跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/30 19:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱桂逸
研究生(外文):Kuei-Yi Chu
論文名稱:以最佳化射極突出部縮減表面複合現象
論文名稱(外文):Rdeuction of Surface Recombination Current by Optimized Ledge Technology
指導教授:鄭岫盈
指導教授(外文):Shiou-Ying Cheng
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:電子工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:70
外文關鍵詞:Heterojunctionemitter ledge
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,透過電腦模擬軟體之輔助探討表面複合電流的機制與找出最佳化之射極突出部之厚度的磷化銦鎵/砷化鎵異質接面雙極性電晶體之電特性。廣泛的分析位於射極突出部側壁至基極金屬電極層之裸露基極區域表面的表面通道現象。不適當的射極突出部厚度,將會在射極突出部側壁造成嚴重的表面複合。假如,射極突出部太厚,電流將會沿著未完全空乏的路徑,橫向擴散至未保護且裸露之基極表面區域,衍生非理想之大量表面複合電流。相對的,假如射極突出部太薄,將無法有效抑制表面複合電流。
因此,射極突出部的厚度是ㄧ個重要且必須加以考量的問題。從模擬的結果得知,適當的射極突出部厚度為100~200Å之元件,可展現出最良好的電晶體特性。
In this work, the influence of various emitter ledge thickness on the performances of InGaP/GaAs heterojunction bipolar transistors is investigated based on the simulation data. The undesired surface channel phenomenon at the exposed base surface between base contact and emitter ledge is comprehensively analyzed. Moreover, improper thickness of emitter ledge passivation would cause seious surface recombination at the edge of emitter ledge. If the emitter ledge is too thick, current will flow through the undepleted ledge, which increases the emitter-size effect. In contrast, if the emitter ledge is too thin, it may not effectively passivate the surface. Therefore, the thickness of emitter ledge is a critical and should be carefully considered. From simulated results, the optimum emitter ledge thickness of InGaP/GaAs heterojunction bipolar transistor is 100-200Å.
Abstract (Chinese)
Abstract (English)
Table Captions
Figure Captions

Chapter 1. Introduction ......................…..............................................................1

Chapter 2. Overview of the surface recombination mechanism
2.1. Background and Original ……...............................…….......................................4
2.2. Observation of surface recombination ……..…....……….....................................5

Chapter 3. Reduction of surface recombination by optimized ledge technology
3.1. Introduction …......................…...........................................................…….........9
3.2. Model and Device structure …....……..............….........................……...........10
3.3. Experimental results and discussion .…...........………………………………..12
3.4. Summary .................................…………....…………………………………18
Chapter 4. Conclusion and Prospect
4.1. Conclusion ………………..…………………….........………............…….........20
4.2. Future work …...…………….…………………....….......................……...........21

References
Tables
Figures
Publication List
References
[1]P. M. Asbeck, M. F. Chang, K. C. Wang, D. L. Miller, G. J. Sullivan, N. H. Sheng, E. A. Sovero, and J. A. Higgins, “Heterojunction bipolar transistors for microwave and millimeter-wave integrated circuits,” IEEE Trans. Electron Devices, Vol. 34, pp. 2571 -2579, 1987.
[2]M. E. Kim, A. K. Oki, G. M. Gorman, D. K. Umemoto, and J. B. Camou, “GaAs heterojunction bipolar transistor device-And IC technology for high-performance analog and microwave applications,” IEEE Trans. on Microwave Theory and Techniques, Vol. 37, pp. 1286 -1303, 1989.
[3]F. Ren, C. R. Abernathy, S. J. Pearton, J. R. Lothian, P. W. Wisk, T. R. Fullowan, Y. K. Chen, L. W. Yang, S. T. Fu, R. S. Brozovich, and H. H. Lin, “Self-aligned InGaP/GaAs heterojunction bipolar transistors for microwave power application,” IEEE Electron Device Lett., Vol. 14, pp. 332 –334,1993.
