跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/11 07:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:盧佳賢
研究生(外文):Jia-Shian Lu
論文名稱:瞭解網路學習的持續意圖:一個期望確定模型的延伸
論文名稱(外文):Understanding e-learning continuance intention: An extension of the Expectation-confirmation Model
指導教授:李明錡李明錡引用關係
指導教授(外文):Ming-Chi Lee
學位類別:碩士
校院名稱:國立屏東商業技術學院
系所名稱:資訊管理系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:61
中文關鍵詞:期望確定理論科技接受模型計劃行為理論認知價值認知網站品質
外文關鍵詞:Expectation-confirmation modelPerceived valuesPerceived Web qualityTechnology acceptance modelTheory of planning behavior (TPB)
相關次數:
  • 被引用被引用:4
  • 點閱點閱:343
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
隨者網際網路技術的快速發展,近年來網路學習系統已演變成一種廣受歡迎的資訊科技。然而目前甚少研究在探討到底是那些因素會影響使用者持續使用網路學習系統。對網路學習者而言,若能更加了解這些因素在學習者持續學習所扮演的角色,將有助於從事教育工作者彈性調整教學方法以利改善學習成效。本研究使用「期望確認理論」結合「計劃行為理論」、「科技接受模型」的模型並加入「神迷經驗」、「認知價值」與「認知品質」等三個外部因素進而提出一個影響網路學習持續行為意圖的綜合模型。研究方法乃透過網路問卷調查,來驗證所提出之研究假說。本研究的有效樣本為381個,資料分析先以驗證性因素分析來檢視各研究構面的信度與效度,再以結構化方程模式分析本研究所提出的模型。研究結果分析發現,影響持續使用網路學習的因素有「主觀規範」、「行為控制」、「滿意度」和「認知有用」。影響持續使用網路學習的滿意度的因素有「認知有用」、「認知樂趣」、「認知價值」、「認知易用」和「確認」,但「認知易用」和「認知樂趣」因素則不顯著。研究結果可以提供網路學習使用者與發展者做參考,希望未來能發展一個讓學習者願意持續使用的網路學習環境。
With increasing Internet usage, e-learning has been a highly popular e-commerce application in recent years. However, few studies have investigated what factors influence learners to continue to use the e-learning information technologies. With a better understanding of these factors’ role in learners’ continuance intention, practitioners should be able to make adjustments in their teaching plans that should help enhance the learning performance. This study applies the expectation confirmation model (ECM) with TAM and TPB models that incorporates perceived Web quality, perceived enjoyment and perceived values as external factors to explain learners’ continued intention of e-learning. The proposed model was empirically evaluated using survey data collected from 381 users about their perceptions of e-learning. The results indicate that continued intention of e-learning is determined by subject norm, perceived behavior control, satisfaction and perceived usefulness. The results also point out the satisfaction of e-learning is influenced by perceived values, confirmation and perceived usefulness, but perceived ease of use and perceived enjoyment are not a significant factor. The results can provide Internet users with the development of learning to do reference.
目錄
1 緒論 1
2 文獻探討 4
2.1 期望確定理論(ECM) 4
2.2 科技接受模式(TAM) 6
2.3 計劃行為理論(TPB) 7
3 研究模型與假說 13
3.1 研究架構 13
3.2 研究假說 15
3.2.1. 期望確定模型 15
3.2.2. 期望確定模型中加入認知易用 16
3.2.3. 期望確定模型中加入認知樂趣 17
3.2.4. 合併期望確定模型和計劃行為理論 19
3.2.5. 期望確定模型中加入認知網站品質與認知價值 20
4 研究方法 23
4.1 研究對象與資料收集 23
4.2 問卷變量測量 25
4.3 資料分析方法與工具 27
5 研究結果 28
5.1 測量模式 28
5.1.1. 收斂效度 28
5.1.2. 區別效度 30
5.2. 結構化模式分析 35
5.2. 結構模式 35
6 討論 40
7 研究限制與結論 42
參考文獻 45
附錄A 51


表目錄
表2-1 計劃行為理論的相關研究 10
表2-1 計劃行為理論的相關研究(續) 11
表2-1 計劃行為理論的相關研究(續) 12
表4-1 受訪者基本資料 24
表4-2 構面的定義 26
表5-1 信度與效度分析表 29
表5-2 測量變項之區別效度檢定 31
表5-2 測量變項之區別效度檢定(續) 32
表5-2 測量變項之區別效度檢定(續) 33
表5-2 測量變項之區別效度檢定(續) 34
表5-3 模型配適度指標值 35
表5-4 假說驗證結果 38
表5-4 假說驗證結果(續) 39
圖目錄
圖2-1 期望確定模型 4
圖3-1 本研究模型 14
圖5-1 標準化路徑分析結果 37
1.Chiu, C.-M., et al., Usability, quality, value and e-learning continuance decisions. Computers & Education, 2005. 45: p. 399-416.
2.Bhattacherjee, A., Understanding information systems continuance: An expectation–confirmation model. MIS Quarterly, 2001. 25(3): p. 351-370.
