跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 10:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉韋欣
研究生(外文):Wei-Hsin Yea
論文名稱:六種殼斗科苗木之光度適應性研究
論文名稱(外文):Study on Light-Intensity Adaptabilities of Six Fagaceae Species Seedlings
指導教授:林世宗林世宗引用關係
指導教授(外文):Shu-Tzong Lin
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:自然資源學系碩士班
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:98
中文關鍵詞:殼斗科生長生物量光合作用葉綠素螢光光適應光抑制
外文關鍵詞:fagaceae speciesgrowthbiomassphotosynthesischlorophyll fluorescencelight adaptionphotoinhibition
相關次數:
  • 被引用被引用:11
  • 點閱點閱:314
  • 評分評分:
  • 下載下載:62
  • 收藏至我的研究室書目清單書目收藏:0
本研究將青剛櫟、錐果櫟、赤皮、毽子櫟、長尾尖葉櫧、鬼石櫟之苗木栽植於模擬林下孔隙之蔭棚中(分別為相對光度60%、10%與3%),比較其形質生長、光合能力與光消散機制,探討其光適應性。
各樹種之苗高、根徑、生物量與根部生物量分配比例皆隨處理光度之增加而提升,但長尾尖葉櫧與鬼石櫟之苗高則於相對光度10%中具最大值。
葉面積比(LAR)與比葉面積(SLA)隨著遮蔭程度之增加而提升,反映出低光處光合器官比例之提升與葉片之薄化,並以赤皮與毽子櫟調整幅度最為明顯。葉綠體色素濃度隨遮蔭程度之增加而提升,Chl a/b與Car/Chl則呈相反之趨勢,但赤皮之Chl a/b在各光處理間則無差異,此意味著樹種於低光處將提升吸光效率與在高光處將增加光保護性物質。
最大總光合速率(Amax)、暗呼吸率(Rd)、光補償點(LCP)、最大電子傳遞速率(ETRmax)與非光化學消散(NPQ)皆隨環境光度的提升而有增加之趨勢,但長尾尖葉櫧與鬼石櫟之Amax與ETRmax則是在相對光度10%中具最大值。錐果櫟之光量子效率(Qy)於相對光度60%中具有最大值,其餘的5種試驗樹種則是在相對光度10%時具最大值。
午夜時除了毽子櫟之PSII最大光能轉換效率(Fv / Fm)於遮光處理間幾無差異外,其餘者皆在相對光度60%具較低值,顯示具有長期光抑制現象,殊以長尾尖葉櫧最為嚴重;於此相對光度下,青剛櫟、錐果櫟、赤皮與毽子櫟在正午時,其PSII實際光能轉換效率(ΦPSII)約為長尾尖葉櫧與鬼石櫟之2倍;此時各樹種之熱消散(NPQ)皆為當日最大,並以錐果櫟、長尾尖葉櫧與鬼石櫟之值最高、青剛櫟與赤皮次之,而毽子櫟最低。Fv / Fm在正午時,青剛櫟、錐果櫟與毽子櫟之值較高,而赤皮、長尾尖葉櫧與鬼石櫟則較低。螢光參數日域變化顯示出青剛櫟、錐果櫟與毽子櫟之非光化學消散主成份為熱消散,而赤皮、長尾尖葉櫧與鬼石櫟則是光破壞與熱消散。
依試驗結果顯示,青剛櫟、錐果櫟與毽子櫟光適應範圍較大。赤皮適生於中高光域,鬼石櫟則為中低光域,於高光處皆易受光破壞。長尾尖葉櫧在小孔隙環境具較好之生長與光合能力,其光適應範圍最狹窄。
This study explored the light-intensity adaptabilities of seedlings of Cyclobalanopsis glauca,Cyclobalanopsis longinux, Cyclobalanopsis gilva, Cyclobalanopsis sessililfolia, Castanopsis cuspidata var. carlesii and Lithocarpus castanopsisifolius. The seedlings were planted in 3 artificial shade houses(60%, 10% and 3% of full sun, respectively) to simulate light environments under forest canopy. The study will focus on growth performance, photosynthetic capacity, and mechanisms of light energy quenching.
