跳到主要內容

臺灣博碩士論文加值系統

(35.173.42.124) 您好!臺灣時間:2021/07/24 09:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡筱倩
研究生(外文):Hsiao-Chien Tsai
論文名稱:去氧核糖核酸水解酶參與以紫外線與藥物誘導之人類及狗乳癌細胞株細胞凋亡之過程探討
論文名稱(外文):Differential deoxyribonucleases involved in UV- and drug-induced apoptosis of human and canine breast cancer cell lines
指導教授:陳威戎陳威戎引用關係
指導教授(外文):Wei-Jung Chen
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:生物技術研究所碩士班
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
中文關鍵詞:細胞凋亡去氧核醣核酸水解酶
外文關鍵詞:apoptosisdeoxyribonucleases
相關次數:
  • 被引用被引用:1
  • 點閱點閱:163
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
細胞凋亡 (apoptosis),又可稱作細胞計劃性死亡 (programmed cell death, PCD),是一種細胞自然發生死亡的重要機制,主要會使潛在有害或是非長期需要的細胞,單獨地被消除以維持健康的體內平衡。而在細胞凋亡的過程中含有幾項重要的指標,其中一項重要的生化特徵即為細胞核中去氧核糖核酸 (deoxyribonucleic acid, DNA)的片段化。能夠參與細胞凋亡中,去氧核糖核酸片段化的去氧核糖核酸水解酶 (deoxyribonuclease, DNase) 很多,其中以CAD (caspase-activated DNase)和Endo G(endonuclease G)的研究最為完整,被確認扮演去氧核糖核酸片段化的主導角色。
細胞凋亡目前可區分為二大路徑:1. 死亡受體路徑(The death receptor pathway)與2. 粒線體路徑(The mitochondrial pathway)。而這二種路徑後期所活化的去氧核糖核酸水解酶並不相同,因此,藉由研究去氧核糖核酸水解酶的參與,將有助於我們了解細胞凋亡可能發生的機制。
在本論文實驗中,我們利用賴裕順老師實驗室提供的狗乳癌細胞株DTK SME-like、DTK SM2及人類乳癌細胞株HCC 1937作為模型,並且利用常見誘導凋亡的紫外光及已証實能夠誘導凋亡的藥物bupivacaine。分別觀察不同細胞、不同的誘導下,以MTT分析的細胞存活率及其各自對去氧核糖核酸降解之情形。另外,就前人研究所知的三大類去氧核糖核酸水解酶中,挑選可能參與的去氧核糖核酸水解酶(CAD、DNase γ、DNase II)以及核酸水解酶Endo G,以Western blot觀察其表現量的改變,嘗試解讀各DNases在乳癌細胞凋亡中所扮演之角色。
實驗結果顯示,這三株乳癌細胞之細胞凋亡都需要caspase的參與,但走的路徑並不相同,所活化的核酸水解酶亦不同。如狗乳癌細胞株DTK SME-like,在紫外光誘導下,由procaspase-3下降、CAD上升及caspase-3活性上升,得知其需caspase的參與,並且是經由death receptor pathway。但DTK SME-like在bupivacaine誘導下,細胞中除了caspase-3及CAD的改變外,Endo G也隨凋亡而上升,caspase-3、-8、-9活性也都有上升現象,推測其細胞凋亡雖然同樣需要caspase的參與,但是,是同時經由mitochondrial pathway及death receptor pathway而活化Endo G及CAD。而另一株狗乳癌細胞DTK SM2,則不論在何種誘導下,皆顯示需要caspase及經mitochondrial pathway活化了Endo G及CAD,並且可由bupivacaine誘導下,caspase-8之活性上升,推測其可同時進行death receptor pathway。最後,人類乳癌細胞株HCC 1937在二種誘導下,也呈現了不同的結果。紫外光處理的HCC 1937細胞株,需要caspase外,CAD及Endo G也明顯隨凋亡上升,証實mitochondrial pathway的發生。而bupivacaine誘導的HCC 1937細胞株,只有caspase-3及CAD有所改變,推測其凋亡為需caspase的death receptor pathway。
Apoptosis, or programmed cell death (PCD), is a fundamental process essential for maintenance of healthy homeostasis in multicellular organisms. Cells undergoing apoptosis exhibit several important hallmarks, one of these biochemical markers is DNA fragmentation. Several deoxyribonucleases (DNase) have been suggested to be involved in apoptosis, and the best-known enzymes of them are CAD (caspase-activated DNase) and Endo G (endonuclease G).
Two major apoptotic pathways have been identified:the death receptor pathway and the mitochondrial pathway. Different DNases have been implicated in these two pathways. Therefore, investigation of the possible DNases involved in apoptosis would facilitate the understanding of its mechanism.
In the current study, we used two canine breast cancer cell lines (DTK SME-like、DTK SM2) and a human breast cancer cell line HCC 1937, kindly provided by Dr. Yu-Shen Lai’s Lab. With UV or bupivacaine induction, we monitored the apoptotic process using MTT-based cell survival rate assay and DNA fragmentation analysis. Furthermore, DNases implicated in apoptosis, including CAD, Endo G, DNase II, and DNase γ were selected and subjected to Western blot analysis.
