跳到主要內容

臺灣博碩士論文加值系統

(3.235.185.78) 您好!臺灣時間:2021/07/27 15:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳衍凱
研究生(外文):Yan-Kai Chen
論文名稱:相變化記憶體的SPICE模型分析與建立
論文名稱(外文):SPICE Modeling for Phase Change Memory Element
指導教授:江孟學
指導教授(外文):Meng-Hsueh Chiang
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:電子工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:76
中文關鍵詞:相變化記憶體
外文關鍵詞:Phase Change MemorySPICEVerilog-A
相關次數:
  • 被引用被引用:0
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
對於目前記憶體元件微縮未來會達到瓶頸,為了克服微縮問題以及提高存取速度,研發出新型態記憶體-相變化記憶體(Phase Change Memory),此論文是把此記憶體的特性,利用SPICE與Verilog-A軟體建立模型;相變化記憶體主要由Ge2Sb2Te5所構成,藉由不同電流脈波輸入內部產生不同溫度,內部產生結晶與非結晶兩種狀態的轉換,電氣上是呈現了高低阻抗,就利用這特性做資料儲存;設計兩種型態模型,理想性與非理想性模型,此模型是將化合物元件特性利用電路方法清楚呈現,具備物理意義以及可預測性;利用SPICE軟體建立測試電路與理想性模型,Verilog-A軟體則是建立非理想性模型,它有方便撰寫方程式的優點,這兩項軟體結合快速方便建立模型與降低錯誤率,且提供了使用者參數自設,擁有更佳的可塑性;模型的建立更能增加元件開發上的效率。
Continuous scaling of the memory device has been a challenging task. Phase change memory (PCM) is a potential candidate for next generation non-volatile memory. The advantages of PCM including better scalability, rewritability, high speed which facilitate device scaling. In this thesis, we developed a PCM model for SPICE with Verilig-A. The material of PCM is based on Ge2Sb2Te5 (GST). Different current pulse width and amplitude can generate different temperature in the cell; it will change the phase of GST between crystalline and amorphous and hence can store the data. We developed the model in two types: ideal model and non-ideal model. All of the models utilized equivalent circuits to achieve the characteristics of the PCM. We used SPICE to implement the ideal macro model and the peripheral circuit to verify the model. We also used Verilog-A to develop the non-ideal model, because Verilog-A provides a simple way for formulating math equations. All models we developed have customized parameters. The model helps develop the PCM device.
誌謝--------------------------------------------------------------------------------------------------------------I
中文摘要--------------------------------------------------------------------------------------------------------II
英文摘要--------------------------------------------------------------------------------------------------------III
圖索引-----------------------------------------------------------------------------------------------------------VI
表索引-----------------------------------------------------------------------------------------------------------VIII
CHAPTER1 前言---------------------------------------------------------------------------------------------1
CHAPTER2 記憶體材料、元件與物理效應介紹------------------------------------------------------3
2.1 GST材料與PCM架構-----------------------------------------------------------------------------------3
2.2 GST材料對溫度關係------------------------------------------------------------------------------------5
2.3 結晶與非結晶現象對電阻關係------------------------------------------------------------------------7
2.4 臨界電壓與電阻對應I-V曲線---------------------------------------------------------------------------9
2.5 實際元件的量測與應用---------------------------------------------------------------------------------12
CHAPTER3 模型設計理念與步驟------------------------------------------------------------------------14
3.1 國內外研究之探討---------------------------------------------------------------------------------------15
3.2 模型設計步驟與研究方法------------------------------------------------------------------------------16
CHAPTER4 理想性模型設計與實現方法---------------------------------------------------------------18
4.1 理想性模型設計方法------------------------------------------------------------------------------------18
4.1.1 模型具雙端模式之化簡------------------------------------------------------------------------------18
4.1.2 等效電流輸入之轉換---------------------------------------------------------------------------------19
4.1.3 內部所需額外增加的判斷條件---------------------------------------------------------------------20
4.1.4 表現出動態電阻與鎖住電壓------------------------------------------------------------------------20
