跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/04 09:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊明戰
研究生(外文):Ming-Chan Chuang
論文名稱:奈米金粒子鑲埋之染敏太陽能電池
論文名稱(外文):A dye-sensitized solar cell with embedded nanometer gold particles
指導教授:高宗達
指導教授(外文):Tsung-Ta Kao
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:53
中文關鍵詞:太陽能奈米金染料
外文關鍵詞:solar cellnano-golddye
相關次數:
  • 被引用被引用:0
  • 點閱點閱:199
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討染敏太陽能電池之工作電極製程技術,主要的研究項目有: (1)奈米
二氧化鈦膠體的配製(2)奈米金溶液之配製(3)藉由浸泡方式結合奈米金粒子之奈米
結構電極(4) 藉由混合方式結合奈米金粒子之奈米結構電極
藉由不同濃度之檸檬酸鈉溶液作為還原劑,混合四氯金酸溶液調配出不同顆
粒大小之奈米金粒子。經由穿透式電子顯微鏡分析出不同濃度之檸檬酸鈉溶液所
配製出不同顆粒大小之奈米金粒子
沉積奈米金粒子且加上N719 染料所設計出來的光化學電池,可以看出將有
助於提高電池之效能。尤其以混合奈米金粒子所製作出的工作電極具有較高的光
電流轉換效率.
In this research, the fabrication technique of working electrodes, which applied in
dye-sensitized solar cell (DSC), was investigated.The main items include (1)
preparation of nano-Titanium-Dioxide colloidal solution, (2) preparation of nano-gold
solution, (3) the nanocrystalline electrodes were combined with nano-gold by dipping
them directly in nano-gold solution ,(4) the nanocrystalline electrodes were combined
with nano-gold by mixing them directly in nano-gold solution.
Different size of nano gold was prepared by various concentration of C6H5O7Na3
as a reductant mixed with a HAuCl4 aqueous solution. After the analysis for different
particle size in the various concentration of C6H5O7Na3 by the TEM images.
We have designed a photoelectrochemical (PE) cell of N719 by depositing it on a
nanostructured gold film, and report here its photoelectrochemical study. It is seen that
the performance of N719 PE cell is greatly enhanced by gold nanoparticles. The
mixtures of nano-gold structure exhibited an excellent additivity in the efficiency, which
could be used to design an effective working electrodes for high lighting-current
conversion efficiency.
第一章 序論…………………………………...…………………. …. …. ….…...........1
1-1 前言..………………………………………….……… …. ….……..............1
1-2 太陽能電池簡介……………………… ……...…… …. …. …… …...……...1
1-3 研究背景與目的…………….………… ………………………………..……3
第二章 理論原理與文獻回顧…………………… ………………………..………......4
2-1 染料敏化太陽能電池的組成結構……………………… ………...…………5
2-2 染料敏化太陽能電池的工作原理及性能特性……… ……………...………6
2-3 染料敏化太陽能電池之工作電極……………...…… ……………………10
2-4 光敏化劑–染料…………………………………………………………….14
2-5 電解質……………………………………………..……………………….18
2-6 奈米金特性及製備…………….……….. …………………………………20
2-7 太陽能電池電流-電壓輸出特性 ………...…………………………………22
第三章 實驗方法與設備……………………………………………………………...24
3-1 實驗儀器與實驗藥品……………….……………………………………….24
3-2 儀器.…………….………………………………………………………….25
3-3 實驗方法.…………………………………………………………………….28
第四章 結果與討論………………………………………….….…..........................32
第五章 結論……………………………………………………...………………….48
[1] L. Kazmerski, “Photovoltaics: A review of cell and module technologies,”
Renewable Sustainable Energy Rev., 1, 71-170 (1997).
[2] A. Hagfeldt, M. Grätzel, “Light-Induced Redox Reactions in Nanocrystalline
Systems,” Chem. Rev. 95, 49-68 (1995).
[3] M. Grätzel, “Mesoporous oxide junctions and nanostructured solar cells,” Current
Opinion in Colloid & Interface Science, 4, 314-321 (1999).
[4] K. Kalyanasundaram, M. Grätzel, “Applications of functionalized transition metal
complexes in photonic and optoelectronic devices,” Coord. Chem. Rev., 77, 347-414
(1998).