Our results indicated that caspase-dependent apoptosis was involved in each of the three cancer cell lines examined, though through different pathways and DNases. UV-induced apoptosis of canine breast cancar cell line DTK SME-like was proved to be caspase-dependent and through the death-receptor pathway, due to the decrease of procaspase-3 and the increase of CAD and caspase-3 activity. However, the increase of Endo G and caspase-8, -9 activities in the bupivacaine-induced apoptosis of DTK SME-like suggested the involvement of mitochondrial pathway and death-receptor pathway. Both UV- and bupivacaine-induced apoptosis for another canine cell line DTK SM2 were shown to be caspase-dependent and through the mitochondrial pathway, owing to the activation of both Endo G and CAD. But bupivacaine-induced apoptosis was involved in the death-receptor pathway, due to the increase of caspase-8 activity. On the other hand, human breast cancer cell line HCC 1937 exhibited different results upon UV- or bupivacaine-induced apoptosis, that is, mitochondrial pathway for the former, and death-receptor pathway for the latter.
謝誌……………………………………………………………………………………… I
中文摘要………………………………………………………………………………… III
英文摘要 (Abstract)……………………………………………………………………. IV
目錄 (Table of contents)………………………………………………………………… V
圖表目錄 (List of Tables and Figures)…………………………………………………. VII
縮寫表 (Abbreviations)………………………………………………………………… IX
第一章 緒論…………………………………………………………………………….. 1
一、去氧核糖核酸簡介……………………………………………………………… 1
二、細胞凋亡………………………………………………………………………… 3
三、去氧核糖核酸與細胞凋亡……………………………………………………… 6
第二章 研究目的……………………………………………………………………….. 15
第三章 實驗材料與儀器……………………………………………………………….. 16
一、實驗材料………………………………………………………………………… 16
二、實驗儀器………………………………………………………………………… 17
第四章 實驗方法………………………………………………………………..……… 19
一、細胞培養…………………………………………………………………..…….. 19
二、細胞凋亡之誘導………………………………………………………………… 19
三、細胞存活率分析………………………………………………………………… 20
四、蛋白質定量分析…………………………………………………………………. 21
五、十二烷硫酸鈉聚丙烯醯胺凝膠電泳法………………………………………… 22
六、西方墨點分析法…………………………………………………………………. 23
七、DNA片段化分析………………………………………………………………... 24
八、caspases活性分析……………………………………………………………….. 25
第五章 結果…………………………………………………………………………….. 26
一、以UV誘導乳癌細胞進行細胞凋亡時之細胞存活率………………………… 27
二、以藥物誘導乳癌細胞進行細胞凋亡時之細胞存活率……………..................... 27
三、以UV誘導乳癌細胞進行細胞凋亡時之DNA降解情形…………………….. 27
四、以藥物誘導乳癌細胞進行細胞凋亡時之DNA降解情形…………………….. 28
五、以UV誘導乳癌細胞進行細胞凋亡後之細胞蛋白質之表現………………… 28
六、以藥物誘導乳癌細胞進行細胞凋亡後之細胞蛋白質之表現………………… 29
七、以UV誘導乳癌細胞進行細胞凋亡後之caspases活性……………………….  30
八、以藥物誘導乳癌細胞進行細胞凋亡後之caspases活性………………………. 30
第六章 討論…………………………………………………………………………….. 32
一、以UV誘導乳癌細胞株細胞凋亡……………………………………………… 32
二、以藥物誘導乳癌細胞株細胞凋亡……………………………………………… 33
三、核酸水解酶的參與……………………………………………………………… 34
第七章 圖表…………………………………………………………………………….. 38
參考文獻………………………………………………………………………………… 59
Abraham, M. C., and Shaham, S. Death without caspases, caspases without death. Trends Cell Biol. 14, 184-93 (2004).
Acehan, D., Jiang, X., Morgan, D. G., Heuser, J. E., Wang, X., and Akey, C. W. Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol. Cell 9, 423-32 (2002).
Altairac, S., Wright, S. C., Courtois, Y., and Torriglia, A. L-DNase II activation by the 24 kDa apoptotic protease (AP24) in TNFalpha-induced apoptosis. Cell Death Differ. 10, 1109-11 (2003a).
Altairac, S., Zeggai, S., Perani, P., Courtois, Y., and Torriglia, A. Apoptosis induced by Na+/H+ antiport inhibition activates the LEI/L-DNase II pathway. Cell Death Differ. 10, 548-57 (2003b).
Arruti, C., Chaudun, E., De Maria, A., Courtois, Y., and Counis, M. F. Characterisation of eye-lens DNases: long term persistence of activity in post apoptotic lens fibre cells. Cell Death Differ. 2, 47-56 (1995).
