跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/01 13:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊翔仁
研究生(外文):Hsiang Ren Yang
論文名稱:一對四光功率分離器之研製
論文名稱(外文):The Fabrication of 1×4 Optical Power Splitter
指導教授:陸瑞強陸瑞強引用關係
指導教授(外文):Ruei Chang Lu
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:電子工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:55
中文關鍵詞:光功率分離器鈮酸鋰微稜鏡光束傳播法分離器光功率角度通訊系統
外文關鍵詞:optical power splitterlithium Niobatemicro prismbeam propagation method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:106
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
光通訊系統中,光功率分離器為一關鍵元件。一般來說,傳統1xN光功率分離器建構係透過串接Y型分岔波導完成。這樣一來會有兩項重大的影響,第一是由於光波前振盪現象造成之輻射損耗,發生於第一階輸出串接第二階輸入端時,該現象必須透過長度夠長的緩衝用漸變波導來降低;第二元件面積大小隨著輸出數量而變大,在大角度的時候該現象更為顯著。我們目的就是研製結構單純之大角度1x4光功率分離器以改善傳統1x2分離器所組成之1x4光功率分離器效率,降低元件單位面積,並提高積體光學元件使用效率。
In optical communication system, optical power splitter is a key component. In general, the conventional 1xN power splitter is constructed by cascading Y-branch waveguides. There are two disadvantages in this kind of cascading Y-branch power splitter. First, the radiation loss caused by wave-front oscillation which is induced by connecting of the first order outputs to second order inputs is large. Hence, the circuit needs to use a long enough buffering tapered waveguide to reduce the oscillation. Second, the dimension of the circuit is very large as the number of outputs increased. Due to reduce the dimension and transmission loss of the integrated optical circuits, we proposed a simple power splitter structure to replace the conventional 1xN power splitter. The simulation results have an agreement with results.
第一章 導論 1
1-1 研究背景 1
1-2 鈮酸鋰簡介 2
1-3 研究動機 5
1-4 內容概敘 5
第二章 光功率分離器結構 7
2-1 傳統一對四光功率分離器 7
2-2 改良式一對四光功率分離器 12
2-3 元件模擬 14
2-4 波導光罩設計 23
第三章 光波導製程 25
3-1 光波導製程類別特性 25
3-2 質子交換光波導製程步驟 27
第四章 元件實現與結果討論 37
4-1 製作問題討論 37
4-2 量測結果討論 40
第五章 結論與未來展望 51
第六章 參考文獻 53
[1]L.M. Johnson and D. Yap, “Theoretical analysis of coherently coupled waveguide bends,” Appl. Opt., vol.23,pp.2988-2990, 1984.
[2]S. Kawakami and K. Baba, “Field distribution near an abrupt bend in single-mode waveguide: a simple model,” Appl. Opt., vol.24,pp.3643-3647,1985.
[3]Ruei-Chang Lu, Yu-Pin Liao, and Way-Seen Wang, “Design of Symmetric Y-Branch with a substrate prism and two tapered output waveguides on LiNbO3” IEEE Photon. Technol. Lett., vol.10, no.9, pp. 1274-1276, 1998.
[4]R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A., vol. 37, pp. 191-203, 1985
[5]A. Yariv and P. Yeh, Optical Wave in Crystals, Wiley, 1984.
[6]M. N. Armenise, C. Canali, M. De Sario, A. Carnera, P. Mazzoldi, G. Celotti, ” Ti Compound Formation During Ti Diffusion in LiNbO3” IEEE Transactions on Components Hybrids, and Manufacturing Technology, vol. Chmt-5. no. 2, june 1982
[7]M. N. Armenise, “Fabrication Techniques of Lithium Niobate Waveguide,” IEEE Proc., Vol.135, pp.85-91, April 1988
[8]Yu-Pin Liao, Der-Jung Chen, Ruei-Chang Lu, and Way-Seen Wang, ”Nickel-Diffused Lithium Niobate Optical Waveguide with Process-Dependent Polarization” IEEE Photon. Technol. Lett., vol. 8, no. 4, April 1996
[9]Rei-Shin Cheng, Wei-Lin Chen, and Way-Seen Wang,” Mach-Zehnder Modulators with Lithium Niobate Ridge Waveguides Fabricated by Proton-Exchange Wet Etch and Nickel Indiffusion” IEEE Photon. Technol. Lett., vol. 7, no. 11, November 1995
[10]Tzyy-Jiann Wang, Yao-Hua Wang, and Way-SeenWang, ”Single-Model 1 x 3 Equal-Power Divide Using a Substrate Microprism and Two Waveguide Expanders” IEEE Photon. Technol. Lett., vol. 12, no. 2, February 2000.