4.2 理想性模型電路實現------------------------------------------------------------------------------------21
4.2.1 判斷電路------------------------------------------------------------------------------------------------22
4.2.2 記憶電路------------------------------------------------------------------------------------------------23
4.2.3 讀取電路------------------------------------------------------------------------------------------------23
4.2.4 感應電路------------------------------------------------------------------------------------------------23
4.3 理想性模型的電流對電壓關係圖---------------------------------------------------------------------24
CHAPTER5 非理想性模型設計與實現方法------------------------------------------------------------30
5.1 非理想性模型設計方法---------------------------------------------------------------------------------30
5.1.1 GST內部溫度運算------------------------------------------------------------------------------------30
5.1.2 GST溫度與結晶關係---------------------------------------------------------------------------------34
5.1.3 GST與電阻關係---------------------------------------------------------------------------------------38
5.2 非理想性模型電路實現---------------------------------------------------------------------------------39
5.2.1 溫度電路------------------------------------------------------------------------------------------------40
5.2.2 結晶化電路---------------------------------------------------------------------------------------------40
5.2.3 電阻電路------------------------------------------------------------------------------------------------41
5.2.4 輸出入電路---------------------------------------------------------------------------------------------42
5.3 非理想型模型的電流對電壓關係圖------------------------------------------------------------------42
CHAPTER6 模型測試與討論------------------------------------------------------------------------------48
6.1 理想電流源測試電路------------------------------------------------------------------------------------48
6.1.1 理想性模型測試---------------------------------------------------------------------------------------49
6.1.2 非理想性模型測試------------------------------------------------------------------------------------50
6.2 與實際元件量測比較------------------------------------------------------------------------------------51
CHAPTER7 結論---------------------------------------------------------------------------------------------60
參考文獻--------------------------------------------------------------------------------------------------------62
[1]Lacaita ,“Physics and Performance of Phase Change Memories,” Simulation of Semiconductor Processes and Devicfes, 2005, pp. 267-270.
[2]N.Yamada, E.Ohno, K.Nishiuchi, N.Akahira, M.Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory”, J.Appl.Phys., v69 #5, pp 2849-2857,1991.
[3]A. Pirovano, A. L. Lacaaita, A. Benvenuti, F. Pellizzer, S. Hudgens, and R. Bez, “Scaling analysis of phase-change memory technology,” IEEE IEDM Techchnical Digest, Dec. 2003, pp. 29.6.1–29.6.4.
[4]S.R.Ovshinsky, “Reversible electrical switching phenomena in disordered structures”, Phys.Rev. Lett., v.21,p.1450 ,1968.
[5]Agostino Pirovano, Andrea L. Lacaita, “Electronic Switching in Phase-Change Memories,” IEEE Trans. on Electron Devices, vol. 51, no. 3, Mar. 2004, pp. 452-459.
[6]Fundamentals of Amorphous Semiconductors, National Academy of Sciences-Nat. Res. Council, Washington, DC, 1972.
[7]M. H. R. LANKHORST et al. “Prospects of Doped Sb–Te Phase-Change Materials for High-Speed Recording, ” Jpn. J. Appl. Phys. Vol. 42, Feb. 2003, pp. 863–868.
[8]Huai-Yu Cheng, Kin-Fu Kao, Chain-Ming Lee, and Tsung-Shune Chin. ”Characteristics of Ga–Sb–Te Films for Phase-Change Memory,” IEEE Trans. on Electron Devices, vol. 43, no. 2, Feb. 2007, pp. 927-929.
[9]Y.N. Hwang, S.H. Lee, S.J. Ahn, S.Y. Lee, K.C. Ryoo, H.S. Hong, H.C. Koo, F. Yeung, J.H. Oh, H.J. Kim, W.C. Jeong, J.H. Park, H. Horii, Y.H. Ha, J.H. Yi, G. H. Koh, G.T. Jeong, H.S. Jeong and Kim Kinam, “Writing Current Reduction for High-density Phase-change RAM,” IEEE IEDM Technical Digest, Dec. 2003, pp. 37.1.1-37.1.4.