Ashkenazi, A., and Dixit, V. M. Death receptors: signaling and modulation. Science 281, 1305-8 (1998).
Baron, W. F., Pan, C. Q., Spencer, S. A., Ryan, A. M., Lazarus, R. A., and Baker, K. P. Cloning and characterization of an actin-resistant DNase I-like endonuclease secreted by macrophages. Gene 215, 291-301 (1998).
Barry, M. A., and Eastman, A. Endonuclease activation during apoptosis: the role of cytosolic Ca2+ and pH. Biochem. Biophys. Res. Commun. 186, 782-9 (1992).
Barry, M. A., and Eastman, A. Identification of deoxyribonuclease II as an endonuclease involved in apoptosis. Arch. Biochem. Biophys. 300, 440-50 (1993).
Belmokhtar, C. A., Torriglia, A., Counis, M. F., Courtois, Y., Jacquemin-Sablon, A., and Segal-Bendirdjian, E. Nuclear translocation of a leukocyte elastase Inhibitor/Elastase complex during staurosporine-induced apoptosis: role in the generation of nuclear L-DNase II activity. Exp. Cell Res. 254, 99-109 (2000).
Beresford, P. J., Zhang, D., Oh, D. Y., Fan, Z., Greer, E. L., Russo, M. L., Jaju, M., and Lieberman, J. Granzyme A activates an endoplasmic reticulum-associated caspase-independent nuclease to induce single-stranded DNA nicks. J. Biol. Chem. 276, 43285-93 (2001).
Bernardi, G., Bernardi, A., and Chersi, A. Studies on acid hydrolases. I. A procedure for the preparation of acid deoxyribonuclease and other acid hydrolases. Biochim. Biophys. Acta 129, 1-11 (1966).
Brossas, J. Y., Tanguy, R., Brignole-Baudouin, F., Courtois, Y., Torriglia, A., and Treton, J. L-DNase II associated with active process during ethanol induced cell death in ARPE-19. Mol. Vis. 10, 65-73 (2004).
Campbell, V. W., and Jackson, D. A. The effect of divalent cations on the mode of action of DNase I. The initial reaction products produced from covalently closed circular DNA. J. Biol. Chem. 255, 3726-35 (1980).
Carlson, C. A., and Ethier, S. P. Lack of RB protein correlates with increased sensitivity to UV-radiation-induced apoptosis in human breast cancer cells. Radiat. Res. 154, 590-9 (2000).
Carmody, R. J., and Cotter, T. G. Oxidative stress induces caspase-independent retinal apoptosis in vitro. Cell Death Differ. 7, 282-91 (2000).
Chang, H. Y., and Yang, X. Proteases for cell suicide: functions and regulation of caspases. Microbiol. Mol. Biol. Rev. 64, 821-46 (2000).
Choi, W. S., Lee, E. H., Chung, C. W., Jung, Y. K., Jin, B. K., Kim, S. U., Oh, T. H., Saido, T. C., and Oh, Y. J. Cleavage of Bax is mediated by caspase-dependent or -independent calpain activation in dopaminergic neuronal cells: protective role of Bcl-2. J. Neurochem. 77, 1531-41 (2001).
Chowdhury, D., Beresford, P. J., Zhu, P., Zhang, D., Sung, J. S., Demple, B., Perrino, F. W., and Lieberman, J. The exonuclease TREX1 is in the SET complex and acts in concert with NM23-H1 to degrade DNA during granzyme A-mediated cell death. Mol.Cell 23, 133-42 (2006).
Cohen, G. M. Caspases: the executioners of apoptosis. Biochem. J. 326 (Pt 1), 1-16 (1997).
Cote, J., and Ruiz-Carrillo, A. Primers for mitochondrial DNA replication generated by endonuclease G. Science 261, 765-9 (1993).
Counis, M. F., and Torriglia, A. DNases and apoptosis. Biochem. Cell Biol. 78, 405-14 (2000).
Counis, M. F., Chaudun, E., Arruti, C., Oliver, L., Sanwal, M., Courtois, Y., and Torriglia, A. Analysis of nuclear degradation during lens cell differentiation. Cell Death Differ. 5, 251-61 (1998).
Coy, J. F., Velhagen, I., Himmele, R., Delius, H., Poustka, A., and Zentgraf, H. Isolation, differential splicing and protein expression of a DNase on the human X chromosome. Cell Death Differ. 3, 199-206 (1996).
De Maria, A., and Arruti, C. Bovine DNase I: gene organization, mRNA expression, and changes in the topological distribution of the protein during apoptosis in lens epithelial cells. Biochem. Biophys. Res. Commun. 312, 634-41 (2003).
Donovan, M., and Cotter, T. G. Control of mitochondrial integrity by Bcl-2 family members and caspase-independent cell death. Biochim. Biophys. Acta 1644, 133-47 (2004).
Eastman, A. Deoxyribonuclease II in apoptosis and the significance of intracellular acidification. Cell Death Differ. 1, 7-9 (1994).
Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A., and Nagata, S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43-50 (1998).
