跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/07 03:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李佩芬
研究生(外文):Pei-Fen Li
論文名稱:調整吳郭魚血合肉pH值對其貯藏期間顏色的影響及不同吳郭魚種肌紅蛋白之基因的探討調整吳郭魚血合肉pH值對其貯藏期間顏色的影響及不同吳郭魚種肌紅蛋白之基因的探討
論文名稱(外文):Effect of pH Adjustment on the Color of Tilapia Dark Muscle during Storage and Investigation of Myoglobin Gene in Different Tilapia Species
指導教授:周照仁周照仁引用關係楊景雍楊景雍引用關係
指導教授(外文):Chan-Jen ChowJing-Iong Yang
學位類別:碩士
校院名稱:國立高雄海洋科技大學
系所名稱:水產食品科學研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:102
中文關鍵詞:吳郭魚肌紅蛋白血合肉pH值顏色自動氧化
外文關鍵詞:TilapiaMyoglobinDark musclepH valueColorAutoxidation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:1164
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
第一部份:
本研究之目的在探討吳郭魚片的血合肉在貯藏中自然色澤的保持,取吳郭魚血合肉及其肌紅蛋白溶液調整成不同pH值後,進行冰藏及凍藏之模擬試驗。另外,於吳郭魚片加工廠,以即殺死亡與掙扎死亡之吳郭魚為原料,製成魚片後進行凍藏實驗,探討pH值對血合肉顏色的影響。
首先,從吳郭魚片的血合肉萃取其肌紅蛋白溶液,以磷酸緩衝溶液(5.0~8.0)調整至不同pH值後,分別於0°C、-20°C貯藏,各樣品的氧化型肌紅蛋白(MetMb%)皆會隨著貯藏期間的增加而逐漸上升,其中,又以pH值低於6.3的溶液上升趨勢最快,於0°C冰藏時,2天內MetMb就已超過50%。凍藏於-20°C,在14天內就會超過50%,色澤CIE a*值皆會隨著冰藏或凍藏時間的延長而逐漸降低,以pH值低於6.3的肌紅蛋白溶液下降的速度較快,同時可觀察到肌紅蛋白溶液的明顯褐變,但pH值高於6.5之溶液在凍藏期間並無明顯之顏色變化(p>0.05),顯示吳郭魚肌紅蛋白溶液發生自動氧化的臨界pH值應在6.3~6.5之間。
其次,吳郭魚片的血合肉經過10%、5%乳酸或10%碳酸鈉浸泡處理,再經真空包裝後,分別於0°C冰藏或-20°C凍藏。於冰藏或凍藏期間,血合肉中的MetMb%均會隨貯存時間之增加而逐漸上升,其中,又以10%乳酸處理組(pH 4.98)上升速度為最快,其次為5%乳酸處理組(pH 5.72)、控制組(pH 6.36),最慢者為10%碳酸鈉處理組(pH 6.72);同時,CIE a*值的下降亦是以乳酸處理組為最明顯。外觀顏色方面,在冰藏環境下,10%乳酸處理組在第1天即可觀察到明顯的褐變,以5%乳酸處理者則在第1天可觀察到稍微褐變,而控制組在第9天才有明顯褐變,10%碳酸鈉處理組在第11天仍未發現褐變的現象。在凍藏環境下,也是以乳酸處理者褐變速度較快,碳酸鈉處理者褐變較慢。又,經過碳酸鈉處理之魚片若先凍結後再真空包裝,則此種「凍結後包裝」的魚片顏色優於傳統之「包裝後凍結」。
最後,將吳郭魚分為掙扎組、未掙扎組以及對照的CO處理組。掙扎組是在室溫下讓活魚於空氣中掙扎至死,未掙扎組係先將魚冰昏後立即宰殺製成魚片,CO處理組則是依工廠既定流程製成魚片且經CO處理,三組魚片之pH值依序分別為pH 6.5、7.0及6.6。以MetMb%來看,掙扎組之魚片於-20°C凍藏期間,MetMb%上升速度明顯快於未掙扎組(p<0.05),凍藏至60天時,未掙扎組MetMb%只有22.1%,但掙扎組的魚片凍藏至45天時即已達到41.3%。血合肉的CIE a*值下降速度以及色差計反射光譜630 nm/580 nm比值的下降速度皆是以掙扎組為較快。CO處理的對照組之魚片在-20°C凍藏期間,其MetMb%並無明顯變化,魚片CIE a*值明顯高於掙扎組與未掙扎組(p<0.05)。因此若依我國政府規定禁用CO氣體於魚片的保色處理時,則盡量減少魚肉在死亡後pH值的下降,另外,採用先凍結再真空包裝的方法,將有助於魚片血合肉在凍藏期間色澤的保持。
第二部份:
本研究將莫三比克種吳郭魚(Oreochromis mossambicus)、歐利亞種吳郭魚(O. aureus)、尼羅種吳郭魚(O. niloticus)及尼羅種與歐利亞種雜交吳郭魚(O. niloticus (♀) × O. aureus (♂))分別由其血合肉中抽出Total RNA,先逆轉錄成cDNA,再選殖出4種Myoglobin轉譯部分之基因序列。其次再由抽出之Total RNA以RLM-RACE (RNA Ligase Mediated Rapid Amplification of cDNA Ends)定出莫三比克吳郭魚Mb全部基因序列。
不同吳郭魚種間的肌紅蛋白胺基酸具有高度的保留區域,其序列之相似度高達100%;再將吳郭魚Mb胺基酸序列與NCBI database中已註冊之大目鮪(Bigeye tuna)、黑鮪(Bluefin tuna)、鯖魚(Chub mackerel)、黑皮旗魚(Atlantic blue marlin)之Mb的胺基酸序列進行比對,其相似度分別為81.6%、81.6%、74.8%、76.9%。
另外,比較吳郭魚與大目鮪Mb之α螺旋片段(A、B、C、E、F、G、H區域)及非螺旋區域之胺基酸序列,發現C螺旋區域、F螺旋區域、F-G非螺旋區域與G-H非螺旋區域,彼此相似度均為100%;而在B螺旋區域、H螺旋區域、與C-E非螺旋區域則相似度較低,分別只有73.3%、65.0%及50.0%。其餘相似度介於82-93%。以RACE方式定出莫三比克吳郭魚Mb基因全部序列發現有797 bp,其中可轉譯出147個胺基酸。
本研究再從不同吳郭魚種之血合肉萃取其肌紅蛋白溶液後,於25°C的水浴下測定其自動氧化速率,結果也發現4種吳郭魚的肌紅蛋白自動氧化速率常數極為相近,顯示不同種的吳郭魚Mb構造具有高度保留性,自動氧化速率也幾乎一樣。
Part 1:
This study was aimed to maintain the nature color of tilapia dark muscle during storage. Tilapia dark muscle and its myoglobin extract were subjected to estimate color changes (in a model test) during iced and frozen storage after adjusting pH to various values. In addition, alive tilapia sacrificed with or without struggle was filleted and frozen as the ordinary procedure in a processing factory to investigate the effect of pH on color of the tilapia fillets.
