跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/04 01:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳利洋
研究生(外文):Li-Yang Chen
論文名稱:具新型歐姆掘入結構之砷化銦鋁/砷化銦鎵變晶式高電子移動率電晶體元件
論文名稱(外文):An Improved InAlAs/InGaAs Metamorphic High Electron Mobility Transistors(MHEMT) with Non-Annealed Ohmic-Recess Structure
指導教授:鄭岫盈
指導教授(外文):Shiou-Ying Cheng
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:電子工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:80
中文關鍵詞:高電子移動率電晶體歐姆掘入變晶式
外文關鍵詞:HEMT、Ohmic-Recess、Metamorphic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:119
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們利用分子束磊晶法成長及研製砷化銦鋁/砷化銦鎵變晶式高電子移動率場效電晶體。由於砷化銦鎵通道層具有較窄的能隙,因此可獲得較佳的載子傳輸速率並改善元件的轉導特性。然而,變晶性高電子移動率場效電晶體存在較高的寄生源極及汲極電阻,而導致在接近通道處有較高的接觸電阻及薄膜電阻,影響元件的特性。
我們將探討具新型歐姆掘入結構之變晶性高電子移動率電晶體,利用一種歐姆掘入的技術去減少熱退火後元件的寄生電阻,實驗結果顯示,具歐姆掘入技術的變晶性高電子移動率場效電晶體明顯改善了元件的電流驅動能力、線性度。
我們所研製具新型歐姆掘入技術之變晶性高電子移動率電晶體,該元件之特色包括:(1)使用大能隙之砷化銦鋁可獲得較佳之蕭特基特性;(2)在砷化銦鋁與砷化銦鎵接面處,因存在著非常大的導帶不連續,因此元件具有較高的電流密度及較佳之載子侷限力;(3)利用歐姆掘入的技術去減少熱退火後元件的寄生電阻;(4)在無應力的材料中,電子有較快的移動速率;(5)大能隙的砷化銦鋁材料使得元件能夠操作在較大的汲極偏壓,且能夠減少衝擊游離的影響;(6)改善製程,沒有退火的歐姆掘入技術不但可以提供一個非常低的接觸電阻並且可以使製程簡單化,而且提供乾淨且清楚的歐姆邊緣並且有一個很好的歐姆接觸的形態;另外因為使用變晶性高電子移動率電晶體結構,元件會具有較高之電子遷移率、較大的電流驅動力及較優良之高頻響應。根據以上所述優點,本論文所研製的元件不但在室溫及高溫情況下可以得到良好的場效電晶體特性,相信更可進一步應用於未來高頻微波通訊電路中。
In this thesis, the In0.5Al0.5As/In0.5Ga0.5As metamorphic high electron mobility transistors (MHEMTs), grown by molecular beam epitaxy (MBE) system, have been fabricated and investigated. Due to the narrow gap property of the In0.5Ga0.5As channel layer, better carrier transport characteristics have been obtained to improve the transconductance characteristics of the studied device. Nevertheless, the performance of GaAs based InAlAs/InGaAs high electron mobility transistors (HEMTs) is often limited by large parasitic source and drain resistances, caused by undoped Schottky layer and high contact and sheet resistances in the access regions. These problematic effects result in the device performance in terms of extrinsic transconductance and parasitic resistance.
We have investigated the delta-doped MHEMT with non-annealed and ohmic-recess structure. The proposed ohmic recess process reduces the parasitic ohmic alloyed resistance caused by the undoped Schottky layer and therefore improves the device performance in terms of extrinsic transconductance and parasitic resistance. For the experimental results, the device of the -doped MHEMT with non-annealed and ohmic-recess technology improved device current driving capability, and linearity.
In addition, the device also presents several advantages: (1) the high bandgap of InAlAs has better Schottky barrier quality, (2) the high conduction band discontinuity leads to high sheet carrier density and good electron confinement, (3) employed a new ohmic-recess technology to reduce parasitic resistance of the studied device (4) unstrained material is better to produce high electron velocity, (5) the high InAlAs bandgap allows higher drain voltage operation and reduces impact ionization, (6)improved process, the non-annealed ohmic contact technology not only provides very low contact resistance and simplification of device fabrication but also offers clean and sharply defined ohmic edges and good ohmic surface morphology. According to above of the advantage, the studied device provides the good characteristic for room temperature and high temperature. Furthermore, it is believe that can further apply to the high frequency microwave communication circuit.