Eulitz, D., and Mannherz, H. G. Inhibition of deoxyribonuclease I by actin is to protect cells from premature cell death. Apoptosis (2007).
Fan, Z., Beresford, P. J., Oh, D. Y., Zhang, D., and Lieberman, J. Tumor suppressor NM23-H1 is a granzyme A-activated DNase during CTL-mediated apoptosis, and the nucleosome assembly protein SET is its inhibitor. Cell 112, 659-72 (2003a).
Fan, Z., Beresford, P. J., Zhang, D., and Lieberman, J. HMG2 interacts with the nucleosome assembly protein SET and is a target of the cytotoxic T-lymphocyte protease granzyme A. Mol. Cell. Biol. 22, 2810-20 (2002).
Fan, Z., Beresford, P. J., Zhang, D., Xu, Z., Novina, C. D., Yoshida, A., Pommier, Y., and Lieberman, J. Cleaving the oxidative repair protein Ape1 enhances cell death mediated by granzyme A. Nat. Immunol. 4, 145-53 (2003b).
Fidzianska, A., and Kaminska, A. Apoptosis: a basic pathological reaction of injured neonatal muscle. Pediatr. Pathol. 11, 421-9 (1991).
Gaido, M. L., and Cidlowski, J. A. Identification, purification, and characterization of a calcium-dependent endonuclease (NUC18) from apoptotic rat thymocytes. NUC18 is not histone H2B. J. Biol. Chem. 266, 18580-5 (1991).
Garg, A. K., and Aggarwal, B. B. Reactive oxygen intermediates in TNF signaling. Mol. Immunol. 39, 509-17 (2002).
Gong, B., Chen, Q., Endlich, B., Mazumder, S., and Almasan, A. Ionizing radiation-induced, Bax-mediated cell death is dependent on activation of cysteine and serine proteases. Cell Growth Differ. 10, 491-502 (1999).
Haimovitz-Friedman, A. Radiation-induced signal transduction and stress response. Radiat. Res. 150, S102-8 (1998).
Hegde, R., Srinivasula, S. M., Zhang, Z., Wassell, R., Mukattash, R., Cilenti, L., DuBois, G., Lazebnik, Y., Zervos, A. S., Fernandes-Alnemri, T., and Alnemri, E. S. Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J. Biol. Chem. 277, 432-8 (2002).
Hughes, F. M., Jr., Evans-Storms, R. B., and Cidlowski, J. A. Evidence that non-caspase proteases are required for chromatin degradation during apoptosis. Cell Death Differ. 5, 1017-27 (1998).
Jaattela, M. Programmed cell death: many ways for cells to die decently. Ann. Med. 34, 480-8 (2002).
Kawabata, H., Anzai, N., Masutani, H., Hirama, T., Hishita, T., Dodo, M., Masuda, T., Yoshida, Y., and Okuma, M. Mg2+- or Mn2+-dependent endonuclease activities of human myeloid leukemia cells capable of producing nucleosomal-size DNA fragmentation. Biochem Biophys Res Commun 233, 133-8 (1997).
Kawane, K., Fukuyama, H., Yoshida, H., Nagase, H., Ohsawa, Y., Uchiyama, Y., Okada, K., Iida, T., and Nagata, S. Impaired thymic development in mouse embryos deficient in apoptotic DNA degradation. Nat. Immunol. 4, 138-44 (2003).
Kerr, J. F., Wyllie, A. H., and Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239-57 (1972).
Kingham, P. J., and Pocock, J. M. Microglial secreted cathepsin B induces neuronal apoptosis. J. Neurochem. 76, 1475-84 (2001).
Lee, H. T., Xu, H., Siegel, C. D., and Krichevsky, I. E. Local anesthetics worsen renal function after ischemia-reperfusion injury in rats. Am. J. Physiol. Renal. Physiol. 286, F111-9 (2004).
Li, H., Zhu, H., Xu, C. J., and Yuan, J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491-501 (1998).
Li, L. Y., Luo, X., and Wang, X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412, 95-9 (2001).
Liao, T. H., Liao, W. C., Chang, H. C., and Lu, K. S. Deoxyribonuclease II purified from the isolated lysosomes of porcine spleen and from porcine liver homogenates. Comparison with deoxyribonuclease II purified from porcine spleen homogenates. Biochim. Biophys. Acta 1007, 15-22 (1989).
Lieberman, J., and Fan, Z. Nuclear war: the granzyme A-bomb. Curr. Opin. Immunol. 15, 553-9 (2003).
Liu, X., Kim, C. N., Yang, J., Jemmerson, R., and Wang, X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147-57 (1996).
Liu, X., Zou, H., Slaughter, C., and Wang, X. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89, 175-84 (1997).
Lord, S. J., Rajotte, R. V., Korbutt, G. S., and Bleackley, R. C. Granzyme B: a natural born killer. Immunol. Rev. 193, 31-8 (2003).
Luo, X., Budihardjo, I., Zou, H., Slaughter, C., and Wang, X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481-90 (1998).