The myoglobin extracts were prepared with phosphate buffer at pH 5.0-8.0 and individually stored at 0°C or −20°C. The results showed that metMb formation ratio (MetMb%) of all samples increased gradually during iced or frozen storage. We found that formation of metMb in the samples with pH lower than 6.3 was accelerated and the MetMb% of the samples stored at 0°C and −20°C exceeded 50% within 2 days and 14 days, respectively. Moreover, their color CIE a* values decreased gradually during both iced and frozen storage and they changed faster as pH was lower than 6.3. Also significant browning in myoglobin solutions were observed when their pH values were lower than 6.3. However, there was no significant browning occurred when solution pH was higher than 6.5. It indicates that the critical pH for autoxidation of tilapia myoglobin (in solution) is probably at the range of 6.3-6.5.
Subsequently, the effect of acids on metMb formation in tilapia dark muscle was investigated. Tilapia dark muscle samples soaked in 10, 5% lactic acid, or 10% sodium carbonate were vacuum packaged and separately stored at 0°C or −20°C. MetMb% of all samples increased gradually during iced or frozen storage. It indicated that the autoxidation rate of the groups treated with 10% lactic acid (pH 4.98) and treated with 5% lactic acid (pH 5.72) were the fastest and second, respectively. Besides, that of control (pH 6.36) and 10% sodium carbonate group (pH 6.72) are the third and slowest, respectively. Meanwhile, the group treated with lactic acids showed the most significant in the decrease of CIE a* value. A significant browning was observed on the appearance of the group treated with 10% lactic acid after 12-h iced storage and the group treated with 5% lactic acid displayed a slightly browned color after 1-d iced storage. Browning on the appearance of the control was not observed until the 9th day. However, no noticeable browning appearance on the group treated with 10% sodium carbonate was seen on the 11th day. During froze storage, the group treated with lactic acid was very subjected to browning while the group treated with sodium carbonate enabled to retard the browning well. Moreover, the fillets treated with 10% sodium carbonate were carried out vacuum packing after freezing, frozen and then packed procedure, and show a better color display than those made by the traditional “packed and then frozen procedure”.
In addition to effect of acid solutions, the effects of the slaughter methods and CO treatment on metMb formation in tilapia dark muscle were also inspected. Tilapia fillets were obtained from various treatments. They were (1) struggle group (alive tilapia struggling till death), (2) instantly killed group (iced alive tilapia and sacrificed immediately), and (3) CO treated group (fillet prepared in a factory with CO gas treatment) and the pH of three groups was 6.5, 7.0 and 6.6, respectively. MetMb% in fillets of the struggle group increased faster, 41.3% on the 45th day, while that of the instantly killed group was 22.1% on the 60th day during frozen storage. Comparing to other groups, the dark muscle of fillets from the struggle group exhibited a faster decrease in both CIE a* value and 630 nm/580 nm ratio. The group treated with CO gas showed no significant change in MetMb% during storage at −20°C but it had higher CIE a* value than other two groups(p<0.05). However, the CO gas treatment for fish fillets is prohibited by Taiwanese law. To maintain nature color of dark muscle during frozen storage, the decline in pH of fish during post-harvest should be minimized. Moreover the “frozen and then packed procedure” would be beneficial to color preservation of tilapia fillets.