[4]W. Liu, S. K. Fan, T. Henderson, and D. Davito, “Microwave performance of a self-aligned GaInP/GaAs heterojunction bipolar transistor,” IEEE Electron Device Lett., Vol. 14, pp. 176-178, 1993.
[5]W. Schockley , "Circuit elements utilizing semiconductive material," U. S. Patent, N. 2569, p. 347, 1951.
[6]J. Xu and M. Shur, “A tunneling emitter bipolar transistor”, IEEE Electron Device Lett., Vol. 7, pp. 416-418, 1986.
[7]F. E. Najjar, D. C. Rasulescu, Y. K. Chen, G. W. Wicks, P. J. Tasker, and L. F. Easman, “DC characterization of the AlGaAs/GaAs tunneling emitter bipolar tranistor”, Appl. Phys Lett., Vol. 50, pp. 1915-1917, 1987.
[8]A. F. J Levi, R. N. Nottenburg, Y. K. Chen, and J. E. Cunningham, “AlAs/GaAs tunnel emitter bipolar transistor”, Appl. Phys. Lett., Vol. 54, pp. 2250-2252, 1989.
[9]W. S. Lour, “High-gain, low offset voltage, and zero potential spike by InGaP/GaAs δ-doped single heterojunction bipolar transistor (δ-SHBT)”, IEEE Trans. Electron Devices, Vol. 44, pp. 346-348, 1997.
[10]H. Kroemer, “Theory of wide-gap emitter for transistors”, Proc. IRE, Vol. 45, pp. 1535-1536, 1957.
[11]S. L. Delage, M. A. di Forte-Poisson, H. Blanck, C. Brylinski, E. Chartier, E. Chartier, and P. Collot, “First microwave characterization of LP-MOCVD grown GaInP/GaAs self-aligned HBT,” Electron. Lett., Vol. 27, p.253, 1991.
[12]U. Eriksson, P. Evaldsson, and K. Streubel, “Fabrication of a 1.55 VCSEL and an InGaAsP-InP HBT from a common epitaxial structure,” IEEE Photon. Technol. Lett., Vol. 11, p. 403, 1999.
[13]H. Wang, K. W. Chang, L. T. Tran, J. C. Cowles, T. R. Block, E.W. Lin, G.S. Dow, A. K. Oki, D. C. Streit, and B. R Allen, “Low phase noise millimeter wave frequency sources using InP-based HBT MMIC technology,” IEEE J. Solid State Circuits, Vol. 31, p. 1419, 1996.
[14]P. Freeman, Z. Xiangkun, I. Vurgaftman, J. Singh, and P. Bhattacharya, “Optical control of 14GHz MMIC oscillators based on InAlAs/InGaAs HBTs with monolithically integrated optical waveguides,” IEEE Trans. Electron Devices, Vol. 43, p. 373, 1996.
[15]N. Hayama, and K. Honjo, “Emitter size effect on current gain in fully self-aligned AlGaAs/GaAs HBT's with AlGaAs surface passivation layer,”IEEE Electron Device Lett., Vol. 11, p. 388, 1990.
[16]E. Yablonovitch, R. Bhat, C. E. Zah, T. J. Gmitte, and M. A. Koza, “Nearly ideal InP/In0.53Ga0.47As heterojunction regrowth on chemically prepared In0.53Ga0.47As surface,” Appl. Phys. Lett., Vol. 60, pp. 371-373, 1992.
[17]M. Borgarino, R. Plana, S. L. Delage, F. Fantini, and J. Graffefuil, “Influence of surface recombination on the burn-in effect in microwave GaInP/GaAs HBT’s,” IEEE Trans. Electron Devices., Vol. 46, pp.10-16, 1999.
[18]Y. F. Yang, C. C. Hsu, and E. S. Yang, “Surface recombination current in InGaP/GaAs heterostructure-emitter bipolar transistor,” IEEE Trans. Electron Devices., Vol. 41, pp. 643-647, 1994.