Net growth, biomass, and biomass allocation to roots generally increased with increasing irradiation. However C. cuspidata var. carlesii and L. castanopsisifolius grown under 10% of full sun had the highest net height growth.
Leaf area ratio(LAR) and specific leaf area(SLA) increased with increasing shaded, which enhanced photosynthetic apparatus ratio and reduced leaf thickness in relatively shaded place, in especially C. gilva and C. sessililfolia. Chlorophyll and carotenoid content per unit mass increased with increasing shade, whereas Chl a/b and Car/Chl had opposite tendency. The results suggested that all species will enhance absorption efficiency in low light environment and will increase photoprotection substances in high light environment. But, Chl a/b of C. gilva didn’t differ significantly among 3 light regimes.
The maximum photosynthetic rate (Amax), dark respiration (Rd), light compensation point (LCP), maximum electron transport rate (ETRmax) and non-photochemical quenching parameter (NPQ) increased with increasing irradiation, while C. cuspidata var. carlesii and L. castanopsisifolius grown under 10% of full sun had the highest Amax and ETRmax. C. longinux grown under 60% of full sun had highest quantum yield (Qy), and the others grown under 10% of full sun had highest quantum yield.
At midnight, maximum photochemical efficiency of PSII (Fv / Fm) of C. sessililfolia was no significant difference among shade treatments, but other species grown under 60% of full sun had the lowest Fv / Fm suggesting chronic photoinhibtion, in especially C. cuspidata var. carlesii. At midday, ΦPSII of C. glauca, C. longinux, C. gilva, and C. sessililfolia doubled that of C. cuspidata var. carlesii and L. castanopsisifolius under 60% of full sun. Meanwhile, the NPQ(heat quenching) of all species was highest in the daytime, highest in C. longinux, C. cuspidata var. carlesii and L. castanopsisifolius, and lower in C. glauca and C. gilva and then C. sessililfolia. At midday, C. glauca, C. longinux and C. sessililfolia had higher Fv / Fm than C. gilva, C. cuspidata var. carlesii and L. castanopsisifolius. Diurnal changes of fluorescence parameters showed the main factor of non-photochemical quenching of C. glauca, C. longinux and C. sessililfolia was dissipation into heat, and that of C. gilva, Castanopsis cuspidata var. carlesii and L. castanopsisifolius was heat quenching and photodamage.
In conclusion, C. glauca, C. longinux and C. sessililfolia had a broader range of light adaption. C. gilva grew well in high and medium light regime, and L. castanopsisifolius grew well in medium and low light regime, both more susceptible to photodamage in high-light regime. Castanopsis cuspidata var. carlesii had greater growth and photosynthesis capability at gap site, and it’s range of light adaption is the narrowest among all species.
摘要 ...................................................... i
Abstract ................................................. iii
謝誌 ....................................................... v
目錄 ..................................................... vi
表目錄 .................................................... ix
圖目錄 .................................................... x
壹、前言 .................................................. 1
貳、前人研究 ............................................... 3
一、光度對苗木形質與生理之效應 ............................ 3
