phippard, D., Dale, T., Gusterson, B. & Kamalati, T. HGF/SF: a potent cytokine for mammary growth, morphogenesis and development. Development. 121, 2897-908 (1995).
Nishimura, S., Maeno, N., Matsuo, K., Nakajima, T., Kitajima, I., Saito, H. & Maruyama, I. Human lactiferous mammary gland cells produce vascular endothelial growth factor (VEGF) and express the VEGF receptors, Flt-1 and KDR/Flk-1. Cytokine. 18, 191-8 (2002).
Nishimura, T., Utsunomiya, Y., Hoshikawa, M., Ohuchi, H. & Itoh, N. Structure and expression of a novel human FGF, FGF-19, expressed in the fetal brain. Biochim. Biophys. Acta. 1444, 148-51 (1999).
Ollivier-Bousquet, M. Transferrin and prolactin transcytosis in the lactating mammary epithelial cell. J. Mammary Gland Biol. Neoplasia. 3, 303-13 (1998).
Ornitz, D. M. FGFs, heparan sulfate and FGFRs: complex interactions essential for development. Bioessays. 22, 108-12 (2000).
Ornitz, D. M. & Itoh, N. Fibroblast growth factors. Genome. Biol. 2, 3005.1-12 (2001).
Pepper, M. S., Soriano, J. V., Menoud, P. A., Sappino, A. P., Orci, L. & Montesano, R. Modulation of hepatocyte growth factor and c-met in the rat mammary gland during pregnancy, lactation, and involution. Exp. Cell Res. 219, 204-10 (1995).
Plath, A., Einspanier, R., Gabler, C., Peters, F., Sinowatz, F., Gospodarowicz, D. & Schams, D. Expression and localization of members of the fibroblast growth factor family in the bovine mammary gland. J. Dairy Sci. 81, 2604-13 (1998).
Plath-Gabler, A., Gabler, C., Sinowatz, F., Berisha, B. & Schams, D. The expression of the IGF family and GH receptor in the bovine mammary gland. J. Endocrinol. 168, 39-48 (2001).
Popovici, C., Roubin, R., Coulier, F. & Birnbaum, D. An evolutionary history of the FGF superfamily. Bioessays. 27, 849-57 (2005).
Rall, L. B., Scott, J., Bell, G. I., Crawford, R. J., Penschow, J. D., Niall, H. D. & Coghlan, J. P. Mouse prepro-epidermal growth factor synthesis by the kidney and other tissues. Nature. 313, 228-31 (1985).
Rogers, M. L., Belford, D. A., Francis, G. L. & Ballard, F. J. Identification of fibroblast growth factors in bovine cheese whey. J. Dairy Res. 62, 501-7 (1995).
Rosário, M. & Birchmeier, W. How to make tubes: signaling by the Met receptor tyrosine kinase. Trends. Cell Biol. 13, 328-35 (2003).
Rosen, E. M., Grant, D. S., Kleinman, H. K., Goldberg, I. D., Bhargava, M. M., Nickoloff, B. J., Kinsella, J. L. & Polverini, P. Scatter factor (hepatocyte growth factor) is a potent angiogenesis factor in vivo. Symp. Soc. Exp. Biol. 47, 227-34 (1993).
Sasaki, M., Nishio, M., Sasaki, T. & Enami, J. Identification of mouse mammary fibroblast-derived mammary growth factor as hepatocyte growth factor. Biochem. Biophys. Res. Commun. 199, 772-9 (1994).
Savage, C. R., Jr., Inagami, T. & Cohen, S. The primary structure of epidermal growth factor. J. Biol. Chem. 247, 7612-21 (1972).
Scott, J., Urdea, M., Quiroga, M., Sanchez-Pescador, R., Fong, N., Selby, M., Rutter, W. J. & Bell, G. I. Structure of a mouse submaxillary messenger RNA encoding epidermal growth factor and seven related proteins. Science. 221, 236-40 (1983).
Seno, M., Tada, H., Kosaka, M., Sasada, R., Igarashi, K., Shing, Y., Folkman, J., Ueda, M. & Yamada, H. Human betacellulin, a member of the EGF family dominantly expressed in pancreas and small intestine, is fully active in a monomeric form. Growth Factors. 13, 181-91 (1996).
Shing, Y., Davidson, S. & Klagsbrun, M. Purification of polypeptide growth factors from milk. Methods. Enzymol. 146, 42-8 (1987).
Shing, Y. W. & Klagsbrun, M. Human and bovine milk contain different sets of growth factors. Endocrinology. 115, 273-82 (1984).
Silberstein, G. B. Postnatal mammary gland morphogenesis. Microsc. Res. Tech. 52, 155-62 (2001).
Smallwood, P. M., Munoz-Sanjuan, I., Tong, P., Macke, J. P., Hendry, S. H., Gilbert, D. J., Copeland, N. G., Jenkins, N. A. & Nathans, J. Fibroblast growth factor (FGF) homologous factors: new members of the FGF family implicated in nervous system development. Proc. Natl. Acad. Sci. USA. 93, 9850-7 (1996).
Srivastava, M. D., Lippes, J. & Srivastava, B. I. Hepatocyte growth factor in human milk and reproductive tract fluids. Am. J. Reprod. Immunol. 42, 347-54 (1999).
Stella, M. C. & Comoglio, P. M. HGF: a multifunctional growth factor controlling cell scattering. Int. J. Biochem. Cell Biol. 31, 1357-62 (1999).