[19]S. S. Liu and C. C. Huang, “High-current-gain Ga0.51In0.49P/GaAs heterojunction bipolar transistor grown by gas-source molecular beam epitaxy,” IEEE Electron Device Lett., Vol. 13, pp. 214-216, 1992.
[20]W. Liu, E. Beam, T. Henderson, and S. K. Fan, “Extrinsic base surface passivation in GaInP/GaAs heterojunction bipolar transistors,” IEEE Electron Device Lett., Vol. 14, pp. 301-303, 1993.
[21]C. Liu and W. S. Lour, “An Improved heterostructure-emitter bipolar transistor (HEBT),” IEEE Electron Device Lett., Vol. 12, pp. 474-476, 1991.
[22]W. Liu, “Ideality factor of extrinsic base surface recombination current in AlGaAs/GaAs heterojunction bipolar transistors,” Electron Lett., Vol. 28, pp. 379-380, 1992.
[23]S. Tiwari, D. J. Fran, and S. L. Wright, “Surface recombination in GaAlAs/GaAs heterosturcture bipolar transistors,” J. Appl. Phys., Vol. 64, pp. 5009-5012, 1988.
[24]G. B. Gao, Z. F. Fan, N. Teraguchi, T. C. Shen, and H. Morkoc, “AlxGa1-xAs/AlyGa1-yAs and GaAs pseudo-heterojunction bipolar transistor with lateral emitter resistor,” Appl. Phys. Lett., Vol. 62, pp. 994-996, 1993.
[25]W. Liu, “Extrinsic base surface recombination current in GaInP/GaAs heterojunction bipolar transistors with near-unity ideally factor,” Jpn. J. Appl. Phys., Vol. 32, pp. L713-L715, 1993.
[26]Y. S. Lin, Y. H. Wu, J. S. Su, W. C. Hsu, S. D. Ho, and W. Lin, “An improved In0.5Ga0.5P/GaAs double heterostructure-emitter bipolar transistor using emitter edge-thinning technique,” Jpn. J. Appl. Phys., Vol. 36, pp. 2007-2009, 1997.
[27]W. S. Lour, and J. L. Hseh, “Effects of passivation-layer thickness and current gain enhancement of InGaP/GaAs δ-doped single heterojunction bipolar transistors using an InGaP passivation layer,” Semicond. Sci. Technol., Vol. 13, pp. 847-851, 1998.
[28]T. Henderson, “Modeling gallium arsenide heterojunction bipolar transistor ledge variations for insight into device reliability,” Microelectron. Reliab., Vol. 42, pp. 1011-1020, 2002.
[29]C. E. Huang, C. P. Lee, H. C. Liang, and R. T. Huang, “Critical spacing between emitter and base in InGaP heterojunction bipolar transistors (HBTs),” IEEE Electron Device Lett., Vol. 23, pp. 576-578, 2002.
[30]W. C. Liu, S. Y. Cheng, J. H. Tsai, P. H. Lin, J. Y. Chen, and W. C. Wang, “InGaP/GaAs superlattice-emitter resonant tunneling bipolar transistor (SE-RTBT),” IEEE Electron Devcie Lett., Vol. 18, pp. 515-517, 1997.
[31]S. Y. Cheng, H. J. Pan, Y. H. Shie, J. Y. Chen, W. L. Chang, W. C. Wang, P. H. Lin, and W. C. Liu, “Influence of δ-Doping Sheet and Setback Layer on the Performance of InGaP/GaAs Heterojunction Bipolar Transistor,” Semicond. Sci. Technol., Vol. 13, pp. 1187-1192, 1998.
[32]W. C. Liu, J. H. Tsai, W. S. Lour, L. W. Laih, S. Y. Cheng, K. B. Thei, and C. Z. Wu, “Novel InGaP/GaAs S-Shaped negative-differential-resistance (NDR) switch for multiple-valued logic applications,” IEEE Trans. Electron Devices, Vol. 44, pp. 520-525, 1997.
[33]J. Y. Chen, S. Y. Cheng, W. L. Chang, and W. C. Liu, “-doping InGaP/GaAs heterojunction bipolar transistor,” Mat. Chem. Phys., Vol. 53, pp. 88-91, 1998.