Contents

Abstract

Figure Captions

Chapter 1. Introduction ……………………………………………………... 1
1-1. Thesis Organizations ………………………………………………... 2

Chapter 2. Overview of InAlAs/InGaAs Metamorphic High Electron Mobility Transistor
2-1. Introduction …………………………………………………………. 4
2-2. Development of HEMT Structure ……………………………………. 5
2-3. Reliability and Failure Modes ………………...……………………. 8
2-3-1. Degradation mechanisms …………………………………..……… 11
2-4. Summary ……………………………………………………………. 13

Chapter 3. An improved InAlAs/InGaAs Metamorphic High Electron Mobility Transistor with Non-Annealed Ohmic-Recess Structure
3-1. Introduction …………………………………………………………. 15
3-2. Device Fabrication ………………………………………………….. 16
3-3. Experimental Results and Discussion ………………………………. 17
3-3-1. DC Performances …………………………………………………… 17
3-3-2. Accelerated lifetime test procedure ……...…………………………. 25
3-4. Summary ……………………………………………………………. 28

Chapter 4. Conclusion and Prospect
4-1. Conclusion …………………………………………………………. 29
4-2. Prospect …………………………………………………………….. 30

References ………………………………………………………………………… 32

Figures

Publication List
[1]W. Schockley , "Circuit elements utilizing semiconductive material," U. S. Patent, N. 2569, p. 347, 1951.
[2]S. Brodjo, T. J. Riley, and G. T. Wright, “The heterojunction transistor and the space charge limited triode,” B.J. Appl. Phys. vol. 16, p.133, 1965.
[3]W. P. Dumke, J. M. Woodall, and V. L. Rideout, “GaAs-AlGaAs heterojunction transistor for high frequency operation,” Solid-State Electron., vol. 15, pp.1339-1343, 1972.
[4]H. Kroemer, "Heterostructure bipolar transistors and integrated circuits," IEEE Proc., vol. 70, pp. 13-25, 1982.
[5]R. E. Thoren, S. L. Su, R. J. Fischer, W. F. Kopp, W. G. Lyons, P. A. Miller, and H. Morkos, “Analysis of camel gate FET’s,” IEEE Trans. Electron Devices, vol. 30, pp. 212-216, 1983.
[6]P. M. Asbeck, M. F. Chang, K. C. Wang, D. L. Miller, G. J. Sullivan, N. H. Sheng, E. A. Sovero, and J. A. Higgins, “Heterojunction bipolar transistors for microwave and millimeter-wave integrated circuits,” IEEE Trans. Electron Devices, vol. 34, pp. 2571 -2579, 1987.
[7]H. Mizuta, K. Yamaguchi, M. Yamane, T. Tanoue, and S. Takahashi, “Two-dimensional numerical simulation of Fermi-level pinning phenomena due to DX centers in AlGaAs/GaAs HEMTs,” IEEE Trans. Electron Devices, vol. 36, pp. 2307-2314, 1989.
[8]W. Liu, S. K. Fan, T. Henderson, and D. Davito, “Microwave performance of a self-aligned GaInP/GaAs heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 14, pp. 176-178, 1993.
[9]F. Ren, C. R. Abernathy, S. J. Pearton, J. R. Lothian, P. W. Wisk, T. R. Fullowan, Y. K. Chen, L. W. Yang, S. T. Fu, R. S. Brozovich, and H. H. Lin, “Self-aligned InGaP/GaAs heterojunction bipolar transistors for microwave power application,” IEEE Electron Device Lett. vol. 14, pp. 332 –334, 1993.
[10]W. S. Lour, W. C. Liu, J. H. Tsai, and L. W. Laih, “High-performance camel-gate field-effect transistor using high-medium-low doped structure,” Appl. Phys. Lett., vol. 67, pp. 2636-2638, 1995.
[11]W. S. Lour, J. H. Tsai, L. W. Laih, and W. C. Liu, “Influence of channel doping-profile on camel-gate field-effect transistors,” IEEE Trans. Electron Devices, vol. 43, pp. 871-876, 1996.
[12]W. S. Lour, W. L. Chang, S. T. Young, and W. C. Liu, “Improved breakdown in LP-MOCVD grown n+-GaAs/(p+)-InGaP/n-GaAs heterojunction camel-gate FET,” IEE Electron. Lett., vol. 34, pp. 814-815, 1998.