(一)光度對苗高與基徑之效應 ............................ 3
(二)光度對生物量之效應 ............................... 4
(三)光度對葉部形態參數之效應 .......................... 5
1.葉面積比 ..................................... 5
2.比葉面積 ..................................... 6
(四)葉綠體色素含量 .................................. 7
(五)光合反應曲線 .................................... 8
(六)葉綠素螢光 ..................................... 10
二、光抑制 ............................................ 15
三、試驗樹種之植群分佈與生態特性 ......................... 19
參、材料及方法 ............................................ 20
一、材料來源 ........................................... 20
二、試驗環境概述與設計 .................................. 20
三、環境因子的量測 ...................................... 22
四、試驗方法與步驟 ...................................... 22
(一)苗高與基徑 .................................... 22
(二)葉面積與乾重 ................................... 22
(三)葉片面積參數 ................................... 22
(四)葉綠體色素含量測定 .............................. 23
(五)光合反應曲線之測定 .............................. 23
(六)葉綠素螢光參數之測定 ............................ 25
1.快速光反應曲線 .............................. 25
2.不同處理光度下之Fv / Fm ..................... 26
3.螢光參數之日域變化 ........................... 26
六、資料分析 ........................................... 27
肆、結果 .................................................. 28
一、試驗地環境參數量測之比較 .............................. 28
二、苗高與基徑之淨生長 ................................... 31
三、生物量累積與分配 ..................................... 33
四、葉面積參數 .......................................... 39
(一)葉面積比 ....................................... 39
(二)比葉面積 ....................................... 40
五、葉綠體色素含量 ...................................... 41
六、光合反應曲線與氣體交換參 ............................. 44
(一)最大總光合作用速率 ............................. 45
(二)暗呼吸速率 .................................... 46
(三)光量子效率 .................................... 47
(四)光補償點 ...................................... 48
七、葉綠素螢光參數 .................................... 49
(一)快速光反應曲線 ................................ 49
1.最大電子傳遞速率 ........................... 49
2.非光化學消散 ............................... 50
(二)PSII最大光能轉換效率 ........................... 51
(三)螢光參數之日域變化 ............................. 52
1.PSII實際光能轉換效率之日域變化 ................... 52
2.非光化學消散之日域變化 ......................... 54
3.PSII最大光能轉換效率之日域變化 .................. 56
伍、討論 ................................................. 58
一、光度對苗木形質生長之效應 ............................. 58
(一)苗高與基徑之淨生長 ............................... 58
(二)生物量累積與分配 ................................. 59
(三)葉面積參數 ...................................... 61
(四)葉綠體色素含量 ................................... 63
二、試驗樹種之光合能力 ................................... 66
(一)光合反應曲線之參數 ….............................. 66
(二)快速光反應曲線之螢光參數 .......................... 70
三、試驗樹種之光消散方式 ................................. 73
四、試驗樹種生理生態特性 .................................. 78
陸、結論 .................................................. 82
柒、參考文獻 .............................................. 84
捌、附錄 ................................................... 94
王相華。1995。不同光度對四種季風雨林樹種幼苗生長與形態之影響。
林業試驗所研究報告季刊。10(4):405-418。
王子定。1974。理論育林學(上)。國立編譯館。P77。台北。
沈介文。2000。五種臺灣原生闊葉樹種於不同光度下之生態生理特性。台
灣大學森林學研究所碩士論文。台北。
林文智、郭耀綸、陳永修、張乃航、洪富文、馬復京。2004。台灣南部多
納針闊葉林土壤種子庫與森林更新。台灣林業科學。19(1):33-42
林世宗、簡文村。1997。台灣紅豆杉之育林研究(二)不同光度下對台灣
紅豆杉苗木生長與形質之效應。台大實驗林研究報告。11(1):81-98。
林怡芳。2005。四種殼斗科幼苗在不同光度下生長優勢與型態之表現。台
灣大學森林學研究所碩士論文。台北。
周沛郁。2004。三種臺灣原生闊葉樹苗木於不同光環境馴化下之生長暨光