Part 2:
In order to compare the amino acid sequence of Mb between different tilapia species, total RNA were extracted from dark muscles of mossambicus tilapia (Oreochromis mossambicus), aureus tilapia (O. aureus), niloticus tilapia (O. niloticus) and tilapia hybrid (O. niloticus (♀) × O. aureus (♂)). Reversely transcribed to cDNA, and then gene sequence of myoglobin coding region segments were cloned. Moreover, total length of Mb gene sequence of mossambicus tilapia were determined from total RNA by RLM-RACE (RNA Ligase Mediated Rapid Amplification of cDNA Ends).
Deduced amino acid sequences of Mb were completely conserved in different tilapia species, and the identities was 100%. Comparing the alignment of the deduced amino acid sequences of myoglobin in the different tilapia with bigeye tuna, bluefin tuna, chub mackerel, and Atlantic blue marlin, we found that their identities were 78, 78, 75 and 77%, respectively.
Furthermore, assessment of the amino acid sequence of myoglobin in the α-helical segments (A, B, C, E, F, G, H) and intersegmental regions between tilapia and bigeye tuna, it indicated that the similarities among α-helical segment C and segment F, as well as intersegment region F-G and region G-H were 100%. Moreover, the sequence identities of α-helical segments B and segment H and intersegment region F-G were quite low only 73.3, 65.0 and 50.0, respectively. Identities of the others segment and intersegment were 82-93%. On the other hand, as nucleotide sequence of mossambicus tilapia myoglobin were determined by RACE, there were 797 base pairs, encoding 147 amino acids, were found in the gene sequence of tilapia Mb.
In addition, autoxidation of myoglobin extract solutions from dark muscle of different tilapia species were measured at 25°C. The results showed that autoxidation rate constants of Mb from different tilapia species were very similar. It suggests that autoxidation rate constants of tilapia Mb are similar due to highly conserved structures in different species.
目 錄
頁次
目錄……………………………………………………………………… I
表目錄…………………………………………………………………… V
圖目錄…………………………………………………………………… VI
相片目錄………………………………………………………………… IX
誌謝……………………………………………………………………… X
Part 1
第一部份:調整吳郭魚血合肉pH值對其貯藏期間顏色的影響……… 01
中文摘要………………………………………………………………… 02
英文摘要………………………………………………………………… 04
壹、前言………………………………………………………………… 06
貳、文獻整理…………………………………………………………… 08
ㄧ、吳郭魚……………………………………………………………… 08
(ㄧ)吳郭魚簡介……………………………………………………… 08
(二)吳郭魚的養殖…………………………………………………… 08
(三)冷凍吳郭魚片的加工…………………………………………… 10
(四)吳郭魚片的血合肉(Dark muscle)及品質指標……………… 10
二、肌紅蛋白…………………………………………………………… 11
三、影響肌肉變色的因素……………………………………………… 14
(一)pH值…………………………………………………………… 14
(二)溫度……………………………………………………………… 15
(三)屠宰前的狀況及屠宰後的處理………………………………… 15
(四)調氣包裝與還原劑之使用……………………………………… 16
(五)以ㄧ氧化碳(CO)氣體進行發色處理………………………… 17