[34]W. C. Wang, S. Y. Cheng, W. L. Chang, H. J. Pan, Y. H. Shie and W. C. Liu, “Investigation of InGaP/GaAs double delta-doped heterojunction bipolar transistor (D3HBT),” Semicond. Sci. Technol., Vol. 13, pp. 630-633, 1998.
[35]S. Y. Cheng, W. L. Chang, H. J. Pan, Y. H. Shie, and W. C. Liu, “Design Consideration of Emitter-Base Junction Structure for InGaP/GaAs Heterojunction Bipolar Transistors”, Solid-State Electron., Vol. 43, pp. 297-304, 1999.
[36]S. Y. Cheng, W. C. Wang, W. L. Chang, J. Y. Chen, H. J. Pan, and W. C. Liu, “A New InGaP/GaAs Double Delta-Doped Heterojunction Bipolar Transistor (D3HBT)”, Thin solid films, Vol. 345, pp. 270-272, 1999.
[37]S. Y. Cheng, W. C. Liu, W. L. Chang, W. C. Wang, H. J. Pan, J. Y. Chen, and K. B. Thei, “Application of InGaP “Insulator” for High-Breakdown and Low-Offset Voltage Heterojunction Bipolar Transistor”, Jpn. J. Appl. Phys., Vol. 39, Suppl. 39-1, pp. 359-360, 2000.
[38]S. Y. Cheng, C. Y. Chen, J. Y. Chen, H. M. Chuang, C. H. Yen, and W. C. Liu, “Comprehensive study of InGaP/ AlXGa1-XAs /GaAs composite-emitter heterojunction bipolar transistors (CEHBTs) with different thickness of AlXGa1-XAs graded layers,” J. Vac. Sci. & Technol., Vol. B22, pp. 1699-1704, 2004.
[39]S. Y. Cheng, C. Y. Chen, J. Y. Chen, W. C. Liu, W. L. Chang, and M. H. Chiang, “Comprehensive studies of InGaP/GaAs heterojunction bipolar transistors with different thickness of setback layers,” Superlattice and Microstructures, Vol. 37, pp. 171-183, 2005.
[40]S. Y. Cheng, S. I Fu, K. Y. Chu, P. H. Lai, L. Y. Chen, W. C. Liu, and M. H. Chiang, “Improved DC and microwave performance of heterojunction bipolar transistors by full sulfur passivation,” J. Vac. Sci. & Technol., Vol. B24, pp. 669-674, 2006.
[41]S. Y. Cheng, W. C. Liu, W. L. Chang, W. C. Wang, H. J. Pan, J. Y. Chen, and K. B. Thei, “Application of InGaP “Insulator” for high-breakdown and low-offset voltage heterojunction bipolar transistor,” Jpn. J. Appl. Phys., Vol. 39, Suppl. 39-1, pp. 359-360, 2000.
[42]Y. H. Wu, J. S. Su, W. C. Hsu, W. Lin, and W. C. Liu, “Electrical characteristic of a lattice-matched In0.53Al0.22Ga0.25As/InP heterojunction bipolar transistor with zero potential spike at emitter-base heterojunction,” Solid-State Electron., Vol. 38, pp. 1755-1757, 1995.
[43]J. H. Tsai, S. Y. Cheng, L. W. Laih, and W. C. Liu, “AlGaAs/InGaAs/GaAs heterostructure-emitter and heterostructure-base transistor (HEHBT),” IEE Electron. Lett., Vol. 32, pp. 1720-1721, 1996.
[44]B. J. Skromme, C. J. Sandroff, E. Tablonovitch, and T. Gmitter, “Effects of passivation ionic films on the photoluminescence properties of GaAs,” Appl. Phys. Lett., Vol. 51, pp. 2022-2024, 1987.