3.Liao, C., J.-L. Chen, and D.C. Yen, Theory of planning behavior (TPB) and customer satisfaction in the continued use of e-service: An integrated model. Computers in Human Behavior, 2006.
4.Lin, C.S., S. Wu, and R.J. Tsai, Integrating perceived playfulness into expectation-confirmation model for web portal context. Information & Management, 2005. 42: p. 683-693.
5.Davis, F.D., Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 1989. 13(3): p. 319-340.
6.Rogers and E. M., Diffusion of Innovations. Free Press, New York, 1995.
7.Fazio, R.H. and M.P. Zanna, Direct experience and attitude-behavior consistency, in: L. Berkowitz (Ed.). Advances in Experimental Social Psychology, 1981. 16: p. 161-202.
8.Karahanna, E., D.W. Straub, and N.L. Chervany, Information technology adoption across time: a cross-sectional comparison of pre-adoption and post-adoption beliefs. MIS Quarterly, 1999. 23(2): p. 183-213.
9.LaTour, S.A. and N.C. Peat, The role of situationally-produced expectations, others' experiences, and prior experience in determining consumer satisfaction, in: Jerry C.Olson (Ed.). Consumer Research, 1980. 7: p. 588-592.
10.Oliver and R. L., Measurement and evaluation of satisfaction processes in retail settings. Journal of Retailing, 1981. 57(3): p. 25-48.
11.Bearden, W.O. and J.E. Teel, Selected determinants of consumer satisfaction and complaint reports. Journal of Marketing Research, 1983. 20(1): p. 21-28.
12.Davis, F.D., R.P. Bagozzi, and P.R. Warshaw, User acceptance of computer technology: a comparison of two theoretical models. Management Science, 1989. 35(8): p. 982-1003.
13.Venkatesh, V., Determinants of perceived ease of use: integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research, 2000. 11(4): p. 342-365.
14.Yi, Y., A critical review of consumer satisfaction. Review of Marketing, 1990. 4: p. 68-123.
15.Thong, J.Y.L., S.-J. Hong, and K.Y. Tam, The effects of post-adoption beliefs on the expectation-confirmation model for information technology continuance. Human-Computer Studies, 2006. 64: p. 799-810.
16.Dabolkar, P.A., C.D. Shepard, and D.I. Thorpe, A comprehensive framework for service quality: an investigation of critical conceptual and measurement issues through a longitudinal study. Journal of Retailing, 2000. 76(2): p. 139-173.
17.Webster, J., L.K. Trevino, and L. Ryan, The dimensionality and correlates of flow in human–computer interactions. Computers in Human Behavior, 1993. 9(4): p. 411-426.
18.Roca, J.C., C.-M. Chiu, and F.J. Martinez, Understanding e-learning continuance intention:An extension of the Technology Acceptance Model. Human-Computer Studies, 2006. 64: p. 683-696.
19.Fishbein, M. and I. Ajzen, Belief, attitude, intention, and behavior: An introduction to theory and research. MA: Addison-Wesley., 1975.
20.Ajzen, I. and M. Fishbein, Understanding attitudes and predicting social behavior. Englewood Cliffs, NJ: Prentice-Hall., 1980.
21.Ajzen, I., The Theory of Planned Behavior. Organizational Behavior and Human Decision Processes, 1991. 50: p. 179-211.
22.Ajzen, I., Perceived behavior control, self-efficacy, locus of control, and the theory of planned behavior. Journal of Applied Social Psychology, 2002. 32: p. 1-20.
23.Ajzen, I. and M.T. J., Prediction of Goal-Directed Behavior: Attitudes, Intentions, and Perceived Behavioral Control. Journal of Experimental Social Psychology, 1985. 22: p. 453-474.
24.Mathieson, K., Predicting user intentions: comparing the technology acceptance model with the theory of planned behavior. Information Systems Research, 1991. 2(3): p. 173-191.
25.Hansena, T., J.M. Jensenb, and H., Solgaarda, Predicting online grocery buying intention: a comparison of the theory of reasoned action and the theory of planned behavior. International Journal of Information Management, 2004. 24: p. 539-550.
26.Hsua and e.a. M.-H., A longitudinal investigation of continued online shopping behavior: An extension of the theory of planned behavior. . Human-Computer Studies, 2006. 64: p. 889-904.
27.Pavlou, P.A. and M. Fygenson, UNDERSTANDING AND PREDICTING ELECTRONIC COMMERCE ADOPTION: AN EXTENSION OF THE THEORY OF PLANNED HAVIOR. . MIS Quarterly, 2006. 30(1): p. 115-143.
28.Taylor, S. and P.A. Todd, Understanding information technology usage: a test of competing models. Information Systems Research, 1995. 6(2): p. 144-176.
29.Oliver, R.L., Cognitive, Affective, and Attribute Bases of the Satisfaction Response. The Journal of Consumer Research, 1993. 20(3): p. 418-430.
30.Szymanski, D.M. and D.H. Henard, Customer satisfaction: a meta-analysis of the empirical evidence. Journal of the Academy of Marketing Science, 2001. 29(1): p. 16-35.
31.Helson, H., Adaptation-Level Theory. Harper & Row, 1964.