参、材料與方法…………………………………………………………… 18
一、材料………………………………………………………………… 18
(一)實驗原料………………………………………………………… 18
1. 模擬試驗之吳郭魚片…………………………………………… 18
2. 工廠實驗之吳郭魚片…………………………………………… 18
(二)藥品……………………………………………………………… 18
1. 氧化型肌紅蛋白比例之測定…………………………………… 18
2. 肌紅蛋白濃度之定量…………………………………………… 19
3. 揮發性鹽基態氮之測定………………………………………… 19
4. 臭氧濃度之定量………………………………………………… 19
5. CO殘存量之檢測………………………………………………… 20
二、方法………………………………………………………………… 20
(一)實驗設計………………………………………………………… 20
(二)實驗方法………………………………………………………… 20
1. 肌紅蛋白(Mb)溶液之製備…………………………………… 20
2. 模擬試驗魚片之處理…………………………………………… 20
3. 臭氧水之製備及定量…………………………………………… 24
4. 分析方法………………………………………………………… 25
(1)血合肉中氧化型肌紅蛋白百分比(MetMb%)之測定… 25
(2)肌紅蛋白(Mb)溶液濃度之測定………………………… 25
(3)pH值之測定………………………………………………… 26
(4)揮發性鹽基態氮之測定…………………………………… 26
(5)CO殘存量之檢測………………………………………… 26
(6)吳郭魚片血合肉表面色澤及630 nm/580 nm比值之測定
………………………………………………………………
28
(7)統計分析…………………………………………………… 28
肆、結果與討論…………………………………………………………… 29
一、肌紅蛋白萃取液之模型試驗……………………………………… 29
(一)Mb萃取液在0°C冰藏期間顏色之變化……………………… 29
1. 氧化型肌紅蛋白百分比(MetMb%)…………………………… 29
2. 溶液色澤………………………………………………………… 29
3. 肌紅蛋白之濃度………………………………………………… 32
(二)Mb萃取液在-20°C凍藏期間顏色之變化…………………… 33
1. 氧化型肌紅蛋白百分比(MetMb%)…………………………… 33
2. Mb萃取液色澤…………………………………………………… 34
二、吳郭魚片之模擬試驗……………………………………………… 36
(一)魚片冰藏實驗…………………………………………………… 36
1. 氧化型肌紅蛋白百分比(MetMb%)…………………………… 36
2. 色澤方面………………………………………………………… 38
3. 氧化型肌紅蛋白百分比(MetMb%)與a*值、630 nm/580 nm
比值的相關性……………………………………………………
42
4. 鮮度變化………………………………………………………… 42
(二)魚片凍藏實驗…………………………………………………… 45
1. 氧化型肌紅蛋白百分比(MetMb%)…………………………… 45
2. 色澤方面………………………………………………………… 46
3. 氧化型肌紅蛋白百分比(MetMb%)與a*值、630 nm/580 nm
比值的相關性……………………………………………………
51
4. MetMb%達50%時的貯藏天數與pH值之間的相關性………… 51
三、吳郭魚片加工廠之現場試驗…………………………………… 54
1. 氧化型肌紅蛋白百分比(MetMb%)…………………………… 54
2. 色澤方面………………………………………………………… 55
3. 氧化型肌紅蛋白百分比(MetMb%)與a*值、630 nm/580 nm
比值的相關性……………………………………………………
59
4. 一氧化碳(CO)殘存量………………………………………… 61
伍、結論…………………………………………………………………… 62

Part 2
第二部分:不同吳郭魚種肌紅蛋白之基因的探討……………………… 63
中文摘要………………………………………………………………… 64
英文摘要………………………………………………………………… 65
壹、前言…………………………………………………………………… 66
貳、文獻整理……………………………………………………………… 67
參、材料與方法…………………………………………………………… 69
一、材料………………………………………………………………… 69
(一)實驗原料………………………………………………………… 69
(二)藥品及儀器……………………………………………………… 69
1. 藥品……………………………………………………………… 69
2. 儀器……………………………………………………………… 70
二、方法………………………………………………………………… 72
(一)實驗設計………………………………………………………… 72
(二)實驗方法………………………………………………………… 75
1. 肌肉中全部核醣核酸(Total RNA)之萃取…………………… 75
2. 互補去氧核醣核酸(cDNA)之製備…………………………… 75
3. 肌紅蛋白基因之選殖、純化、轉形與定序……………………… 75
4. RLM-RACE (RNA Ligase Mediated Rapid Amplifcation of
cDNA Ends) ……………………………………………………… 79
5. 自動氧化速率之測定…………………………………………… 82
肆、結果與討論…………………………………………………………… 84
一、不同吳郭魚種肌紅蛋白基因之選值及定序……………………… 84
二、莫三比克吳郭魚肌紅蛋白全長之選值及定序…………………… 86
三、不同吳郭魚種自動氧化速率之測定……………………………… 89
伍、結論…………………………………………………………………… 94
陸、參考文獻……………………………………………………………… 95