Martin, S. A., and Ouchi, T. BRCA1 phosphorylation regulates caspase-3 activation in UV-induced apoptosis. Cancer Res. 65, 10657-62 (2005).
Mathiasen, I. S., and Jaattela, M. Triggering caspase-independent cell death to combat cancer. Trends Mol. Med. 8, 212-20 (2002).
Mazur, D. J., and Perrino, F. W. Identification and expression of the TREX1 and TREX2 cDNA sequences encoding mammalian 3'-->5' exonucleases. J. Biol. Chem. 274, 19655-60 (1999).
Mc Gee, M. M., Campiani, G., Ramunno, A., Fattorusso, C., Nacci, V., Lawler, M., Williams, D. C., and Zisterer, D. M. Pyrrolo-1,5-benzoxazepines induce apoptosis in chronic myelogenous leukemia (CML) cells by bypassing the apoptotic suppressor bcr-abl. J. Pharmacol. Exp. Ther. 296, 31-40 (2001).
McGrath, L. B., Onnis V., Campiani, G., Williams, D. C., Zisterer, D. M., and Mc Gee, M. M. Caspase-activated DNase (CAD)-independent oligonucleosomal DNA fragmentation in chronic myeloid leukaemia cells; a requirement for serine protease and Mn2+-dependent acidic endonuclease activity. Apoptosis 11, 1473-87 (2006).
McIlroy, D., Tanaka, M., Sakahira, H., Fukuyama, H., Suzuki, M., Yamamura, K., Ohsawa, Y., Uchiyama, Y., and Nagata, S. An auxiliary mode of apoptotic DNA fragmentation provided by phagocytes. Genes Dev. 14, 549-58 (2000).
Meier, P., Finch, A., and Evan, G. Apoptosis in development. Nature 407, 796-801 (2000).
Mirkes, P. E. 2001 Warkany lecture: to die or not to die, the role of apoptosis in normal and abnormal mammalian development. Teratology 65, 228-39 (2002).
Montague, J. W., Gaido, M. L., Frye, C., and Cidlowski, J. A. A calcium-dependent nuclease from apoptotic rat thymocytes is homologous with cyclophilin. Recombinant cyclophilins A, B, and C have nuclease activity. J. Biol. Chem. 269, 18877-80 (1994).
Moore, S. Pancreatic DNase. In “The Enzymes”, 3rd ed. P. D.Boyer et al., Ed., Vol. 14, pp 281-296. Academic Press, New York. (1981).
Mosbaugh, D. W., and Linn, S. Excision repair and DNA synthesis with a combination of HeLa DNA polymerase beta and DNase V. J. Biol. Chem. 258, 108-18 (1983).
Muchmore, S. W., Sattler, M., Liang, H., Meadows, R. P., Harlan, J. E., Yoon, H. S., Nettesheim, D., Chang, B. S., Thompson, C.B., Wong, S. L., Ng, S. L., and Fesik, S. W. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381, 335-41 (1996).
Nagata, S. DNA degradation in development and programmed cell death. Annu. Rev. Immunol. 23, 853-75 (2005).
Nakagami, Y., Ito, M., Hara, T., Inoue, T., and Matsubara, S. Nuclear translocation of DNase II and acid phosphatase during radiation-induced apoptosis in HL60 cells. Acta Oncol. 42, 227-36 (2003).
Napirei, M., Karsunky, H., Zevnik, B., Stephan, H., Mannherz, H. G., and Moroy, T. Features of systemic lupus erythematosus in Dnase1-deficient mice. Nat. Genet. 25, 177-81 (2000).
Nicholson, D. W., and Thornberry, N. A. Caspases: killer proteases. Trends Biochem. Sci. 22, 299-306 (1997).
Nishimoto, S., Kawane, K., Watanabe-Fukunaga, R., Fukuyama, H., Ohsawa, Y., Uchiyama, Y., Hashida, N., Ohguro, N., Tano, Y., Morimoto, T., Fukuda, Y., and Nagata, S. Nuclear cataract caused by a lack of DNA degradation in the mouse eye lens. Nature 424, 1071-4 (2003).
Nishimura, K., and Tanuma, S. Presence of DNase gamma-like endonuclease in nuclei of neuronal differentiated PC12 cells. Apoptosis 3, 97-103 (1998).
O'Connell, A. R., Holohan, C., Torriglia, A., Lee, B. W., and Stenson-Cox, C. Characterization of a serine protease-mediated cell death program activated in human leukemia cells. Exp. Cell Res. 312, 27-39 (2006).
Oliveri, M., Daga, A., Cantoni, C., Lunardi, C., Millo, R., and Puccetti, A. DNase I mediates internucleosomal DNA degradation in human cells undergoing drug-induced apoptosis. Eur. J. Immunol. 31, 743-51 (2001).
Pandey, S., Walker, P. R., and Sikorska, M. Identification of a novel 97 kDa endonuclease capable of internucleosomal DNA cleavage. Biochemistry 36, 711-20 (1997).