[13]W. L. Chang, S. Y. Cheng, Y. H. Shie, H. J. Pan, W. S. Lour, and W. C. Liu, “On the n+-GaAs/(p+)-InGaP/n-GaAs high breakdown voltage field-effect transistor,” Semicond. Sci. Technol., vol. 14, pp. 307-311, 1999.
[14]W. C. Liu, K. H. Yu, K. W. Lin, J. H. Tsai, C. Z. Wu, K. P. Lin, and C. H. Yen, “On the InGaP/GaAs/InGaAs camel-like FET for high-breakdown, low-leakage, and high-temperature operations,” IEEE Trans. Electron Devices, vol. 48, pp. 1522-1530, 2001.
[15]W. C. Liu, W. L. Chang, W. S. Lour, K. H. Yu, K. W. Lin, C. C. Cheng, and S. Y. Cheng, “Temperature-dependence investigation of a high-performance inverted delta-doped V-shaped GaInP/InxGa1-xAs/GaAs pseudomorphic high electron mobility transistor,” IEEE Trans. Electron Devices, vol. 48, pp. 1290-1296, 2001.
[16]W. C. Liu, K. H. Yu, R. C. Liu, K. W. Lin, K. P. Lin, C. H. Yen, C. C. Cheng, and K. B. Thei, “Investigation of temperature-dependent characteristics of an n+-InGaAs/n-GaAs composite doped channel HFET,” IEEE Trans. Electron Devices, vol. 48, pp. 2677-2683, 2001.
[17]K. H. Yu, K. W. Lin, C. C. Cheng, W. L. Chang, J. H. Tsai, S. Y. Cheng, and W. C. Liu, “Temperature dependence of gate current and breakdown behaviors in an n+-GaAs/p+-InGaP/n--GaAs high-barrier gate Field-Effect transistor,” Jpn. J. Appl. Phys., vol. 40, pp. 24-27, 2001.
[18]K. H. Yu, H. M. Chuang, K. W. Lin, S. Y. Cheng, C. C. Cheng, J. Y. Chen, and W. C. Liu, “Improved temperature-dependent performances of a novel InGaP-InGaAs-GaAs double channel pseudomorphic high electron mobility transistor (DC-PHEMT),” IEEE Trans. Electron Devices, vol. 49, pp. 1687-1693, 2002.
[19]C. Y. Chen, S. Y. Cheng, W. H. Chiou, H. M. Chuang, and W. C. Liu, “A novel InP/InGaAs TEBT for ultralow current operations” IEEE Electron Device Lett., vol. 24, pp. 126-128, 2003.
[20]C. Y. Chen, S. Y. Cheng, W. H. Chiou, H. M. Chuang, R. C. Liu, C. H. Yen, J. Y. Chen, C. C. Cheng, and W. C. Liu, “DC characterization of an InP-InGaAs tunneling emitter bipolar transistor (TEBT)” IEEE Trans. Electron Devices, vol. 50, pp. 874-879, 2003.
[21]H. M. Chuang, S. Y. Cheng; X. D. Liao; C. Y. Chen; and W. C. Liu, “InGaP/InGaAs double delta-doped channel transistor,” IEE Electron. Lett., vol. 39, pp. 1016-1018, 2003.
[22]H. M. Chuang, S. Y. Cheng, C. Y. Chen, X. D. Liao, R. C. Liu, and W. C. Liu, “Investigation of a new InGaP/InGaAs pseudomorphic double doped-channel heterostructure field-effect transistor (PDDCHFET),” IEEE Trans. Electron Devices, vol. 50, pp. 1717-1723, 2003.
[23]H. M. Chuang, C. K. Wang, K. W. Lin, W. H. Chiou, C. Y. Chen, and W. C. Liu, “Comparative study on DC characteristics of In0.49Ga0.51P-channel heterostructure field-effect transistors with different gate metals,” Semicond. Sci. Technol., vol. 18, pp. 319-324, 2003.
[24]D. F. Guo, J. Y. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A double-barrier-emitter triangular-barrier optoelectronic switch,” IEEE J. Quantum Electron., vol. 40, pp. 413-419, 2004.
[25]D. F. Guo, J. Y. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “Characteristics of a new BBOS with an AlGaAs-(n+)-GaAs-InAlGaP collector structure,” IEEE Trans. Electron Devices, vol. 51, pp. 542-547, 2004.