[10]S. Lai and T. Lowrey, “OUM - A 180 nm nonvolatile memory cell element technology for stand alone and embedded applications,” IEEE IEDM Technical Digest, Dec. 2001, pp. 36.5.1-36.5.4.
[11]Stefan Lai, “Current status of the phase change memory and its future,” IEEE IEDM Technical Digest, Dec. 2003, pp. 10.1.1-10.1.4.
[12]Mohammad Gh. Mohammad, Laila Terkawi, Muna Albasman,“Phase Change Memory Faults,” Proceedings of the 19th International Conference on VLSI Design, Jan. 2006.
[13]Kim, Y.-T. Lee, K.-H. et al., “Study on cell characteristics of PRAM using the phase-change simulation,” Simulation of Semiconductor Processes and Devices, 2003. SISPAD 2003, Sept. 2003, pp. 211-214.
[14]L.P. Shi, T.C. Chong, J.M. Li, D.S.C. Koh, R. Zhao, H.X. Yang, P.K. Tan, X.Q. Wei and W.D. Song, “Thermal modeling and simulation of non-volatile and non-rotating phase change memory cell,” Non-Volatile Memory Technology Symposium, Nov. 2004, pp. 88-87.
[15]R. Zhao, T.C. Chong, L.P. Shi, P.K. Tan, K.G. Lim, H.X. Yang, H.K. Lee, X. Hu, J.M. Li, X.S. Miao, X.Q. Wei, W.J. Wang and W.D. Song, “Study of geometric effect on phase change random access memory,” Non-Volatile Memory Technology Symposium, Nov. 2005, pp. 110-114.
[16]U. Russo, D. Ielmini, A. Redaelli, A. L. Lacaita, “Intrinsic Data Retention in Nanoscaled Phase-Change Memories—Part I: Monte Carlo Model for Crystallization and Percolation,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 53, NO. 12, Dec. 2006, pp. 3032-3093.
[17]A.L. Lacaita, A. Redaelli, D. Ielmini, F. Pellizzer, A. Pirovano, A. Benvenuti and R. Bez, “Electrothermal and phase-change dynamics in chalcogenide-based memories,” Electron Devices Meeting, IEDM Technical Digest. IEEE International, Dec. 2004, pp. 911-914.
[18]A. Redaelli, D. Ielmini, A.L. Lacaita, F. Pellizzer, A. Pirovano and R. Bez, “Impact of crystallization statistics on data retention for phase change memories,” Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International, Dec. 2005, pp. 742-745.
[19]D. Ielmini, A.L. Lacaita, A. Redaelli and U. Russo, “Intrinsic Data Retention in Nanoscaled Phase-Change Memories—Part II: Statistical Analysis and Prediction of Failure Time,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 53, NO. 12, Dec. 2006, pp. 3040-3046.
[20]Y.H. Ha, J.H. Yi, H. Horii, J.H. Park, S.H. Joo, S.O. Park, U-In Chung and J.T. Moon, “An Edge Contact Type Cell for Phase Change RAM Featuring Very Low Power Consumption,” Symposium on VLSI Technology Digest of Technical Papers, 2003, pp. 175-176.
[21]A. Pirovano, A.L. Lacaita, F. Pellizzer, S.A. Kostylev, A. Benvenuti and R. Bez, “Low-field amorphous state resistance and threshold voltage drift in chalcogenide materials,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 51, NO. 5, May 2004, pp. 714-719.
[22]D. Ielmini, A.L. Lacaita, A. Pirovano, F. Pellizzer and R. Bez, “Analysis of phase distribution in phase-change nonvolatile memories,” Electron Device Letters, IEEE, Volume 25, Issue 7, July 2004, pp. 507-509.
[23]A. Itri, D. Ielmini, A.L. Lacaita and A. Pirovano, ”Analysis of phase-transformation dynamics and estimation of amorphous-chalcogenide fraction in phase-change memories,” Reliability Physics Symposium Proceedings, 2004. 42nd Annual. 2004 IEEE International, April 2004, pp. 209-215.