表目錄

Part 1 頁次
表2-1、吳郭魚的產量、價值及養殖面積………………………………… 09
表4-1、以乳酸及碳酸鈉調整吳郭魚片血合肉之pH值後,於冰藏
期間血合肉之pH值的變化…………………………………… 37
表4-2、吳郭魚片普通肉在冰藏期間VBN之變化…………………… 44
表4-3、CO處理組於-20°C凍藏期間,CO殘存量之變化…………… 61

Part 2
表3-1、本實驗所用之吳郭魚種………………………………………… 69
表3-2、本實驗所用之引子……………………………………………… 71
表4-1、吳郭魚肌紅蛋白的胺基酸序列與其他不同魚種之相似度比較…………………………………………………………………88
表4-2、吳郭魚肌紅蛋白之α–螺旋片段及非螺旋區域之胺基酸序
列與大目鮪之相似度比較………………………………………88
表4-3、不同吳郭魚種其肌紅蛋白之自動氧化速率常數………………93



圖目錄

Part 1 頁次
圖2-1、肌紅蛋白(myoglobin)及原血紅素(heme)的構造………………12
圖2-2、肌紅蛋白在肌肉中的變化……………………………………… 13
圖3-1、吳郭魚血合肉之肌紅蛋白粗抽出液之模擬實驗……………… 21
圖3-2、吳郭魚片模擬實驗之處理流程圖……………………………… 22
圖3-3、吳郭魚片之工廠實驗的處理流程圖…………………………… 23
圖3-4、CO測定用之GC裝置系統……………………………………… 28
圖4-1、吳郭魚血合肉Mb萃取液調整至不同pH值後,在冰藏期
間之MetMb%的變化……………………………………………30
圖4-2、吳郭魚血合肉Mb萃取液調整至不同pH值後,在冰藏期
間之CIE L*、a*、b*值的變化…………………………………31
圖4-3、Mb萃取液(pH 7.0)在冰藏期間之肌紅蛋白濃度的變化……33
圖4-4、吳郭魚血合肉Mb萃取液調整至不同pH值後,在-20°C
凍藏期間之MetMb%的變化……………………………………34
圖4-5、以乳酸及碳酸鈉調整吳郭魚片血合肉之pH值後,於冰藏
期間血合肉之MetMb%的變化…………………………………37
圖4-6、以乳酸及碳酸鈉調整吳郭魚片血合肉之pH值後,於冰藏
期間血合肉之CIE L*、a*、b*值的變化………………………41
圖4-7、以乳酸及碳酸鈉調整吳郭魚片血合肉之pH值後,於冰藏
期間血合肉之630 nm/580 nm之比值的變化…………………42
圖4-8、以乳酸及碳酸鈉調整吳郭魚片血合肉之pH值後,於冰藏
期間MetMb%與a*值變化之關係………………………………43
圖4-9、以乳酸及碳酸鈉調整吳郭魚片血合肉之pH值後,於冰藏
期間MetMb%與630 nm/580 nm比值變化之關係……………43
圖4-10、以乳酸及碳酸鈉調整吳郭魚片血合肉之pH值後,於
-20°C凍藏期間血合肉之MetMb%的變化…………………46
圖4-11、以乳酸及碳酸鈉調整吳郭魚片血合肉之pH值後,於
-20°C凍藏期間血合肉之CIE L*、a*、b*值的變化………50
圖4-12、以乳酸及碳酸鈉調整吳郭魚片血合肉pH值後,於-20°C
凍藏期間血合肉630 nm/580 nm的比值………………………51
圖4-13、以乳酸及碳酸鈉調整吳郭魚片血合肉pH值後,於-20°C
凍藏期間MetMb%與a*值變化之關係………………………52
圖4-14、以乳酸及碳酸鈉調整吳郭魚片血合肉pH值後,於-20°C
凍藏期間MetMb%與630 nm/580 nm比值變化之關係………53
圖4-15、以乳酸及碳酸鈉調整吳郭魚片血合肉pH值後,於0°C
冰藏及-20°C凍藏,觀察MetMb%達50%時的貯藏天數
與pH值之間的相關性…………………………………………53
圖4-16、吳郭魚經過掙扎組或未掙扎組前處理做成魚片,於-20°C
凍藏期間之MetMb%的變化…………………………………55
圖4-17、吳郭魚經過掙扎組或未掙扎組前處理做成魚片,於-20°C
凍藏期間之L*、a*、b*值的變化…………………………… 56
圖4-18、吳郭魚經過掙扎組或未掙扎組前處理做成魚片,於-20°C
凍藏期間630 nm/580 nm比值的變化…………………………59
圖4-19、吳郭魚經過掙扎組或未掙扎組前處理做成魚片,於-20°C
凍藏期間MetMb%與a*值變化的關係………………………60
圖4-20、吳郭魚經過掙扎組或未掙扎組前處理做成魚片,於-20°C
凍藏期間MetMb%與630 nm/580 nm比值變化的關係………60

Part 2
圖3-1、Mb基因選殖實驗流程圖……………………………………… 72
圖3-2、RLM-RACE流程圖……………………………………………… 73
圖3-3、由不同吳郭魚種血合肉萃取出的肌紅蛋白溶液在25°C條
件下自動氧化之測定……………………………………………74
圖3-4、RLM-RACE流程之設計…………………………………………79
圖4-1、由吳郭魚血合肉所製備之cDNA以Mb (F) primer及Mb (R)
primer選殖肌紅蛋白基因轉譯區域之2.0% Agarose電泳圖…85
圖4-2、以pGEM-T-Easy為載體,吳郭魚血合肉Mb轉譯區域基因接
合至大腸桿菌JM109後,質體DNA的檢定……………………86
圖4-3、不同吳郭魚種肌紅蛋白之胺基酸序列與其他鯖科魚類進行
序列排比…………………………………………………………87
圖4-4、由吳郭魚血合肉所製備之cDNA以(a)5’ RACE Outer (F)、
TR51 (R)與3’ RACE Outer (F)、TR31(F) primers;(b)5’
RACE Inner (F)、TR52 (R)與3’ RACE Inner (F)、TR32(F)
primers選殖肌紅蛋白5’及3’非轉譯區域之2.0% Agarose電
泳圖………………………………………………………………90
圖4-5、莫三比克吳郭魚肌紅蛋白cDNA之核苷酸及胺基酸序列……91
圖4-6、莫三比克吳郭魚與NCBI資料庫之莫三比克吳郭魚
(AY522582)之核苷酸進行序列排比…………………………92
圖4-7、四種不同吳郭魚種的肌紅蛋白溶液在25°C條件下之自動
氧化作用…………………………………………………………93



相片目錄

Part 1 頁次