[26]S. Y. Cheng, J. Y. Chen, C. Y. Chen, H. M. Chuang, C. H. Yen, K. M. Lee, and W. C. Liu, “Comprehensive study of InGaP/AlxGa1-xAs/GaAs heterojunction bipolar transistors with different doping concentrations of AlxGa1-xAs graded layers,” Semicond. Sci. Technol., vol. 19, pp. 351-358, 2004.
[27]H. M. Chuang, S. Y. Cheng, C. Y. Chen, X. D. Liao, P. H. Lai, C. I. Kao, and W. C. Liu, “Study of InGaP/InGaAs double delta-doped Channel heterostructure field-effect transistors (DDDCHFETs),” J. Vac. Sci. & Technol. B, vol. 22, pp. 832-837, 2004.
[28]H. M. Chuang, S. Y. Cheng, P. H. Lai, X. D. Liao, C. Y. Chen, C. H. Yen, R. C. Liu, and W. C. Liu, “Study of InGaP/InGaAs double doped channel heterostructure field-effect transistors (DDCHFETs),” Semicond. Sci. Technol., vol. 19, pp. 87-92, 2004.
[29]W. C. Liu, W. L. Chang, W. S. Lour, S. Y. Cheng, Y. H. Shie, J. Y. Chen, W. C. Wang, and H. J. Pan, “Temperature-dependent investigation of a high-breakdown voltage and low-leakage current Ga0.51In0.49P/In0.15Ga0.85As pseudomorphic HEMT,” IEEE Electron Device Lett., vol. 20, pp. 274-276, 1999.
[30]W. L. Chang, H. J. Pan, W. C. Wang, K. B. Thei, W. S. Lour, and W. C. Liu, “Influences of the mesa-sidewall effect on Ga0.51In0.49P/In0.15Ga0.85As pseudomorphic transistors,” Semicond. Sci. Technol., vol. 14, pp. 887-891, 1999.
[31]W. L. Chang, H. J. Pan, W. C. Wang, K. B. Thei, S. Y. Cheng, W. S. Lour, and W. C. Liu, “Temperature-dependent characteristics of the inverted delta-doped V-shaped InGaP/InxGa1-xAs/GaAs pseudomorphic transistors,” Jpn. J. Appl. Phys., vol. 38, pp. L1385-1387, 1999.
[32]W. L. Chang, H. J. Pan, W. C. Wang, K. B. Thei, K. H. Yu, K. W. Lin, C. C. Cheng, W. S. Lour, and W. C. Liu, “High-performance double delta-doped sheets Ga0.51In0.49P/In0.15Ga0.85As/Ga0.51In0.49P pseudomorphic heterostructure transistors,” Semicond. Sci. Technol., vol. 15, pp. 1-6, 2000.
[33]K. P. Lin, C. H. Yen, W. L. Chang, K. H. Yu, K. W. Lin, and W. C. Liu, “Study of a high-barrier-gate pseudomorphic transistor with a step-compositioned channel and bottomside delta-doped sheet structure,” Semicond. Sci. Technol., vol. 15, pp. 643-647, 2000.
[34]K. W. Lin, K. H. Yu, W. L. Chang, C. C. Cheng, K. P. Lin, C. H. Yen, W. S. Lour, and W. C. Liu, “Characteristics and comparison of In0.49Ga0.51P/GaAs single and double delta-doped pseudomorphic high electron mobility transistors (-PHEMT’s),” Solid-State Electron., vol. 45, pp. 309-314, 2001.
[35]H. C. Duran, L. Ren, M. Beck, M.A. Py, M. Begems, and W. Bachtold, “Low-frequency noise properties of selectively dry etched InP HEMT's,” IEEE Trans. Electron Devices, vol. 45, pp. 1219-1225, 1998.
[36]R. Grundbacher, R. Lai, M. Nishimoto, T.P. Chin, Y.C. Chen, M. Barsky, T. Block, D. Streit, “Pseudomorphic InP HEMTs with dry-etched source vias having 190 mW output power and 40% PAE at V-band,” IEEE Electron Device Lett., vol. 20, pp. 517-519, 1999.
[37]P. M. Smith, K. Nichols, W. Kong, L. MtPleasant, D. Pritchards, R. Lender, J. Fisher, R. Actis, D. Dugas, D. Meharry, A.W. Swanson, “Advances in InP HEMT technology for high frequency applications,” Indium Phosphide and Related Materials, 2001, pp. 9 – 14.