[24]D. Ielmini, A.L. Lacaita and D. Mantegazza, “Recovery and Drift Dynamics of Resistance and Threshold Voltages in Phase-Change Memories,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 54, NO. 2, Feb. 2007, pp. 308-315.
[25]D. Ielmini, D. Mantegazza, A.L. Lacaita, A. Pirovano and F. Pellizzer, “Parasitic reset in the programming transient of PCMs,” IEEE ELECTRON DEVICE LETTERS, VOL. 26, NO. 11, Nov. 2005, p.p 799-801.
[26]R.A. Cobley, C.D. Wright ,“Spice modeling of PCRAM device,” IEE Proc.-Sci. Meas. Technol., vol. 150, no. 5, Sep. 2003, pp. 237-239.
[27]R.A. Cobley, C.D. Wright, “Parameterized SPICE model for a phase-change RAM device,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 53, NO. 1, Jan. 2006, pp. 112-118.
[28]X.Q. Wei, L.P. Shi, R. Zhao, X.S. Miao, T.C. Chong, W. Rajan, B.S. Quek, “Universal HSPICE model for chalcogenide based phase change memory elements,” Proc. 2004 Non-Volatile Memory Technology Symp., Nov. 2004, pp. 88-91.
[29]X.Q. Wei, L.P. Shi, R. Walia, T.C. Chong, R. Zhao, X.S. Miao, B.S. Quek, “HSPICE macromodel of PCRAM for binary and multilevel storage,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 53, NO. 1, Jan. 2006, pp. 56-62.
[30]L.J. Giacoletto, “Simple SCR and TRIAC PSPICE computer models,” IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 36, NO. 3, Aug. 1989, pp. 451-455.
[31]A. Hsiao, M.E. McHenry, D.E. Laughlin, M.J. Kramer, C. Ashe and T. Ohkubo, “The thermal, magnetic, and structural characterization of the crystallization kinetics of Fe/sub 88/Zr/sub 7/B/sub 4/Cu/sub 1/, an amorphous soft magnetic ribbon,” IEEE TRANSACTIONS ON MAGNETICS, VOL. 38, NO. 5, Sep. 2002, pp.3039-3044.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 盧鴻復、吳朝榮,2005,<台灣周邊海域水文及洋流特徵>《海洋技術季刊》第14卷4期,頁12-17。
2. 鄭漢文,2002,<蘭嶼雅美族海洋文化>《原住民教育季刊》,第28期,頁99-111。
3. 鄭志明,1988,<王爺傳說(上)>《民俗曲藝》52期,頁17-37。
4. 翁安雄,2000,<臺灣海洋信仰中的水仙王-以澎湖媽宮的水仙宮為例>《史匯》第4期,頁71-93。
5. 徐麗霞,2004,<林道乾傳說(中)>《中國語文》564期,頁101-114。
6. 徐麗霞,2004,<林道乾傳說(上)>《中國語文》563期,頁101-114。
7. 松浦章,1997,<清代的海上貿易與海盜>《史聯雜誌》30/31合期,頁89-96。
8. 林瑤棋,2002,<唐山過台灣的故事-台中圳堵張氏家族的移民史>《歷史月刊》172期,頁5-11。
9. 林瑤棋,1999,<唐山過台灣的故事-龍井林開榮家族的發展史>《歷史月刊》136期,頁10-16。
10. 李泰翰,2004,<清代台灣水仙尊王信仰之探討>《民俗曲藝》143期,頁271-303。
11. 吳密察,1988,<清代台灣的羅漢腳>《歷史月刊》第7期,頁66-69。
12. 王嵩山,2001,<超自然知識、儀式化與權力-阿里山鄒人的Tsou和Hitsu>《民俗曲藝》第130期<儀式、戲劇與民俗國際學術研討會論文集【三】>,頁251-278。
13. 簡榮聰,1997,<台灣「原始」傳說與海洋文化的關係(中)>《臺灣源流》第7期,頁92-102。
14. 簡榮聰,1997,<台灣「原始」傳說與海洋文化的關係(上)>《臺灣源流》第6期,頁81-93。
15. 戴寶村,2004,<台灣海洋史的新課題>《國史館館刊》36期,頁23-41。