相片2-1、莫三比克吳郭魚(O. mossambicus)……………………………09
相片4-1、以1.0 M磷酸緩衝溶液調整Mb萃取液至pH 7.0,於冰
藏期間外觀顏色之變化………………………………………32
相片4-2、吳郭魚血合肉Mb萃取液調整至不同pH值後,在-20°C 凍
藏期間溶液顏色的變化………………………………………35
相片4-3、以10%乳酸調整吳郭魚片血合肉之pH值後,於冰藏期
間表面色澤的變化……………………………………………38
相片4-4、以5%乳酸調整吳郭魚片血合肉之pH值後,於冰藏期
間表面色澤的變化……………………………………………39
相片4-5、未處理的吳郭魚片血合肉,於冰藏期間表面色澤的變化…39
相片4-6、以10% Na2CO3調整吳郭魚片血合肉之pH值後,於冰藏期
間表面色澤的變化……………………………………………40
相片4-7、以10%乳酸調整吳郭魚片血合肉之pH值後,於-20°C
凍藏期間表面色澤的變化……………………………………47
相片4-8、以5%乳酸調整吳郭魚片血合肉之pH值後,於-20°C
凍藏期間表面色澤的變化……………………………………47
相片4-9、未處理之吳郭魚片血合肉,於-20°C凍藏期間表面色
澤的變化………………………………………………………48
相片4-10、以10% Na2CO3調整吳郭魚片血合肉之pH值後,於
-20°C凍藏期間表面色澤的變化…………………………48
相片4-11、以10% Na2CO3調整吳郭魚片血合肉之pH值後,於
-20°C凍藏期間表面色澤的變化…………………………49
相片4-12、由正常加工所生產且經CO處理之吳郭魚片,於-20°C
凍藏期間表面色澤的變化……………………………………57
相片4-13、由經過掙扎處理之吳郭魚所生產之魚片,於-20°C凍
藏期間表面色澤的變化……………………………………58
相片4-14、由未經掙扎處理之吳郭魚所生產之魚片,於-20°C凍
藏期間表面色澤的變化……………………………………58
中文部分
丁任法(2003)。黃鰭鮪及潮鯛生魚片貯藏中鮮度及風味品質之變化。國立台灣海洋大學食品科學系碩士論文。基隆。
中央標準局(1982)。中國國家標準CNS1451,N6029:冷凍魚類檢驗法—康威氏皿擴散法。經濟部中央標準局。台北。
日本厚生省(1995)。鮮魚中の一酸化炭素の檢查の實施について。生活衛生局衛化第七號通知。東京,日本。
日本藥學會(1990)。衛生試驗法註解。1360-1362。金原出版株式社會。東京,日本。
行政院衛生署(1998)。台灣地區食品營養成分資料庫。食品工業發展研所,屏東科技大學。台北
行政院衛生署(2006)。藥物食品安全週報第二十三期。台北。
吳清熊(1987)。魚肉蛋白質。華香園出版社。台北。
吳清熊、周照仁、蔡憲華(1992a)。魚介類組織及一般成分。水產化學(上冊)。華香園出版社。台北。
吳清熊、周照仁、蔡憲華(1992b)。魚介類之香臭氣味成分。水產化學(下冊)。華香園出版社。台北。
周照仁(1989)。包裝條件對凍藏鮪肉褐變之影響。台灣水產學會刊,16(3):203-209。
周照仁(1990)。冷凍品,台灣水產加工業現況。台灣省漁業局發行。台北。
周照仁(1998)。吳郭魚生魚片之加工技術。〝吳郭魚之加工利用〞專輯。國立高雄海洋技術學院發行。高雄。
周照仁、朱玉灼(1999)。吳郭魚漁獲後條件與其魚肉品質變化之研究。行政院農委會八十八年度水產加工研究成果彙編。財團法人食品工業發展研究所。
周照仁、謝蘋萍、蔡美玲、朱玉灼(1998a)。經一氧化碳處理之鮪肉在冰藏及凍藏過程中品質的變化。食品藥物分析,6(3):615-623。
周照仁、謝蘋萍、黃明受(1998b)。鮪肉中一氧化碳殘存量之定量。食品藥物分析,6(1):439-446。
林慶文(1995)。肌肉組織之特性。食品化學。華香園出版社。台北。
柯文慶(1996)。水產加工。行政院農業委員會。1992~1996年中華民國農業科技研究成果,p.432-434。
柯文慶、賴茲漢(2001)。食物材料各論。食物學原理。富林出版社,248-257。台中。
胡興華(1996)。漁業資訊服務網,拓漁台灣,吳郭魚的傳奇,
http://www.fa.gov.tw/chn/fish_culture/history/show_article.php?id=856
徐雅各(2005)。台灣鯛的崛起。科學發展,385:7-11。
陳建廷(2005)。五寸虱目魚之貯藏及加工特性之研究。國立高雄海洋科
技大學水產食品科學研究所碩士論文。高雄。
張珍珍(2006)。黃鰭鲔及旗魚貯存期間生物胺之生成及其組織胺快速檢驗之探討。國立台灣海洋大學食品科學碩士論文。基隆。
麥基、李仁愛、張學偉、李貽琳(2005)。胺基酸、胜肽及蛋白質。生物化學:生命的分子基礎。麥格羅希爾出版。台北。
彭清勇(1999)。鮪魚肌肉中氧化肌紅蛋白還原酶對肌肉色澤之影響。國立海洋大學食品科學系博士論文。基隆。
黃書政、蕭泉源(2002)。氣調包裝在肉品保存上的應用。科學與技術。34(3):26-34。
漁業資訊服務網www.fa.gov.tw。

蔡添財(2005)。淡水養殖(三)吳郭魚。台灣農家要覽漁業篇,p. 173-178,豐年社。台北。
廣東養豬信息網(2005)。營養因素對肉品質的影響。豬肉品質。http://www.gdswine.org/1000_38_1001_1545.html
盧建仁、林亮全(1997)。屠前緊迫對屠後鴨隻肌肉低溫熟成時pH值、可抽出性鈣及ATP含量變化之影響。中國畜牧學會會誌,26(1):99-108。
蕭泉源、龐玉珍、邱思魁、丁雲源(1996)。虱目魚死後僵直過程中之生物化學變化。中國農業化學會誌,34(3):355-363。
鴻巢章二、橋本周久(1998)。魚介肉的化學-色素。水產利用化學。吳清熊譯。國立編譯館。台北。
顏國欽、孫璐西(1995)。色素與其他著色劑。食品化學,p. 252-281,華香園出版社。

日文部分
橋本周久(1967)。魚類のへム蛋白。日本水產学會誌。33(9):854-859。

英文部分
Abril M, Campo MM, Önenç A, Sañudo C, Albertí P, and Negueruela AI. (2001). Beef colour evolution as a function of ultimate pH. Meat Science, 58: 69-78.