[38]C. Meliani, G. Post, G. Rondeau, J. Decobert, W. Mouzannar, E. Dutisseuil, and R. Lefevre, “DC-92 GHz ultra-broadband high gain InP HEMT amplifier with 410 GHz gain-bandwidth product,” IEE Electron. Lett., vol. 38, pp. 1175 – 1177, 2002.
[39]L. D. Nguyen, A. S. Brown, M. A. Thompson, and L. M. Jelloian, “50-nm self-aligned-gate pseudomorphic AlInAs/GaInAs high electron mobility transistors,” IEEE Trans. Electron Devices, vol. 39, pp.2007-2014, 1992.
[40]D. W. Tu, S. W. Duncan, A. Eskandarian, B. Golja, B. C. Kane, S. P. Svensson, S. Weinreb, and N. E. Byer, “High gain monolithic W-band low noise amplifiers based on pseudomorphic high electron mobility transistors,” IEEE Trans. Microwave Theory and Tech., vol. 42, pp.2590-2597, 1994.
[41]H. M. Shieh, W. C. Hsu, T. T. Hsu, C. L. Wu, and T. S. Wu, “A high-performance δ-doped GaAs/InxGa1-xAs pseudomorphic high electron mobility transistor utilizing a graded InxGa1-xAs channel,” IEEE Electron Device Lett., vol.14, pp.581-583, 1993.
[42]T. Suzuki, Y. Nakasha, T. Sakoda, K. Sawada, T. Takahashi, K. Makiyama, T. Hirose, and M. Takigawa, “A 100-Gbit/s 2:1 multiplexer in InP HEMT technology,” IEEE MTT Symp., 2003, pp.1173-1176.
[43]P. Roux, Y. Baeyens, V. Houtsma, A. Leven, J. Weiner, A. Benz, and Y. K. Chen., “Single-Ended to differential MHEMT transimpedance amplifier with 66 dB-Ω differential transimpedance and 50GHz bandwidth,” IEEE MTT Symp., 2003 pp.1193-1196.
[44]P. M. Smith, K. Nichols, W. Kong, L. MtPleasant, D. Pritchard, R. Lender, J. Fisher, R. Actis, D. Dugas, D. Meharry and A. W. Swanson, “Advances in InP HEMT technology for high frequency applications,” Indium Phosphide and Related Materials., 2001, pp. 9-13, 2001.
[45]T. Ishida, Y. Yamamoto, N. Hayafuji, S. Miyakuni, R. Hattori, T. Ishikawa, and Y. Mitsui, “Fluorine limited reliability of AlInAs/InGaAs high electron mobility transistors with molybdenum,” Indium Phosphide and Related Materials., 1997, pp. 201–204, .
[46]T. S. Kuan, P. E. Batson, T. N. Jackson, H. Rupprecht, and E. L. Wilkie, “Electron microscope studies of an alloyed Au/Ni/Au-Ge ohmic contact to GaAs,” J. Appl. Phys., vol. 45, pp. 6952–6957, 1983.
[47]K. Mizuishi, H. Kurano, H. Sato, and H. Kodera, “Degradation mechanisms of GaAs MESFETs,” IEEE Trans. on Electron Devices, vol. 26, pp. 1008–1014, 1979.
[48]J. F. Bresse, “Reliability of the structure Au/Cr/Au-Ge/Ni/GaAs in low noise dual gate GaAs FET,” Microelectron. Reliab., vol. 25, pp. 411–424, 1985.
[49]R. Menozzi, “Hot electron effects and degradation of GaAs and InP HEMTs for microwave and millimeter-wave applications,” Semicond. Sci. Technol., vol.13, pp. 1053-1063, 1998.
[50]P. Roblin, L. Rice, S. B. Bibyk, and H. Morkoc, “Nonlinear parasitic in MODFET’s and MODFET I-V characteristics,” IEEE Trans. Electron. Devices, vol. 35, pp. 1207-1214, 1988.
[51]D. C. Dumka, W.E. Hoke, P.J. Lemonias, G. Cueva, I. Adesida, “Metamorphic In0.52Al0.48As/In0.53Ga0.47As HEMTs on GaAs substrate with fT over 200 GHz,” IEE Electron. Lett., vol. 35, pp. 1854 – 1856, 1999.
[52]C. S. Whelan, W.F. Hoke, R.A. McTaggart, M. Lardizabal, P.S. Lyman, P.F. Marsh, T.E. Kazior, “Low noise In0.32(AlGa)0.68As/In0.43Ga0.57As metamorphic HEMT on GaAs substrate with 850 mW/mm output power density,” IEEE Electron Device Lett., vol. 21, pp. 5-8, 2000.