合作用反應。台灣大學森林學研究所碩士論文。台北。
吳志昇。1999。台灣東部海岸山脈都蘭山之森林植群調查分析。台灣
大學森林學研究所碩士論文。台北。
郭耀綸、江璧合。2003。台灣特有樹種台灣假黃楊、小芽新木薑子及
台灣梭羅木的生長及光合作用對光量的反應。台灣林業科學。
18(1):55-66。
郭耀綸、范開翔、黃慈薇、李彥屏、吳惠綸、蔡瑞芬。2004。台灣三
十種闊葉樹陽葉氣體交換潛力之研究。台灣林業科學。19(4):
375-86。
高瑞卿。2001。台灣東部立霧溪流域森林值群分析。國家公園學報。
11(2):231-254。
張安邦、廖天賜、方榮坤、翁仁憲、李丁松。2000。光度對大葉楠及
香楠形質生長的影響。林業研究季刊。22(1):11-22。
陳子英。1994。台灣北部楠櫧林帶櫧木林型主要樹種天然更新方式之
研究。台灣大學森林學研究所博士論文。台北。
陳子英。2004。蘭陽溪的植群分類系統之研究。台大實驗林研究報。
18(3):171-206。
陳俊雄、蘇鴻傑。2003。台灣西北內陸區森林植群分析。國家公園學
報。13(2):1-25。
陳舜英。1997。光度及氮肥對三斗石櫟苗木形質生長暨林地表現之影
響。台灣大學森林學研究所碩士論文。台北。
游智偉。2006。不同光量與養份對四種臺灣原生闊葉樹苗光合作用及葉綠
素螢光反應之影響。台灣大學森林學研究所碩士論文。台北。
劉棠瑞、蘇鴻傑。1983。森林植物生態學。台灣商務印書館。P120。
台北。
劉啓斌。2003。恆春半島山地植群之分類。屏東科技大學碩士論文。
屏東。
劉靜榆。2004。臺灣中西部氣候區森林植群分類系統之研究。國立臺
灣大學森林學研究所博士論文。台北。
廖天賜、張安邦、翁仁憲。2002。遮陰對大葉楠與香楠苗木光合作用及生
理之影響。林業研究季刊。24(1):1-10。
簡龍祥。2002台灣東北部瑪鋉溪流域植群生態之研究。森林學研究所
資源保育組碩士論文。台北。
Adir, N., H. Zer, S. Shochat, and I. Ohad. 2003. Photoinhibition – a
historical perspective. Photosynth. Res. 76:343–370.
Adams, W. W. III, B. Demmig-Adams, B. A. Logan, D. H. Barker and C.
B. Osmond.1999. Rapid changes in xanthophyll cycle-dependent
energy dissipation and photosystem II efficiency in two vines,
stephania japonica and smilax australis, growing in the
understory of an open Eucalyptus forest. Plant, Cell Environ. 22
(1):125–136.
Arnon, I. D. 1949. Copper enzymes in isolated chloroplasts.
polyphenoloxidasein Beta vulgaris. Plant Physiol. 24(1): 1-15
Ashton, P. M. S. and G. P. Berlyn. 1992.Leaf adaptations of some
shorea species to sun and shade . New Phytologist. 121(4): 587-
596.
Barnes, B. V., D. R. Zak, S. R. Denton and S. H. Spurr. 1998. Forest
ecolgoy. 2rd ed.,774p. Wiley, New York.
Bertamini, M. and N. Nedunchezhian. 2002. Photoinhibition of
photosynthesis in Vitis berlandieri and Vitis rupestris leaves
under field conditions. Photosynth. 40(4):597-603
Björkman, O. and B. Demmig-Adams. 1995. Regulation of photosynthetic
light energy capture, conversion, and dissipation in leaves of
higher plants . Ch. 2 in”ecophysiology of photosynthesis ” ,
Ernst-Detlef Schulze and M. M. Caldwell, Ed., pp 17-44. Springer- Verlag Berlin Heidelberg, New York.
Bilger, W. and O. Björkman. 1990.Role of the xanthopyll in
photoprotection elucidated by measurements of light-induced
absorbance changes, fluorescence and photosynthesis in leaves
of Hedera canariensis. Photosynth. Res. 25: 173-185
Campbell, S., C. Miller, A. Steven and A. Stephens. 2003
Photosynthetic responses of two temperate seagrasses across a
water quality gradient using chlorophyll fluorescence. J. exp.
mar. biol. ecol. 291:57– 78
Davies, S. J., 1998. Photosynthesis of nine pioneer Macarange
species from Borneo in relation to life history. Ecology. 79
(7):2292-2308.
Demmig-Adams, B., W. W. Adams III. 1992. Photoprotection and other
responses of plant to high stress. Ecology. 43: 599-626.
Denslow, J. S., J. C. Schultz, P. M. Vitousek and B. R. Strain.
1990. Growth responses of tropical shrubs to tree fall gap
environments. Ecology.71(1):165-179.
Delagrange, S., C. Messier, M. J. Lechowicz and P. Dizengremel.
2004. Physiological, morphological and allocational plasticity
in understorydeciduous trees: importance of plant size and light
availability. Tree Physiol. 24: 775–784.
Duan, B., Y. Lü, C. Yin and C. Li. 2005. Morphological and
physiological plasticity of woody plant response tohigh light
and low light. Chin J.Appl. Environ. Biol. 11(2) : 238 -245.