[5] A. Fujishima et al., “Slow interfacial charge recombination in solid-state
dye-sensitized solar cell using Al2O3-coated nanoporous TiO2 films,” Sol. Energy Mater.
Sol. Cells, 81, 197-203 (2004).
[6] Cahen et al., “Nature of Photovoltaic Action in Dye-Sensitized Solar Cells,” J. Phys.
Chem. B, 104, 2053-2059 (2000).
[7] Zaban et al., “Relative energetics at the semiconductor/sensitizing dye/electrolyte
interface,” J. Phys. Chem. B, 102, 452-460 (1998).
[8] Zaban et al., “Electric potential distribution and short-range screening in nanoporous
TiO2 electrodes,” J. Phys. Chem. B, 101, 7985-7990 (1997).
[9] Huang et al., “Charge recombination in dye-sensitized nanocrystalline TiO2 solar
cells,” J. Phys. Chem. B, 101, 2576-2582 (1997).
[10] Haque et al., “Charge recombination kinetics in dye-sensitized nanocrystalline
titanium dioxide films under externally applied bias,” J. Phys. Chem. B, 102, 1745-1749
(1998).
[11] Y. Li, J. Hagen, W. Schaffrath, P. Otschik, D. Haarer, “Evaluation of the
charge-collection efficiency of dye-sensitized nanocrystalline TiO2 solar cells,” Solar
Energy Mater. & Solar Cells, 56, 167 (1999).
[12] Y. Tachibana, K. Hara, S. Takano, K. Sayama, H. Arakawa, “Investigations on
anodic photocurrent loss processes in dye sensitized cells: comparison between
nanocrystalline SnO2 and TiO2 films,” Chem. Phys. Lett., 364, 297-302 (2002).
[13] M. Okuya, K. Nakade, S. Kaneko, “Porous TiO2 thin films synthesized by a spray
pyrolysis deposition (SPD) technique and their application to dye-sensitized solar cells,”
Solar Energy Materials and Solar Cells, 70, 425-435 (2002).
[14] J. Burdett, T. Hughbabds, M. Gordon, J. Richardson, V. Smith “Phase diagrams for
Ceramists,” The American Ceramic Society, 76, 4150-4999 (1975).
[15] E. Weirich, M. Winterer, S. Seifried, H. Hahn, H. Fuess, “Rietveld Analysis of
Electron Powder Diffraction Data from Nanocrystalline Anatase TiO2,”Ultramicroscopy,
81, 263-270 (2000)
[16]. Powder Diffraction File, Card No.21-1272, JCPDS-International Centre for
Diffraction Data, Swarthmore (1997)
[17]. J. Muscat, N. M. Harrison and G. Thornton, “Effects of exchange, correlation, and
numerical approximations on the computed properties of the rutile TiO2 (100) surface,”
Phys. Rev. B., 59, 2310-2326 (1999)
[18] Powder Diffraction File, Card No.21-1276, JCPDS-International Centre for
Diffraction Data, Swarthmore (1997)
[19] Md. K. Nazeeruddin S. M.Zakeeruddin R.Humphry-Baker M. Jirousek P. Liska N.
Vlachopoulos V. Shklover Christian-H. Fischer M. Gratzel, “Acid-Base Equilibria of (2,2''-Bipyridyl-4,4''-dicarboxylic acid)ruthenium(II) Complexes and the Effect of
Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania,” Inog. Chem.,
38, 6298-6305 (1999).
[20] S. Kim, R. Finnie. L. James, “Vibrational Spectroscopic Study of the Coordination
of (2,2''-Bipyridyl-4, 4''-dicarboxylic acid) ruthenium(II) Complexes to the Surface of
Nanocrystalline Titania,” Langmuir., 14, 2744-2749 (1998).
[21] C. Bauer, G. Boschloo, E. Mukhtar, A. Hagfeldt, “Interfacial electron-transfer
dynamics in Ru(tcterpy)(NCS)3-sensitized TiO2 nanocrystalline solar cells,” J. Phys.
Chem. B., 106, 12693-12704 (2002).
[22] R. Argazzi et al., “Enhanced spectral sensitivity from ruthenium (II)polypyridyl
based photovoltaic devices,” Inorg. Chem., 33, 5741-5749 (1994).