[53]F. Benkhelifa, M. Chertouk, M. Walther, R. Losch, and G. Weimann, “Metamorphic HEMT 0.5 μm low cost high performance process on 4" GaAs substrates,” Indium Phosphide and Related Materials, 2000 , pp. 290-293.
[54]P. M. Smith, K. Nichols, W. Kong, L. MtPleasant, D. Pritchards, R. Lender, J. Fisher, R. Actis, D. Dugas, D. Meharry, and A.W. Swanson, “Advances in InP HEMT technology for high frequency applications,” Indium Phosphide and Related Materials, 2001, pp. 9-14.
[55]D. C. Dumka, H.Q. Tserng, M.Y. Kao, E.A. Beam, and P. Saunier, “High-performance double-recessed enhancement-mode metamorphic HEMTs on 4-in GaAs substrates,” IEEE, Electron Device Lett., vol. 24, pp.135-137, 2003.
[56]H. Happy, S. Bollaert, H. Foure, and A. Cappy, “Numerical analysis of device performance of metamorphic InyAl1-yAs/InxGa1-xAs (0.3≤x≤0.6) HEMTs on GaAs substrate,” IEEE Transactions, Electron Devices, vol. 45, pp. 2089-2095, 2003.
[57]W. C. Hsu, Y. J. Che, C. S. Lee, T. B. Wang, Y. S. Lin, and C. L. Wu, “High-temperature thermal stability performance in -doped In0.425Al 0.575As/In0.65Ga0.35As metamorphic HEMT,” IEEE, Electron Device Lett., vol. 26, pp. 59-61, 2005.
[58]K. Yuan and K. Radhakrishnan, “High breakdown voltage In0.52Al0.48As/In0.53Ga0.47As metamorphic HEMT using InxGa1-xP graded buffer,” Indium Phosphide and Related Materials, 2002, pp. 161-164.
[59]R. D. Greenberg and J. A. D. Alamo, “Nonlinear source and drain resistances in recessed-gate heterostructure field-effect transistors,” IEEE Trans. Electron Devices, vol. 43, pp. 1304–1306, 1996.
[60]M. B. Das and M. L. Roszak, “Design calculation for submicron gate-length AlGaAs/GaAs modulation-doped FET structures using carrier saturation velocity/charge-control model,” Solid-state Electron., vol. 28, pp. 997-1005, 1985.
[61]P. O’Connor, A. Dori, M. Feuer, and R. Vounkx, “Gold-germanium-based ohmic contacts to the two-dimensional electron gas at selectively doped semiconductor heterointerfaces,” IEEE Trans. Electron. Devices, vol. 34, pp. 765-771, 1987.
[62]R. T. Webster, A. F. M. Anwar, J. L. Heaton, K. Nichols, and S. Duncan, “Impact ionization in AlGaAsSb/InGaAs/GaAsSb metamorphic HEMTs,” Indium Phosphide and Related Materials, 2003, pp. 233 – 234.
[63]R. E. Thoren, S. L. Su, R. J. Fischer, W. F. Kopp, W. G. Lyons, P. A. Miller, and H. Morkos, “Analysis of camel gate FET’s,” IEEE Trans. Electron Devices, vol. 30, pp. 212-216, 1983.
[64]W. S. Lour, W. C. Liu, J. H. Tsai, and L. W. Laih, “High-performance camel-gate field-effect transistor using high-medium-low doped structure,” Appl. Phys. Lett., vol. 67, pp. 2636-2638, 1995.
[65]H. M. Chuang, S. Y. Cheng, P. H. Lai, X. D. Liao, C. Y. Chen, C. H. Yen, R. C. Liu, and W. C. Liu, “Study of InGaP/InGaAs double doped channel heterostructure field-effect transistors (DDCHFETs),” Semicond. Sci. Technol., vol. 19, pp. 87-92, 2004.
[66]W. C. Hsu, C. L. Wu, M. S. Tsai, C. Y. Chang, W. C. Liu, and H. M. Shieh, “Characterization of high performance inverted delta-modulation-doped (IDMD) GaAs/InGaAs pseudomorphic heterostructure FET’s,” IEEE Trans. Electron Devices, vol. 42, pp. 804-809, 1995.