Evans, J. R. 1986. A quantitative analysis of light distribution
between the two photosystems, considering variations in both
relative amount of the chlorophyll-protein complexes and
spectral quality of light.Photobiochem. Photobioph. 10:135-147.
Givnish, T. J. 1988. Adaptation to sun and shade:a whole-plant
perspective. Aust. J. Plant Physiol. 15:63-92.
Griffin, J. J., T. G. Ranny and D. M. Pharr. 2004. Photosynthesis,
chlorophyll fluorescence, and carbohydrate content of illicium
taxagrown under varied irradiance., J. Amer. Soc. Hort. Sci. 129
(1):46-43.
Heinz Walz GmbH. 1999. Photosynthesis yield analyzer mini-pam
portable chlorophyll fluorometer. handbook of operation. pp 57-
86.
Hopkins, W. G. 1999. Introduction to plant physiology. 2rd ed.,512p
John Wiley and Sons, Inc., New York.
Horton, P., A.V. Ruban, R. G. Walters. 1994. Regulation of light
harvestingin green plant1.Indication by nonphotochemical
quenching of chlorophyll fluorescence.Plant Physiol. 106: 415-
420.
Horton, P., A. V. Ruban, and R. G. Walters.1996. Regulation of light
harvesting in green plant. Annu Rev Plant Physiol Plant Mol
Biol. 47: 655-684.
Ishida, A., T. Nakano, Y. Matsumoto, M. Sakoda and L. H. Ang. 1999a.
Diurnal changes in leaf gas exchange and chlorophyllfluorescence
in tropical tree species with contrasting light requirements.
Ecol. Res.14:77-88.
Ishida, A., T. Toma and Marjenah.1999b. Leaf gas exchange and
chlorophyll fluorescence in relation to leaf angle, azimuth, and
canopy position in the tropical pioneer tree, Macaranga conifer.
Tree Physiol.19:117-124.
James, S. A. and D. T. Bell. 2000. Influence of light availability
on leaf structure and growth of two Eucalyptus globulus ssp.
globulus provenances. Tree Physiol. 20:1007-1018.
Jin Y. H. and D. L. Tao 2000. PSII photoinhibition and O2-
production acta. Botanica. sinica. 42(1):10-14.
Jifon, J. L. and J. P. Syvertsen. 2003. Moderate shade can increase
net gas exchange and reduce photoinhibition in citrus leaves.
Tree Physiol. 23:119–127.
Jose, S., S. Merritt, and C. L. Ramsey. 2003. Growth, nutrition,
photosynthesis and transpiration responses of longleaf pine
seedlings to light, water and nitrogen. For. ecol. manage. 180:
335–344.
Karim, A., H. Fukamachi, T. Hidaka. 2003. Photosynthetic performance
of Vigna radiata L. leaves developed at different temperature
and irradiance levels. Plant Sci. 164:451-458.
Kimmins, J. P,. 1997. Forest ecology. 2rd ed., pp.153-179.Prentice-
Hall Inc., New Jersey.
Kitajima, K. 1994. Relative importance of photosynthetic traits and
allocation patterns as correlates of seedling shade tolerance
of 13 tropical trees.Oecologia. 98:419-428.
Kitao, M., T.T. Lei and T. Koike. 1998. Application of chlorophyll
fluorescence to evaluate Mn tolerance of deciduous broad-leaved
tree seedings native to northern Japan. Tree Physiol. 18:135-140.
Kitao, M., T. T. Lei, T. Koike, H. Tobita and Y. Maruyama.2000.
Susceptibility to photoinhibition of three deciduous broadleaf
tree species with different successional traits raised under
various light regimes. Plant Cell Environ. 23:81-89
Kitao, M., T. T. Lei, T. Koike, H. Tobita and Y. Maruyama. 2006.
Trade off between shade adaptation and mitigation of
photoinhibition in leaves of Quercus mongolica and Acer mono
acclimated to deep shade. Tree Physiol. 26:441–448
Kozlowski, T. T. and S. G. Pallardy. 1997. Growth control in woody
plants, pp. 196-219. Academic Press Inc., USA.