32.Oliver, R.L. and W.S. DeSarbo, Response Determinants in Satisfaction Judgments. The Journal of Consumer Research,, 1988. 16(4): p. 495-507.
33.Chiu, C.-M., et al., An empirical analysis of the antecedents of web-based learning continuance. Computers & Education, 2006.
34.Legris, P., J. Ingham, and P. Collerette, Why do people use information technology? A critical review of the technology acceptance model. Information & Management, 2003. 40(3): p. 191-204.
35.Taylor, S. and P.A. Todd, Assessing IT usage: the role of prior experience. MIS Quarterly, 1995. 19(4): p. 561-570.
36.Jackson, C.M., S. Chow, and R.A. Leitch, Toward an understanding of the behavioral intention to use an information system. Decision Sciences, 1997. 28(2): p. 357-389.
37.Davis, F.D., R.P. Bagozzi, and P.R. Warshaw, Extrinsic and intrinsic motivation to use computers in the workplace. . Journal of Applied Social Psychology 1992. 22(14): p. 1111-1132.
38.Venkatesh, V. and F.D. Davis, A theoretical extension of the technology acceptance model: four longitudinal field studies. Management Science, 2000. 46(2): p. 186-204.
39.Venkatesh, et al., User acceptance enablers in individual decision making about technology: toward an integrated model. . Decision Sciences, 2002. 33(2): p. 297-316.
40.Yi, M.Y. and Y. Hwang, Predicting the use of web-based information systems: self-efficacy, enjoyment, learning goal orientation, and the technology adoption model. International Journal of Human Computer Studies 2003. 59(4): p. 431-449.
41.Sun, H. and P. Zhang, An empirical study of the roles of affective variables in user adoption of search engines. . Proceedings of the 3rd Annual Workshop on HCI Research in MIS Washington, DC, 2004.
42.LaTour, S.A. and N.C. Peat, Conceptual and methodological issues in consumer satisfaction research. Advances in consumer research, 1979. 8: p. 431-437.
43.Jr, G.A.C. and C. Surprenant, An investigation into the determinants of customer satisfaction. Journal of Marketing Research, 1982. 19(4): p. 491-504.
44.Hunt and H. K., Conceptualization and measurement of consumer satisfaction and dissatisfaction. Marketing Science, 1977: p. 455-488.
45.Oliver, R.L., A cognitive model for the antecedents and consequences of satisfaction,. Journal of Marketing Research, 1980. 17: p. 460-469.
46.Kelman and H. C., Compliance, identification, and internalization: three processes of attitude change. Journal of Conflict Resolution, 1958. 2: p. 51-60.
47.Warshaw and P. R., A new model for predicting behavioral intentions: an alternative to Fishbein. Journal of Marketing Research, 1980. 17: p. 153-172.
48.Aladwani, A. and P. Palvia, Developing and validating an instrument for measuring user-perceived web quality. Information and Management, 2002. 39: p. 467-476.
49.Ahn, T., S. Ryu, and I. Han, The impact of Web quality and playfulness on user acceptance of online retailing. Information & Management, 2007. 44: p. 263-275.
50.Liaoa, C., P. Palviab, and H.-N. Lina, The roles of habit and web site quality in e-commerce. International Journal of Information Management, 2006. 26: p. 469-483.
51.Liang, T.P. and H.J. Lai, Effect of store design on consumer purchases: Van empirical study of on-line bookstores. Information & Management Science, 2002. 39(6): p. 431-444.
52.Rokeach and M. J., The nature of human values. 1973.
53.Zeithaml and V. A., Consumer perceptions of price, quality and value: A means-end model and synthesis of evidence. . Journal of Marketing, 1988. 52: p. 2-22.
54.Shemwell, Yavas, and Bilgin, Customer-service provider relationships : an empirical test of a model of service quality, satisfaction and relationship-oriented outcomes. International Journal of Service Industry Management, 1998. 9(2): p. 155-168.
55.Parasuraman, A. and D. Grewal, The impact of technology on the quality-value-loyalty chain: A research agenda. Journal of the Academy of Marketing Science, 2000. 28(1): p. 168-174.
56.Bhattacherjee, A., An empirical analysis of the antecedents of electronic commerce service continuance. Decision Support Systems, 2001. 32(2): p. 201-214.
57.Fornell, C. and D. Larcker, Structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 1981. 18: p. 39-50.
58.Hairs, J.F., R.E. Anderson, and R.L. Tatham, Multivariate Data Analysis. 5th ed. New York:Macmillian, 1998.
59.Anderson, et al., Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 1988. 103(3): p. 411-423.
60.Hayduk, L.A., Structural equation modeling with LISREL. Johns Hopkins University Press Baltimore, 1987.
61.Armitage, C.J., P. Norman, and M. Conner, Can the theory of planned behavior mediate the effects of age, gender and multidimensional health locus of control? British Journal of Health Psychology, 2002. 7: p. 299-316.
62.Hong, S., J.Y.L. Thong, and K.Y. Tam, Understanding continued information technology usage behavior: A comparison of three models in the context of mobile internet. Decision Support Systems, 2006. 42(3): p. 1819-1834.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top