Parrish, J., Li, L., Klotz, K., Ledwich, D., Wang, X., and Xue, D. Mitochondrial endonuclease G is important for apoptosis in C. elegans. Nature 412, 90-4 (2001).
Pergolizzi, R., Appierto, V., Bosetti, A., DeBellis, G. L., Rovida, E., and Biunno, I. Cloning of a gene encoding a DNase I-like endonuclease in the human Xq28 region. Gene 168, 267-70 (1996).
Potempa, J., Dubin, A., Watorek, W., and Travis, J. An elastase inhibitor from equine leukocyte cytosol belongs to the serpin superfamily. Further characterization and amino acid sequence of the reactive center. J. Biol. Chem. 263, 7364-9 (1988).
Price, P. A. The essential role of Ca2+ in the activity of bovine pancreatic deoxyribonuclease. J. Biol. Chem. 250, 1981-6 (1975).
Prindull, G. Apoptosis in the embryo and tumorigenesis. Eur. J. Cancer 31A, 116-23 (1995).
Qi, S. N., Jing, Y. X., Dong, G. X., Chen, Y., Yoshida, A., and Ueda, T. et al. GP7 induces internucleosomal DNA fragmentation independent of caspase activation and DNA fragmentation factor in NB4 cells. Oncol. Rep. 18, 273-7 (2007).
Rauch, F., Polzar, B., Stephan, H., Zanotti, S., Paddenberg, R., Mannherz, H. G. Androgen ablation leads to an upregulation and intranuclear accumulation of deoxyribonuclease I in rat prostate epithelial cells paralleling their apoptotic elimination. J. Cell Biol. 137, 909-23 (1997).
Ribeiro, J. M., and Carson, D. A. Ca2+/Mg(2+)-dependent endonuclease from human spleen: purification, properties, and role in apoptosis. Biochemistry 32, 9129-36 (1993).
Rodriguez, A. M., Rodin, D., Nomura, H., Morton, C. C., Weremowicz, S., and Schneider, M. C. Identification, localization, and expression of two novel human genes similar to deoxyribonuclease I. Genomics 42, 507-13 (1997).
Saelens, X., Festjens, N., Vande Walle, L., van Gurp, M., van Loo, G., and Vandenabeele, P. Toxic proteins released from mitochondria in cell death. Oncogene 23, 2861-74 (2004).
Sakahira, H., Enari, M., and Nagata, S. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391, 96-9 (1998).
Sakahira, H., Takemura, Y., and Nagata, S. Enzymatic active site of caspase-activated DNase (CAD) and its inhibition by inhibitor of CAD. Arch. Biochem. Biophys. 388, 91-9 (2001).
Samejima, K., and Earnshaw, W. C. ICAD/DFF regulator of apoptotic nuclease is nuclear. Exp. Cell Res. 243, 453-9 (1998).
Samejima, K., and Earnshaw, W. C. Trashing the genome: the role of nucleases during apoptosis. Nat. Rev. Mol. Cell Biol. 6, 677-88 (2005).
Savill, J., and Fadok, V. Corpse clearance defines the meaning of cell death. Nature 407, 784-8 (2000).
Schendel, S. L., Azimov, R., Pawlowski, K., Godzik, A., Kagan, B. L., and Reed, J. C. Ion channel activity of the BH3 only Bcl-2 family member, BID. J. Biol. Chem. 274, 21932-6 (1999).
Shak, S., Capon, D. J., Hellmiss, R., Marsters, S. A., and Baker, C. L. Recombinant human DNase I reduces the viscosity of cystic fibrosis sputum. Proc. Natl. Acad. Sci. U S A 87, 9188-92 (1990).
Shiokawa, D., and Tanuma, S. Characterization of human DNase I family endonucleases and activation of DNase gamma during apoptosis. Biochemistry 40, 143-52 (2001).
Shiokawa, D., and Tanuma, S. Differential DNases are selectively used in neuronal apoptosis depending on the differentiation state. Cell Death Differ. 11, 1112-20 (2004).
Shiokawa, D., and Tanuma, S. DLAD, a novel mammalian divalent cation-independent endonuclease with homology to DNase II. Nucleic Acids Res. 27, 4083-9 (1999).
Shiokawa, D., and Tanuma, S. Molecular cloning and expression of a cDNA encoding an apoptotic endonuclease DNase gamma. Biochem. J. 332 (Pt 3), 713-20 (1998).
Shiokawa, D., Hirai, M., and Tanuma, S. cDNA cloning of human DNase gamma: chromosomal localization of its gene and enzymatic properties of recombinant protein. Apoptosis 3, 89-95 (1998).
Shiokawa, D., Iwamatsu, A., and Tanuma, S. Purification, characterization, and amino acid sequencing of DNase gamma from rat spleen. Arch Biochem. Biophys. 346, 15-20 (1997b).