[45]R. Driad, Z. H. Liu, S. Chartonneau, W. R. Mckinnon, S. Laframboise, P. J. Poole, and S. P. McAlister, “Passivation of InGaAs surface and InGaAs-InP heterojunction bipolar transistors by sulfur treatment,” Appl. Phys. Lett., Vol. 73, pp. 665-667, 1998.
[46]C. Y. Chen, S. I Fu, S. Y. Cheng, C. Y. Chang, C. H. Tsai, C. H. Yen, S. F. Tsai, R. C. Liu, and W. C. Liu, “Influences of surface sulfur treatments on the temperature-dependent characteristics of HBTs,” IEEE Trans. Electron Devices, Vol. 51, pp. 1963-1971, 2004.
[47]S. Y. Cheng, S. I Fu, K. Y. Chu, P. H. Lai, L. Y. Chen, W. C. Liu, and M. H. Chiang, “Improved DC and microwave performance of heterojunction bipolar transistors by full sulfur passivation,” J. Vac. Sci. & Technol. B, Vol. 24, pp. 669-674, 2006.
[48]S. Y. Cheng, K. Y. Chu, L. Y. Chen, L. A. Chen, and C. Y. Chen, “Two-dimensional analysis for emitter ledge thickness of InGaP/GaAs heterojunction bipolar transistors,” Appl. Phys. Lett., Vol. 90, pp. 043510, 2007.
[49]S. I Fu, S. Y. Cheng, T. P. Chen, P. H. Lai, C. W. Hung, K. Y. Chu, L. Y. Chen, and W. C. Liu, “Further suppression of surface-recombination of an InGaP/GaAs HBT by conformal passivation,” IEEE Trans. Electron Devices, Vol. 53, pp. 2901-2907, 2006.
[50]Y. S. Hiraoka, J. Yoshida, and M. Azuma, “Two-dimensional analysis of emitter-size effect on current gain for GaAlAs/GaAs HBTs,” IEEE Trans. Electron Devices, Vol. 34, pp. 721-725, 1987.
[51]Z. Jin, S. Neumann, W. Prost, and F. J. Tegude, “Surface recombination Mechansim in Graded-base InGaAs-InP HBTs,” IEEE Trans. Electron Devices, Vol. 51, pp. 1044-1045, 2004.
[52]C. H. Henry, R. A. Logan, and F. R. Merritt, “The effect of surface recombination on current in AlxGa1-xAs heterojunction,” J. Appl. Phys., Vol. 49, pp. 3530-3542, 1978.
[53]T. J. de Lyon, H. C. Casey Jr, P. M. Enquist, J. A. Hutchby, and A. J. SpringThorpe, “Surface recombination current and emitter compositional grading in npn and pnp GaAs-AlxGa1-xAs heterojunction bipolar transistors,” Appl. Phys. Lett., Vol. 54, pp. 641-643, 1989.
[54]E. Yablonovitch, R. Bhat, C. E. Zah, T. J. Gmitter, and M. A. Koza, “Nearly ideal InP-In0.53Ga0.47As heterojunction regrowth on chemically prepared In0.53Ga0.47As surfaces,” Appl. Phys. Lett., Vol. 60, pp. 371-373, 1992.
[55]S. W. Tan, H. R. Chen, M. Y. Chu, W. T. Chen, A. H. Lin, M. K. Hsu, T. S. Lin, R. C. Liu, and W. S. Lour, “Comparisons between InGaP/GaAs heterojunction bipolar transistors with a sulfur- and an InGaP-passivated base surface,” Superlattices Microstructures, Vol. 37, pp. 401, 2005.
[56]H. Oigawa, J. F. Fan, Y. Nannichi, H. Sugahara, and M. Oshima, “Universal Passivation Effect of (NH4)2Sx Treatment on the Surface of III-V Compound Semiconductors,” Jpn. J. Appl. Phys., Vol. 30, pp. L322, 1991.
[57]K. Kurishima, S. Yamahata, H. NaKajima, H. Ito, and N. Watanabe, “Initial degradation of base-emitter junction in carbon-doped InP/InGaAs HBTs under bias and temperature stress,” IEEE Electron Device Lett., Vol. 19, pp. 303-305, 1998.