Krause, G. H. 1988. Photoinhibition of photosynthesis. An evaluation
of damaging and protective mechanisms. Physio plant. 74:566-
574
Krause, G. H. and E. Weis 1988. The photosynthetic apparatus and
chlorophyll fluorescence: an introduction. Ch. 1 in ”Application
of chlorophyll fluorescence in photosynthesis research,stress
physiology,hydrobiology andremote sensing”. H. K.
Lichtenthaler,Ed.,pp 3-11.Kluwer academic publishers,The
Netherlands.
Krause, G. H. and E. Weis 1991. Chlorophyll fluorescence and
photosynthesis: the basics. Annu. Rev. Plant Physiol. Mol. Boil.
42:313-349.
Krause, G. H., O. Y. Koroleva, J. W. Dalling and K. Winter. 2001.
Acclimation of tropical tree seedlings to excessive light in
simulated tree-fall gaps. Plant Cell Environ. 24,1345–1352.
Lambers, H., F. S. Chapin III, and T. L. Pons. 1998. Plant
physiological ecolog.540p. Springer-Verlag, New York
Larcher, W. 2003. Physiological plant ecology-ecophysiology and
stress physioligy of function groups. 4rd ed.,513p. Springer-
Verlag Berlin Heidelberg, New York.
Landhäusser, S. M. and V. J. Lieffers . 2001. Photosynthesis and
carbon allocation of six boreal tree species grown in understory
and open conditions. Tree Physiol. 21:243–250.
Lichtenthaler, H. K. and A. R. Wellburn. 1983. Determinations of
total carotenoids and chorophylls a and b of leaf extracts in
different solvents. Biochem. Soc. trans. 11:591-592.
Li, X. P., O. BjoÈrkman, C. Shih, A. R. Grossman , M. Rosenquist, S.
Jansson and K. K. Niyogi. 2000. A pigment-binding protein
essential for regulation of photosynthetic light harvesting.
Nature. 403:391-395.
Long, S. P, S. Humphries, P. G. Folkowski. 1994. Photoinhibition of
photosynthesis in nature. Annu. Rev. Plant Physiol. Plant Mol.
Biol. 45 : 633 - 662.
Maxwell, K. and G. N. Johnson . 2000. Chlorophyll flouresence- a
practical guide. J. exp. bot. 51(345):659–668
Malkin, R and K. Niyogi. 2000. Photosynthesis. Ch.12.in”
Biochemistry&molecular biology of plants ” Buchanan, B. B., W.
Gruissem and R.L. Jones, Ed.,pp 568-627. American Society of
Plant Physiologists.
Mohammed, G. H., P. Zarco-Tejada and J. R. Miller. 2003.
Applications of chlorophyll fluorescence in forestry and
ecophysiology .Ch. 3 in”Practical applications of chlorophyll
fluorescence in plant biology”. J. R. DeEll and P. M. A.
Toivonen, Ed.,pp 80-115. Kluwer academic publishers, American.
Müller, P., X. P. Li, and K. K. Niyogi. 2001. Non-photochemical
quenching.a response to excess light energy. Plant Physiol. 125:
1558–1566.
Naramoto, M., S. Katahata, Y. Mukai, and Y. Kakubari. 2006 .
Photosynthetic acclimation and photoinhibition on exposure to
high light in shad-developed leaves of Fagus crenata seedlinds.
Flora. 201:120-126.
Ort, D. R. and J. Whitmarsh. 1990. Inactive photosystem II centers:A
resolution of discrepencies in photosystem II quantitation?
Photosynth. res. 23(1):101-104
Osmond, C. B., J. M. Anderson, M. C. Ball and J. J. G. Egerton.
1999. Compromising efficiency:the molecular ecology of light-
resource utilization in plants. Ch.1 in” Physiological plant
ecology”, Press.M.C., J.D. Scholes, M.G. Barker, Ed.,pp 1-24.
British Ecological Society, New York.
Padmasree, K. and A. S. Raghavendra. 1998. Interaction with
respiration and nitrogen metabolism,. Ch. 15 in”Photosynthesis:
a comprehensiv treatise” A. S. Raghavendra, Ed.,pp 250-263.
Cambridge University Press.,U. K .