[23] K. Finnie, J. Bartlett, J. Woolfrey, “Vibrational SpectroscopicStudy of the
Coordination of ( 2,2 ''-Bipyridyl-4 ,4 ''-dicarboxylic acid ) ruthenium(II) Complexes to
the Surface of Nanocrystalline Titania,” Langmuir., 14, 2744-2749 (1998).
[24] M. Nazeeruddin et al., “A swift dye uptake procedure for dye-sensitized solar
cells,” Langmuir, 16, 8525–8528 (2000).
[25] K. Murakoshi et al. “Importance of binding states between photosensitizing
molecules and the TiO2 surface for efficiency in a dye-sensitized solar cell,” J.
Electroanal. Chem., 396, 27–34 (1995).
[26] K. Sayama, H. Sugihara, H. Arakawa, “Photoelectrochemical properties of a
porous Nb2O5 electrode sensitized by a ruthenium dye,” Chem. Mater., 10, 3825-3832
(1998).
[27] Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska and M. Grätzel, “Investigation
of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell,” J. Phys. Chem. B. 107, 8981-8987
(2003).
[28] K. Sayama, H. Sugihara, H. Arakawa, ”Photoelectrochemical Properties of a
Porous Nb2O5 Electrode Sensitized by a Ruthenium Dye,” Chem. Mater. 10, 3825-3832
(1998).
[29] U. Bach, D. Lupo, P. Comte, J. E. Moser, F.Weissortel, J. Salbeck, H. Spreitzer
and M. Grätzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high
photon-to-electron conversion efficiencies,” Nature, 395, 583 (1998).
[30] B. O’Regan and D. T. Schwartz, ” Large enhancement in photocurrent efficiency
caused by UV illumination of the dye-sensitized heterojunction
TiO2/RuLL''NSC/CuSCN: initiation and potential mechanism,” Chem. Mater., 10,
1501-1509 (1998).
[31] B. O’Regan and D. T. Schwartz, “Effect dye-sensitized charge separation in a
wide-band-gap p-n heterojunction,” J. Appl. Phys. 80, 4749-4754 (1996).
[32] B. O’Regan D. T. Schwartz S. M. Zakeeruddin and M. Gratzel, “Electrodeposited
Nanocomposite n-p Heterojunctions for Solid-. State Dye-Sensitized Photovoltaics,”
Adv. Mater., 12, 1263-1267 (2000).
[33] M. Grätzel, “Photoelectrochemical cells,” Nature. 414, 338 (2001).
[34] U. Bach D. Lupo J.E. Moser F. Weissortel J. Salbexk H. Spreitzer and M. Grätzel,
“Solid-State Dye-Sensitized Mesoporous TiO2 Solar Cells with High
Photon-To-Electron Conversion Efficiency,” Nature. 395, 583-584 (1998).
[35] Hiroki Usui Hiroshi Matsui Nobuo Tanabe Shozo Yanagida, ” Experiments on a
dynamic model for the transformation of crop residue in soil,” J. Photochem. Photobio.
A: Chem., 164, 97-101 (2004).
[36] Dong-Won Kima Yeon-Bok Jeong Sang-Hern Kima Dong-Yoon Lee and Jae-Sung
Song, “High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid
polymer gel electrolyte,” Chem. Commun., 2972 (2002).
[37] Ryoichi Komiya Liyuan Han Ryohsuke Yamanaka Ashraful Islam and Takehito
Mitate, “Effect dye-sensitized charge separation in a wide-band-gap p-n
heterojunction,” J. Photochem. Photobio.A: Chem. 164, 123-127 (2004).
[38] G. Binning, H. Rohrer, Ch. Gerber, E. Weibel, “Tunneling through a controllable
vacuum gap,” Appl. Phys. Lett., 40, 178-179 (1982).
[39] V. Kamat, “Charge Distribution between UV-Irrdiated TiO2 and Gold the Fermi
Level,” Nano Lett., 3, 353 (2003).
[40] V. Kamat, ” Catalysis with TiO2/Gold Nanocomposites. Effect of Metal Particle
Size on the Fermi Level Equilibration” J. Am. Chem. Soc. 126, 4942 (2004).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