Amano H, Hashimoto K, and Matsuura F. (1968). N-terminal structure of fish myoglobin. Bulletin of the Japanese Society of Scientific Fisheries. 34 (10): 955-958.
Bowker BC, Wynveen EJ, Grant AL, and Ferrard DE. (1999). Effects of electrical stimulation on early postmortem muscle pH and temperature declines in pigs from different genetic lines and halothane genotypes. Meat Science, 53: 125-133.
Campbell, M. K. and Farrell, S. O.(2004)。蛋白質的三度空間結構。生物化學。林順富、葉東柏、陳師瑩、顏瑞鴻、蕭慧美譯。偉明圖書有限公司。台北。
Chaijan M, Benjakul S, Visessanguan W, and Faustman C. (2005). Changes of pigments and color in sardine (Sardinella gibbosa) and mackerel (Rastrelliger kanagurta) muscle during iced storage. Food Chemistry, 93: 607-617.
Chanthai S, Ogawa M, Tamiya T, and Tsuchiya T. (1996a). Studies on thermal denaturation of fish apomyoglobins using differential scanning calorimetry, circular dichroism, and fluorescence. Fisheries Science, 62 (6): 933-937.
Chanthai S, Ogawa M, Tamiya T, and Tsuchiya T. (1996b). Studies on thermal denaturation of fish myoglobins using differential scanning calorimetry, circular dichroism, and tryptophan fluorescence. Fisheries Science, 62 (6): 927-932.
Chasco J, Lizaso G, And Beriain MJ. (1996). Cured colour development during sausage processing. Meat Science, 44 (3): 203-211.
Chen WL, Chow CJ, and Ochiai Y. (1996). Effects of washing media and storage condition on the color of milkfish meat paste. Fisheries Science, 62 (6): 938-944.
Chen WL, Chow CJ. (2001). Studies on the physicochemical properties of milkfish myoglobin. Journal of Food Biochemistry, 25: 157-174.
Chomczynski P, Sacchi N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162: 156-159.
Chow CJ, Ochiai Y, and Hashimoto K. (1985). Effects of freezing and thawing on the autoxidation of bluefin tuna myoglobin. Bulletin of the Japanese Society of Scientific Fisheries, 52 (12): 2073-2078.
Chow CJ, Ochiai Y, Watabe S, and Hashimoto K. (1987). Autoxidation of bluefin tuna myoglobin associated with freezing and thawing. Journal of Food Science, 52 (3): 589-591.
Chow CJ, Ochiai Y, Watabe S, and Hashimoto K, (1988). Autoxidation of bluefin tuna myoglobin at around freezing point. Nippon Suisan Gakkaishi, 54 (3): 476-478.
Chow CJ. (1991). Relationship between the stability and autoxidation of myoglobin. Journal of Agricultural and Food Chemistry, 39: 22-26.
Cornforth DP, and Egbert WR. (1985). Effect of rotenone and pH on the color of pre-rigor muscle. Journal of Food Science, 50: 34-35, 44.
Di Iorio EE. (1981). Preparation of derivatives of ferrous and ferric hemoglobin. In “Methods in Enzymology”. Academic press, 76: 57-72. New York, U. S. A.
Fosmire GJ, and Brown WD. (1976). Yellowfin tuna (Thunnus Albacares) myoglobin: characterization and comparative stability. Comparative Biochemistry and Physiology, 55B: 293-299.
Gill CO. (1996). Extending the storage life of raw chilled meats. Meat Science, 43 (S): S99-S109.
Greenberg AE, Trussell RP, and Clesceri LS. (1985). Ozone. In “Standard Methods for the Examination of Water and Wastewater”(16th ed). p. 426. American Public Health Association. Washington. D. C. USA.
Grigorakis K, Taylor KDA, and Alexis MN. (2003). Seasonal patterns of spoilage of ice-stored cultured gilthead sea bream (Sparus aurata). Food Chemistry, 81: 263-268.
Gutzke D, and Trout G. (2002). Temperature and pH dependence of the autoxidation rate of bovine, ovine, porcine, and corvine oxymyoglobin isolated from three different muscles-longissimus dorsi, gluteus medius, and biceps femoris. Journal of Agricultural and Food Chemistry, 50:2673-2678.
Hirano T, Nakamura H, and Suyama M, (1980). Quality of wild and cultured ayu-II. Seasonal variation of proximate composition. Bulletin of the Japanese Society of Scientific Fisheries. 46 (1): 75-78.