[58]M. Sugiyama, S. Maeyama, Y. Watanabe, S. Tsukamoto, and N. Koguchi, “Ga–S–Ga bridge-bond formation on in-situ S-treated GaAs(001) surface observed by synchrotron radiation photoemission spectroscopy, X-ray absorption near edge structure, and X-ray standing waves,” Appl. Surf. Sci., Vol. 130, pp. 436-440, 1998.
[59]K. Ikossi-Anastasiou, A. Ezis, K. R. Evans, and C. E. Stutz, “Low-temperature characterization of high-current-gain graded-emitter AlGaAs/GaAs narrow-base heterojunction bipolar transistor,” IEEE Electron Device Lett., Vol. 13, pp. 414-417, 1992.
[60]S. I Fu, S. Y. Cheng, and W. C. Liu, “Characteristics of InGaP/GaAs heterojunction bipolar transistors (HBTs) with sulfur treatments,” Superlattices Microstruct, Vol. 39, pp. 436-445, 2006.
[61]W. Liu, and S. K. Fan, “Near-ideal I-V Characteristics of GaInP/GaAs heterojunction bipolar transistors,” IEEE Electron Device Lett., Vol. 13, pp. 510-512, 1992.
[62]W. S. Lee, D. Ueda, T. Ma, Y. C. Pao, and J. S. Harris, Jr., “Effect of emitter-base spacing on the current gain of AlGaAs/GaAS heterojunction bipolar transistors,” IEEE Electron Device Lett., Vol. 10, pp. 200-202, 1989.
[63]H. H. Lin, and S. C. Lee, “Super-gain AlGaAs/GaAs heterojunction bipolar transistor using an emitter edge-thinning design,” Appl. Phys. Lett., Vol. 47, pp. 839-841, 1985.
[64]O. Nakajima, Ik. Nagata, H. Ito, T. Ishibashi, and T. Sugeta, “Emitter-base junction size effect on current gain Hfe of AlGaAs/GaAs heterojunction bipolar transistors grown on GaAs and Si substrates,” Appl. Phys. Lett., Vol. 59, pp. 691-693, 1991.
[65]S. Tiwari, and D. J. Frank, “Analysis of the operation of GaAlAs/GaAs HBTs,” IEEE Trans. Electron Devices, Vol. 36, pp. 2105-2121, 1989.
[66]S. Y. Cheng, “Comprehensive study of an InGaP/AlGaAs/GaAs heterojunction bipolar transistor (HBT) with a continuous conduction-band structure,” Solid State Electron., Vol. 17, pp. 701-707, 2002.
[67]S. Y. Cheng, “Analysis of improved dc and ac performances of an InGaP/GaAs heterojunction bipolar transistor with a graded AlxGa1-xAs layer at emitter/base heterojunction,” Solid State Electron., Vol. 48, pp. 1087-1094, 2004.
[68]ATLAS, 2-D semiconductor device simulator, version 5.2.0.R. SILVACO Int., Santa Clara, CA, USA, 2000.
[69]ATLAS II Users Manual, Silvaco International, Santa Clara, CA, USA, 2000.
[70]E. Nebauer, M. Mai, J. Wurfl, and W. Osterle, “Au/Pt/Ti/Pt base contacts to n-InGaP/p+-GaAs for self-passivating HBT ledge structures,” Semicond. Sci. Technol., Vol. 15, pp. 818-822, 2000.
[71]N. G. M. Tao, H. Liu, and C. R. Bolognesi, “Surface recombination currents in "Type-II" NpN InP-GaAsSb-InP self-aligned DHBTs,” IEEE Trans. Electron Devices., Vol. 52, pp. 1061, 2005.
[72]E. Alekseev, and D. Pavlidis, “DC and high frequency performance of AlGaN/GaN Heterojunction bipolar transistors,” Solid-State Electronics, Vol. 44, pp. 245-252, 2000.