Pearcy, R. W. and W. A. Pfitsch. 1995.The of sunflecks for
photosynthesis and growth of forset understory plant. Ch. 2
in”Ecophysiology of photosynthesis ” , Ernst-Detlef Schulze and
M. M. Caldwell, Ed., pp 348-349. Springer-Verlag Berlin
Heidelberg,New York.
Pearcy, R. W. 1998.Acclimation to sun and shade,. Ch. 19 in
”Photosynthesis: a comprehensive treatise” A. S. Raghavendra,
Ed.,pp 250-263. Cambridge University Press., U. K.
Poorter, L. 1999. Growth responses of 15 rain-forest tree species to
light gradient:the relative importance of morphological and
physiological traits. Funct. ecol. 13:396-410.
Quero, J. L., R. Villar, T. Marañón and R. Zamora. 2006.
Interactions of drought and shade effects on seedlings of four
Quercus species:physiological and structural leaf responses. New
Phytol. 170:819-834
Ralph, P. J and R. Gademann. 2005. Rapid light curves: A powerful
tool to assess photosynthetic activity. Aquat. Bot. 82:222–237.
Rosenqvist, E. and O. V. Kooten. 2003. Chlorophyll fluorescence:a
general description and nomenclature. Ch. 2 in”Practical
applications of chlorophyll fluorescence in plant biology”. J.
R. DeEll and P. M. A.Toivonen, Ed., pp 32-77. Kluwer academic
publishers, American.
Roháček, K. and M. Barák. 1999. Technique of the modulated
chlorophyll fluorescence:basic concept ,useful parameters, and
some applications.Photosynthetica. 37(3):339-363.
Sánchez-Gómez, D., F. Valladarers and M. A. Zavala. 2006. Functional
traits and plasticity in response to light in seedlings of four
Iberian forest tree species.Tree Physiol. 26:1425–1433
Schreiber, U. 1997. Chlorophyll fluorescence and photosynthetic
energy conversion:Simple introductory experiments with the
teaching-pam chlorophyll fluorometer. Heinz Walz GmbH., Germany
Scholes, J. D., M. C. Press and S. W. Zipperlen. 1997. Differences
in light energy utilisation and dissipation between dipterocarp
rain forest tree seedlings. Oecologia. 109:41–48.
Senevirathna, A. M. W. K., C. M. Stirling and V. H. L. Rodrigo.
2003. Growth, photosynthetic performance and shade adaptation of
rubber(Hevea brasiliensis) grown in natural shade. Tree Physiol.
23: 705-712.
Shirke, P. A. and U. V. Pathre. 2003. Diurnal and seasonal changes
in photosynthesis and photosystem 2 photochemical efficient in
Prosopis juliflora leaves subjected to natural environment
stress. Photosynthetica. 41:83-89.
Taiz, L. and E. Zeiger. 2002. Plant physiology. 3rd ed., pp 112-221.
Sinauer Associates, Inc., U.S.A.
Tang, Y. 1997. Light. Ch. 1.1. in ”Plant ecophysiology”. M. N. V.
Prasad,Ed pp 34-35. John Wiley & Sons, Inc., Canada.
Trebst, A. 1995. Dynamics in photosystem II structure and function,.
Ch. 1 in”Ecophysiology of photosynthesis ” Ernst-Detlef Schulze
and M.M.Caldwell, Ed., pp 3-15. Springer-Verlag Berlin
Heidelberg, New York.
Valladares, F., S. Arrieta, I. Arxnda, D. Lorenzo, D. Sánchez-Gómez,
D.Tena, F. suárez and J. Pardos. 2005 Shade tolerance,
photoinhibition sensitivity and phenotypic plasticityof Ilex
aquifolium in continental Mediterranean sites. Tree Physiol. 25:
1041–1052.
White, A. J. and C. Critchley. 1999. Rapid light curves: A new
fluorescence method to assess the state of the photosynthetic
apparatus. Photosynth.Res. 59:63-72.
Whitmarsh, J. 1998. Electron transport and energy transduction,.
Ch.7 in”Photosynthesis: a comprehensive treatise” A. S.
Raghavendra, Ed.,pp 87-107. Cambridge University Press.,U. K.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top