Shiokawa, D., Kobayashi, T., and Tanuma, S. Involvement of DNase gamma in apoptosis associated with myogenic differentiation of C2C12 cells. J. Biol. Chem. 277, 31031-7 (2002).
Shiokawa, D., Ohyama, H., Yamada, T., and Tanuma, S. Purification and properties of DNase gamma from apoptotic rat thymocytes. Biochem. J. 326 (Pt 3), 675-81 (1997a).
Shiokawa, D., Tanaka, M., Kimura, T., Hashizume, K., Takasawa, R., Ohyama, H., Fujita, K., Yamada, T., and Tanuma, S. Characterization of two DNase gamma-specific monoclonal antibodies and the in situ detection of DNase gamma in the nuclei of apoptotic rat thymocytes. Biochem. Biophys. Res. Commun. 275, 343-9 (2000).
Stenson-Cox, C., FitzGerald, U., and Samali, A. In the cut and thrust of apoptosis, serine proteases come of age. Biochem. Pharmacol. 66, 1469-74 (2003).
Stephan, H., Polzar, B., Rauch, F., Zanotti, S., Ulke, C., and Mannherz, H. G. Distribution of deoxyribonuclease I (DNase I) and p53 in rat testis and their correlation with apoptosis. Histochem. Cell Biol. 106, 383-93 (1996).
Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., Brothers, G. M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., Larochette, N., Goodlett, D. R., Aebersold, R., Siderovski, D. P., Penninger, J. M., and Kroemer, G. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441-6 (1999).
Tanaka, K., Higami, Y., Tsuchiya, T., Shiokawa, D., Tanuma, S., Ayabe, H., and Shimokawa, I. Aging increases DNase gamma, an apoptosis-related endonuclease, in rat liver nuclei: effect of dietary restriction. Exp. Gerontol. 39, 195-202 (2004).
Tanuma, S., and Shiokawa, D. Cloning of a cDNA encoding a rat DNase II-like acid DNase. Biochem. Biophys. Res. Commun. 265, 395-9 (1999).
Thompson, C. B. Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456-62 (1995).
Thornberry, N. A., and Lazebnik, Y. Caspases: enemies within. Science 281, 1312-6 (1998).
Torriglia, A., Negri, C., Chaudun, E., Prosperi, E., Courtois, Y., Counis, M. F., and Scovassi, A. I. Differential involvement of DNases in HeLa cell apoptosis induced by etoposide and long term-culture. Cell Death Differ. 6, 234-44 (1999).
Torriglia, A., Chaudun, E., Chany-Fournier, F., Courtois, Y., and Counis, M. F. Involvement of L-DNase II in nuclear degeneration during chick retina development. Exp. Eye Res. 72, 443-53 (2001).
Torriglia, A., Chaudun, E., Chany-Fournier, F., Jeanny, J. C., Courtois, Y., and Counis, M. F. Involvement of DNase II in nuclear degeneration during lens cell differentiation. J. Biol. Chem. 270, 28579-85 (1995).
Torriglia, A., Perani, P., Brossas, J. Y., Chaudun, E., Treton, J., Courtois, Y., and Counis, M. F. L-DNase II, a molecule that links proteases and endonucleases in apoptosis, derives from the ubiquitous serpin leukocyte elastase inhibitor. Mol. Cell Biol. 18, 3612-9 (1998).
Ucker, D. S., Obermiller, P. S., Eckhart, W., Apgar, J. R., Berger, N. A., and Meyers, J. Genome digestion is a dispensable consequence of physiological cell death mediated by cytotoxic T lymphocytes. Mol. Cell Biol. 12, 3060-9 (1992).
Unami, A., Shinohara, Y., Ichikawa, T., and Baba, Y. Biochemical and microarray analyses of bupivacaine-induced apoptosis. J. Toxicol. Sci. 28, 77-94 (2003).
Urbano, A., McCaffrey, R., and Foss, F. Isolation and characterization of NUC70, a cytoplasmic, hematopoietic apoptotic endonuclease. J. Biol. Chem. 273, 34820-7 (1998).
van Gurp, M., Festjens, N., van Loo, G., Saelens, X., and Vandenabeele, P. Mitochondrial intermembrane proteins in cell death. Biochem. Biophys. Res. Commun. 304, 487-97 (2003).
Verhagen, A. M., Ekert, P. G., Pakusch, M., Silke, J., Connolly, L. M., Reid, G. E., Moritz, R. L., Simpson, R. J., and Vaux, D. L. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43-53 (2000).
Verhagen, A. M., Silke, J., Ekert, P. G., Pakusch, M., Kaufmann, H., Connolly, L. M., Day, C. L., Tikoo, A., Burke, R., Wrobel, C., Moritz, R. L., Simpson, R.J., and Vaux, D. L. HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J. Biol. Chem. 277, 445-54 (2002).
Vermeulen, K., Van Bockstaele, D. R., and Berneman, Z. N. Apoptosis: mechanisms and relevance in cancer. Ann. Hematol. 84, 627-39 (2005).