Stelwagen, K., Davis, S. R., Farr, V. C., Prosser, C. G. & Sherlock, R. A. Mammary epithelial cell tight junction integrity and mammary blood flow during an extended milking interval in goats. J. Dairy Sci. 77, 426-32 (1994).
Stoker, M., Gherardi, E., Perryman, M. & Gray, J. Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature. 327, 239-42 (1987).
Sunil, N., Bennett, J. M. & Haslam, S. Z. Hepatocyte growth factor is required for progestin-induced epithelial cell proliferation and alveolar-like morphogenesis in serum-free culture of normal mammary epithelial cells. Endocrinology. 143, 2953-60 (2002).
Tashiro, K., Hagiya, M., Nishizawa, T., Seki, T., Shimonishi, M., Shimizu, S. & Nakamura, T. Deduced primary structure of rat hepatocyte growth factor and expression of the mRNA in rat tissues. Proc. Natl. Acad. Sci. USA. 87, 3200-4 (1990).
Tassi, E., Al-Attar, A., Aigner, A., Swift, M. R., McDonnell, K., Karavanov, A. & Wellstein, A. Enhancement of fibroblast growth factor (FGF) activity by an FGF-binding protein. J. Biol. Chem. 276, 40247-53 (2001).
Tomioka, D., Maehara, N., Kuba, K., Mizumoto, K., Tanaka, M., Matsumoto, K. & Nakamura, T. Inhibition of growth, invasion, and metastasis of human pancreatic carcinoma cells by NK4 in an orthotopic mouse model. Cancer Res. 61, 7518-24 (2001).
Tuomela, T., Viinikka, L. & Perheentupa, J. Mouse epidermal growth factor concentrations are altered by gonadectomy and treatments with estradiol and progesterone. Life Sci. 44, 1815-21 (1989).
Vuorela, P., Andersson, S., Carpen, O., Ylikorkala, O. & Halmesmaki, E. Unbound vascular endothelial growth factor and its receptors in breast, human milk, and newborn intestine. Am. J. Clin. Nutr. 72, 1196-201 (2000).
Watanabe, T., Shintani, A., Nakata, M., Shing, Y., Folkman, J., Igarashi, K. & Sasada, R. Recombinant human betacellulin. Molecular structure, biological activities, and receptor interaction. J. Biol. Chem. 269, 9966-73 (1994).
Weidner, K. M., Arakaki, N., Hartmann, G., Vandekerckhove, J., Weingart, S., Rieder, H., Fonatsch, C., Tsubouchi, H., Hishida, T. & Daikuhara, Y. Evidence for the identity of human scatter factor and human hepatocyte growth factor. Proc. Natl. Acad. Sci. USA. 88, 7001-5 (1991).
Wooding, F. B. & Peaker, L. J. Theories of milk secretion: evidence from e electron microscopic examination of milk. Nature. 226, 762-4 (1970).
Woodward, T. L., Xie, J. W. & Haslam, S. Z. The role of mammary stroma in modulating the proliferative response to ovarian hormones in the normal mammary gland. J. Mammary Gland Biol. Neoplasia. 3, 117-31 (1998).
Wu, F. Y., Tsao, P. H., Wang, D. C., Lin, S., Wu, J. S. & Cheng, Y. K. Factors affecting growth factor activity in goat milk. J. Dairy Sci. 89, 1951-5 (2006).
Xiao, X., Xiong, A., Chen, X., Mao, X. & Zhou, X. Epidermal growth factor concentrations in human milk, cow's milk and cow's milk-based infant formulas. Chin. Med. J. 115, 451-4 (2002).
Yamada, Y., Saito, S. & Morikawa, H. Hepatocyte growth factor in human breast milk. Am. J. Reprod. Immunol. 40, 112-20 (1998).
Yamaji, D., Kimura, K., Watanabe, A., Kon, Y., Iwanaga, T., Soliman, M. M., Ahmed, M. M. & Saito, M. Bovine hepatocyte growth factor and its receptor c-Met: cDNA cloning and expression analysis in the mammary gland. Domest. Anim. Endocrinol. 30, 239-46 (2006).
Yamashita, T., Yoshioka, M. & Itoh, N. Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem. Biophys. Res. Commun. 277, 494-8 (2000).
Zabel, B. U., Eddy, R. L., Lalley, P. A., Scott, J., Bell, G. I. & Shows, T. B. Chromosomal locations of the human and mouse genes for precursors of epidermal growth factor and the beta subunit of nerve growth factor. Proc. Natl. Acad. Sci. USA. 82, 469-73 (1985).
Zhang, H. Z., Bennett, J. M., Smith, K. T., Sunil, N. & Haslam, S. Z. Estrogen mediates mammary epithelial cell proliferation in serum-free culture indirectly via mammary stroma-derived hepatocyte growth factor. Endocrinology. 143, 3427-34 (2002).
Zhang, X., Ibrahimi, O. A., Olsen, S. K., Umemori, H., Mohammadi, M. & Ornitz, D. M. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J. Biol. Chem. 281, 15694-700 (2006).
吳輔祐. 羊乳之特殊養生功能. 生物產業. 9, 31-35 (1998).
吳輔祐 & Elsasser, T. H. 羊乳促進細胞生長活性之研究. 中國農業化學會誌. 33, 326-332 (1995).
李時珍. 本草綱目, 獸部. 宏業書局. 卷50, P 54 (明朝).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top