Hunt MC, Sørheim O, and Slinde E. (1999). Color and heat denaturation of myoglobin forms in ground beef. Journal of Food Science, 64(5): 847-851.
Ioka H, and Yamanaka H. (1997). Quality evaluation of the muscle of cultured plaice fed with three different diets. Nippon Suisan Gakkaishi, 63 (3): 370-377.
Joo ST, Kauffman RG, Kim BC, and Park GB. (1999). The relationship of sarcoplasmic and myofibrillar protein solubility to colour and water-holding capacity in porcine longissimus muscle. Meat Science, 52: 291-297.
Kauffman RG, van Laack RLJM, Russell RL, Pospiech E, Cornelius CA, Suckow CE, and Greaser ML. (1998). Can pale, soft, exudative pork be prevented by postmortem sodium bicarbonate injection? Journal of Animal Science, 76: 3010-3015.
Kendrew JC, Dickerson RE, Strandberg BE, Hart RG, Davies DR, Phillips DC and Shore VC. (1960). Structure of myoglobin. Nature, 185: 422-427.
Lowe TE, Ryder JM, Carragher JF, and Wells RMG. (1993). Flesh quality in snapper, Pagrus auratus, affected by capture stress. Journal of Food Science, 58 (4): 770-773, 796.
Matsuura F, Hashimoto K, Kikawada S, and Yamaguchi K. (1962). Studies on the autoxidation velocity of fish myoglobin. Bulletin of the Japanese Society of Scientific Fisheries. 28 (2): 210-216.
Matsuura F, Hashimoto K, and Yamaguchi K. (1963). Oxygen absorption in autoxidation of fish myoglobins. Bulletin of the Japanese Society of Scientific Fisheries. 29 (11): 1005-1010.
Mendenhall VT. (1989). Effect of pH and total pigment concentration on the internal color of cooked ground beef patties. Journal of Food Science, 54(1):1-2.
Morishita T, Uno K, Imura N, and Takahashi T. (1987). Variation with growth in the proximate compositions of cultured red sea bream. Nippon Suisan Gakkaishi, 53 (9): 1601-1607.
Nelson DL, and Cox MM. (2005). Reversible binding of a protein to a ligand: Oxygen-binding proteins. Lehninger Principles of Biochemistry. W. H. Freeman and Company. New York.
Paterson B, Goodrick B, and Frost S. (1997). Controlling the quality of aquacultured food products. Trends in Food Science and Technology, 8: 253-257.
Robb DHF, Kestin SC, and Warriss PD. (2000). Muscle activity at slaughter: I. Changes in flesh colour and gaping in rainbow trout. Aquculture, 182: 261-269.
Sano Y, and Hashimoto K. (1958). A spectrophotometeric method for the simultaneous determination of ferrous and ferric forms of myoglobin in their mixed solution. Nippon Suisan Gakkaishi, 24: 519-523.
Sayre RN, and Briskey EJ. (1963). Protein solubility as influenced by physiological conditions in the muscle. Journal of Food Science, 28: 675-679.
Sigholt T, Erikson U, Rustad T, Johansen S, Nordtvedt TS, and Seland A. (1997). Handling stress and storage temperature affect meat quality of farmed-raised atlantic salmon (Salmo salar). Journal of Food Science, 62(4): 898-905.
Strange ED, Benedict RC, Gugger RE, Metzger VG, Swift CE. (1974). Simplified methodology for measuring meat color. Journal of Food Science, 39: 988-992.
Suzuki T, and Shikama K. (1983). Stability properties of sperm whale oxymyoglobin. Archives of Biochemistry and Biophysics, 224(2): 695-699.
Takeda N, Yamaguchi K, and Hashimoto K. (1980). Decolorization of dark muscle of mackerel and sardine. Bulletin of the Japanese Society of Scientific Fisheries. 46 (10): 1269-1272.
Tawiah WM, Ammann LL, Sebranek JG, and Molins RA. (1991). Extending the color stability and shelf life of fresh meat. Food Technology, 45 (3): 94-102.
Trout GR. (1989). Variation in myoglobin denaturation and color of cooked beef, pork, and turkey meat as influenced by pH, sodium chloride, sodium tripolyphosphate, and cooking temperature. Journal of Food Science, 54(3):536-540.
Ueki N, and Ochiai Y. (2004). Primary structure and thermostatbility of bigeye tuna myoglobin in relation to those of other scombridae fish. Fisheries Science, 70: 875-884.
Ueki N, Chow CJ, and Ochiai Y. (2005). Characterization of bullet tuna myoglobin with reference to the thermostability-structure relationship. Journal of Agricultural and Food Chemistry, 53 (12): 4968-4975.
Watabe S, Kamal M, and Hashimoto K. (1991). Postmortem changes in ATP, creatine phosphate, and lactate in sardine muscle. Journal of Food Science, 56 (1): 151-153, 171.
Watts DA, Rice RH. And Brown WD. (1980). The primary structure of myoglobin from yellowfin tuna (Thunnus albacares). The Journal of Biological Chemistry, 255 (22): 10916-10924.
Zhu LG, and Brewer MS. (2002). Effects of pH and temperature on metmyoglobin solubility in a model system. Meat Science, 61: 419-424.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top