Walker, N. P., Talanian, R. V., Brady, K. D., Dang, L. C., Bump, N. J., Ferenz, C. R., Franklin, S., Ghayur, T., Hackett, M. C., Hammill, L. D., and et al. Crystal structure of the cysteine protease interleukin-1 beta-converting enzyme: a (p20/p10)2 homodimer. Cell 78, 343-52 (1994).
Wang, I. K., Lin-Shiau, S. Y., and Lin, J. K. Induction of apoptosis by lovastatin through activation of caspase-3 and DNase II in leukaemia HL-60 cells. Pharmacol. Toxicol. 86, 83-91 (2000).
Widlak, P., Li, L. Y., Wang, X., and Garrard, W. T. Action of recombinant human apoptotic endonuclease G on naked DNA and chromatin substrates: cooperation with exonuclease and DNase I. J. Biol. Chem. 276, 48404-9 (2001).
Wride, M. A., Parker, E., and Sanders, E. J. Members of the bcl-2 and caspase families regulate nuclear degeneration during chick lens fibre differentiation. Dev. Biol. 213, 142-56 (1999).
Wright, S. C., Wei, Q. S., Zhong, J., Zheng, H., Kinder, D. H., and Larrick, J. W. Purification of a 24-kD protease from apoptotic tumor cells that activates DNA fragmentation. J. Exp. Med. 180, 2113-23 (1994).
Wyllie, A. H. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284, 555-6 (1980).
Xiang, Y., Johnson, E. A., Zhang, C., Huang, G., Hayes, R. L., Wang, K. K., and Svetlov, S. I. Generation of aberrant forms of DFF40 concurrent with caspase-3 activation during acute and chronic liver injury in rats. Biochem Biophys Res Commun 350, 457-62 (2006).
Yasuda, T., Nadano, D., Awazu, S., and Kishi, K. Human urine deoxyribonuclease II (DNase II) isoenzymes: a novel immunoaffinity purification, biochemical multiplicity, genetic heterogeneity and broad distribution among tissues and body fluids. Biochim. Biophys. Acta 1119, 185-93 (1992).
Yin, X. M. Bid, a critical mediator for apoptosis induced by the activation of Fas/TNF-R1 death receptors in hepatocytes. J. Mol. Med. 78, 203-11 (2000).
Yoshida, A., Urasaki, Y., Waltham, M., Bergman, A. C., Pourquier, P., Rothwell, D. G., Inuzuka, M., Weinstein, J. N., Ueda, T., Appella, E., Hickson, I. D., and Pommier, Y. Human apurinic/apyrimidinic endonuclease (Ape1) and its N-terminal truncated form (AN34) are involved in DNA fragmentation during apoptosis. J. Biol. Chem. 278, 37768-76 (2003).
Zou, H., Li, Y., Liu, X., and Wang, X. An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J. Biol. Chem. 274, 11549-56 (1999).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 【12】張方,印刷電路板自動裝配技術綜論─表現黏著技術(SMT)及生產設備,機械工業雜誌, 1987年。
2. 【8】李文瑞、陳秋宏,「產業群聚與競爭優勢-我國印刷電路板產業發展與競爭力之分析」,經濟情勢暨評論季刊,第三卷第四期, 1998 年 2 月。
3. 【20】林集堅,「印刷電路板自動裝配技術和設備」,機械工業雜誌,p.195-208 , 1989年11月。
4. 文光,<對中共未來國防高科技發展戰略探討>,《中共研究》,第33卷第11期(1999年11月)。
5. 李宗孝,<中共衛星發展對我防衛作戰之影響及因應作為>,《國防雜誌》,第19卷第9期(2004年9月)。
6. 沈一鳴,<從華衛2號論我軍事航太科技發展方向>,《空軍學術月刊》,第578期(2005年1月1日)。
7. 林宗達,<中共太空戰的戰略發展述評>,《共黨問題研究》,第28卷第8期(2002年8月)。
8. 林勤經,<中共積極進行信息戰發展研究>,《中共研究》,第36卷第11期(2002年11月)。
9. 陳永全,<中共反幅射飛彈發展與反制作為-以三五快砲部隊為例>,《國防雜誌》,第20卷第8期(2005年8月)。
10. 張蜀誠,<中共航天戰力之建構與展望>,《中華戰略學刊》,夏季刊(2004年4月)。
11. 萬濟人,<空軍戰管雷達電子防護能力之研究-以反制反幅射飛彈為例>,《國防雜誌》,第21卷第1期(2006年2月)。
12. 應天行,<衛星導航定位系統的世界大戰>,《全球防衛雜誌》,第226期(2004年6月)。
13. 應天行,<當前中共研發衛星的新重心「小型衛星」>,《全球防衛雜誌》,第203期(2001年7月)。
14. 應紹基,<中共通信衛星之發展歷程與展望>,《海軍學術月刊》,第37卷第1期(2003年1月)。
15. 應紹基,<中共「海洋衛星」系列軍事應用的研析>,《海軍學術月刊》,第7卷第7期(2003年7月)。