[11]W. Horsthuis, B Hendriksen, M. Diemeer, F. Lipscomb, J. Thackara, T. Ticknor, and R. Lytel, “Packaged polymeric 1x8 digital optical switches,” in Proc. ECOC, Brussels, Belgium, 1995, paper Th.L.3.4.
[12]T. Yabu,M. Geshiro, N. Minimi, S. Sawa, ” Symmetric three-branch optical power divider with a coupling cap” Journal of Lightwave Technology, vol. 17, no. 9, September 1999
[13]Baojun Li, Guozheng Li, Enke Liu, Zuimin Jiang, Jie Qin, Xun Wang ” Low-loss 1×2 multimode interference wavelength demultiplexerin silicon-germanium alloy” IEEE Photon. Technol. Lett., vol. 11, no. 5, May 1999.
[14]Hyun-Chae Song,Tae-Won Oh,Sang-Yung Shin, Sang-Yun Yi, Woo-Hyuk Jang, and Tae- Hyung Rhee ” Four-Branch Single-Mode Waveguide Power Divider” IEEE Photon. Technol. Lett., vol. 10, no. 12, December 1998.
[15]S. N. Radcliffe and T.P. Young, “New low-loss bend structure for high-density integrated optical switch arrays” IEEE J. Select. Area. Comm., vol.6,pp.1169-1177.1988
[16]L. M. Johnson and F. J. Leonberger, ”Low-loss LiNbO3 waveguide bends with coherent coupling,” Opt. Soc. Am., vol.8,pp.111-113,1983
[17]R. C. Lu, Y. P. Liao, H. B. Lin, and W. S. Wang, “Design and fabrication of wide-angle abrupt bends on lithium niobate,” IEEE J. Quantum Electron., vol.12, pp.215-220, 1996.
[18]T. J. Wang and W. S. Wang, “Wide-angle Ni-diffusion LiNbO3 abrupt waveguide bend with a proton exchanged microprism,” IEEE J. Quantum Electron., vol.28, pp.94-100, 2000.
[19]F. Laurell, J. Webjorn, G. Arviddson, and J. Holmberg, “Wet etching of proton-exchanged lithium niobate,” J. Lightwave Tech., vol.10, pp.1606-1609, 1992.
[20]T. Shiina, K. Shiraishi, and S. Kawakami, “Waveguide-bend configuration with low-loss characteristics,” Opt. Lett., vol.11,pp.736-738,1986.
[21]H. H.Hanza, P. L.Chu, and J. Nayyer, “Low-loss optical waveguide-bend configuration with curved corner reflector,” Electron. Lett., vol.28, pp.2283-2285,1992.
[22]R. Roijen, G. L. A. Hofstad, M. Groten, J. M. M. Heyden, P. J. A. Thijs, and B. H.Verbeek, “Fabrication of low-loss integrated optical corner mirrors” Opt. Lett., vol.32, pp.3246-3248, 1993.
[23]P. G. Suchoski, T. K. Findakly, and F. J. Leoberger, “Stable low-loss proton-exchanged LiNbO3 devices with no electro-optic degradation,” Opt. Lett., vol.13, pp.1050-1052, 1988.
[24]M. S. Stern, “Semivectorial polarized finite difference method for optical waveguides with arbitrary index profiles,” IEE Proc. J., vol. 135, pp. 56-63, 1988.
[25]P. L. Liu and B. J. Li, “Study of form birefringence in waveguide devices using the semivectorial beam propagation method,” IEEE Photon. Technol, Lett., vol. 3, pp. 913-915, 1991.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top