[73]N. Chand, and H. Morkoc, “Doping effects and compositional grading in AlxGa1-xAs/GaAs heterojunction bipolar transistors,” IEEE Trans. Electron Devices, Vol. 32, pp. 1064-1069, 1985
[74]J. J Liou, C. S. Ho, L. L. Liou, and C. I. Huang, “An analytical model for current transistor in AlGaAs/GaAs abrupt HBTs with a setback layer,” Solid State Electron, Vol. 36, pp. 819-825, 1993.
[75]Y. F. Yang, C. C. Hsu, E. S. Yang, and Y. K. Chen, “Comparison of GaInP/GaAs heterostructure-emitter bipolar transistors and heterojunction bipolar transistors,” IEEE Trans. Electron Devices, Vol. 42, pp. 1210-1215, 1995.
[76]Schumacher, L. G. Shantherama, J. R. Hayes, R. Bhat, R. Esagui, and M. Koza, “High-speed self-aligned InP/InGaAs double heterojunction bipolar transistor with high current driving capability,” IEE Electronics Lett., Vol. 24, pp. 1293-1294, 1998.
[77]M. Hafizi, D. C. Streit, L. T. Tran, K. W. Kobayashi, D. K. Umemodo, A. K. Oki, and S. K. Wang, “Experimental study of AlGaAs/GaAs HBT device design for power application,” IEEE Electron Device Lett., Vol.12, No.11, pp.581-583, 1991.
[78]T. Fresina, D. A. Ahmari, P. J. Maries, Q. J. Hartmann, M. Feng, and G. E. Stillman, “High-speed, low noise InGaP/GaAs heterojunction bipolar transistors,” IEEE Electron Device Lett., Vol.16, No.12, pp.540-541, 1995.
[79]F. Li, G. Post, Y. Nissim, a. Falcou, C. Courbet, S. Sanchez, and A. Scavennec, “A backside via holes etching technology for indium phosphide MMIC's,” International conference on Microwave and Millimeter wave technology proceedings, pp.64-67, 2000.
[80]W. C. Liu, W. S. Lour, and D. F. Guo, “AlGaAs/GaAs double heterostructure-emitter bipolar transistor (DHEBT),” IEEE Trans. Electron Devices ., Vol. 39, pp. 2740-2744, 1992.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 羅大涵(民79)。我國技術及職業教育推展建教合作的回顧與檢討。技術學刊,5(4),321-330。
2. 蕭錫錡(民83)。我國工業教育建教合作教育之探討。教育資料集刊,19,161-177。
3. 林聰明(民86)。勞動市場變遷下之職業訓練政策。台北:主計月報,84(6),頁54-62。
4. 楊震寰 (民80)。人力資源規劃觀念及實務,人力資源經理雜誌創刊號,11。
5. 楊朝祥(民75)。建教合作要素與實施方法。工業職業教育雙月刊,4(10),頁21-25。
6. 楊啟航(民84)。談技術學院的師資應如何與企業界配合。技術及職業教育雙月刊,30,33-35。
7. 陳聰勝(民76)。學徒訓練的概念與探討(上)。就業與訓練,頁9。
8. 張國照(民83)。一個參加建教合作的過來人對國內建教合作的看法。技術及職業教育雙月刊,21,25-27。
9. 高玉芬、何志峰(民85)。由策略聯盟剖析建教合作。技術及職業教育雙月刊,35,51-54。
10. 黃惇勝(民91)。失業率攀升下職業訓練之角色與任務─建構完整職業生涯訓練體制以強化就業安全。主計月刊,552,頁58-65。
11. 徐聯恩,劉彥伯 (民85)。專業組織激勵制度之研究,管理科學學報,13(1),131-151。
12. 林騰蛟(民87)。技職系統第二教育國道政策的建構與實施,技術及職業教育雙月刊,45,7-11。
13. 田振榮(民91)。從就業問題看青年職業訓練走向。國家政策論壇,第2卷第4期。
14. 王信智(民87)。澳洲技職教育制度的啟示,技術及職業教育,第47期,頁26-25。