[67]Y. J. Jeon, Y. H. Jeong, B. Kim, Y. G. Kim, W. P. Hong, and M. S. Lee, “DC and RF performance of LP-MOCVD grown Al0.25Ga0.75As/InxGa1-xAs (x=0.15-0.28) P-HEMT’s with Si-delta doped GaAs layer,” IEEE Electron Device Lett., vol. 16, pp. 563-565, 1995.
[68]K. H. Yu; H. M. Chuang; K. W. Lin; S. Y. Cheng; C. C. Cheng; J. Y. Chen; and W. C. Liu, “Improved temperature-dependent performances of a novel InGaP-InGaAs-GaAs double channel pseudomorphic high electron mobility transistor (DC-PHEMT),” IEEE Trans. Electron Device., vol. 49, pp. 1687-1693, 2002.
[69]J. S. Su, W. C. Hsu, D. T. Lin, W. Lin, H. P. Shiao, Y. S. Lin, J. Z. Huang, and P. J. Chou, “High-breakdown voltage A10.661n0.34As0.85Sb0.15/In0.75Ga0.25As/InP heterostructure field-effect transistors,” IEE Electron. Lett., vol. 32, pp. 2095-2097, 1996.
[70]C. W. Chen, P. H. Lai, W. S. Lour, D. F. Guo, J. H. Tsai, and W. C. Liu, “Temperature dependences of an In0.46Ga0.54As/In0.42Al0.58As based metamorphic high electron mobility transistor (MHEMT),” Semicond. Sci. Technol., vol. 21, pp. 1358-1363, 2006.
[71]T. Ytterdal, B. J. Moon, T. A. Fjeldly, and M. S. Shur, “Enhanced GaAs MESFET CAD model for a wide range of temperature,” IEEE Trans. Electron Devices, vol. 42, pp. 1724-1734, 1995.
[72]Y. J. Chen, W. C. Hsu, Y. W. Chen, Y. S. Lin, R. T. Hsu, and Y. H. Wu, “InAlAs/InGaAs doped channel heterostructure for high-linearity, high-temperature and high-breakdown operations,” Solid-State Electron., vol. 49, pp. 163-166, 2005.
[73]W. C. Hsu, Y. J. Chen, C. S. Lee, T. B. Wang, J. C. Huang, D. H. Huang, K. H. Su, Y. S. Lin, and C. L. Wu, “Characteristics of In0.425Al0.575As/InxGa1-xAs metamorphic HEMTs with pseudomorphic and symmetrically-graded channels,” IEEE Trans. Electron Devices, vol. 52, pp. 1079-1086, 2005.
[74]K. Higuchi, H. Matsumoto, T. Mishima, and T. Nakamura, “Optimum design and fabrication of InAlAs/InGaAs HEMT’s on GaAs with both high breakdown voltage and high maximum frequency of oscillation,” IEEE Trans. Electron Devices, vol. 46, pp. 1312-1318, 1999.
[75]M. Boudrissa, E. Delos, Y.Cordier, D. Theron, and J.C. De Jaeger, “Enhancement mode metamorphic Al0.67In0.33As/Ga0.66In0.34As HEMT on GaAs substrate with high breakdown voltage,” IEEE Electron Device Lett., vol. 21, pp. 512-514, 2000.
[76]D. A. Neamen, Electronic Circuit Analysis and Design, 2nd ed. New York: McGraw-Hill, 2001, pp. 243-262.
[77]S. M. Sze, Semiconductor Devices: Physics and Technology, 2nd ed. New York: Wiley, 1985, pp. 250
[78]G. Meneghesso, F. Magistrali, D. Sala, M. Vanzi, C. Canali, and E. Zanoni, “Failure mechanisms due to metallurgical interactions in commercially available AlGaAs/GaAs and AlGaAs/InGaAs HEMTs,” Microelectron. Reliab., vol. 38, pp. 497-506, 1998.
[79]D. H. Huang, W. C. Hsu, Y. S. Lin, J. C. Huang, and C. L. Wu, “Strain-Relaxed In0.1Al0.25Ga0.65As/In0.22Ga0.78As/In0.1Al0.25Ga0.65As HEMT,” J. Electrochem. Soc., vol. 153, pp. G826-G829, 2006.
[80]D. J. LaCombe, W. W. Hu, and F. R. Bardsley, “Reliability of 1μm InP HEMTs,” International Reliability Physic Symposium, 1993, pp.364-371.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top