跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) GMT+8:2024/09/18 10:55
Font Size: Enlarge Font   Word-level reduced   Reset  
Back to format1 :::

Browse Content

Author my cdr record
 
twitterline
Author:李孟憲
Author (Eng.):Meng-Shien Li
Title:酸雨強度與容量對污染場址重金屬淋洗潛勢之影響
Title (Eng.):The effects of the strength and capacity of acid rain on heavy metal leaching potential in contaminated sites
Advisor:許正一許正一 author reflink
advisor (eng):Zeng-Yei Hseu
degree:Master
Institution:國立屏東科技大學
Department:環境工程與科學系所
Narrow Field:工程學門
Detailed Field:環境工程學類
Types of papers:Academic thesis/ dissertation
Publication Year:2007
Graduated Academic Year:95
language:Chinese
number of pages:136
keyword (chi):酸雨重金屬土壤淋洗污染場址
keyword (eng):acid rainheavy metalsoilleachingcontaminated site
Ncl record status:
  • Cited Cited :5
  • HitsHits:427
  • ScoreScore:system iconsystem iconsystem iconsystem iconsystem icon
  • DownloadDownload:0
  • gshot_favorites title msgFav:1
酸雨是全球性的環境污染問題,而在台灣高溫多雨的環境下,發生酸雨的機率為70-80%,同時重金屬污染場址從調查評估乃至整治完成需曠日費時,所以在酸雨的淋洗下,污染物是否會因而溶出並造成地下水的污染,是值得探討的。本論文以三種基本性質差異甚大之污染土壤(粘質地之老埤、壤質地之彰化及砂質地之萬丹土壤)管柱進行不同強度酸雨(pH 5.6、4.0、3.5、3.0、2.5)之淋洗,累計收集10個孔隙體積(pore volume、PV)淋洗液,以瞭解不同酸雨容量下土壤淋洗液中的污染物濃度變化。另外,將污染土壤浸泡於酸雨中,以模擬污染場址於滲透性不佳時土壤水中污染物濃度之變化。實驗結果顯示,老埤土壤pH值較低(pH 4.1)且因鎘污染時間短,故其較萬丹與彰化土壤的溶出量高,同時在各種酸雨強度及容量下均已超過地下水管制標準(0.05 mg/L)。鉻的移動性差且在還原狀態下以三價鉻為主,因此在萬丹土壤的高pH值下易形成氫氧化鉻沉澱,以致於淋洗液中濃度較低。至於銅、鎳與鋅皆為彰化土壤的溶出量較高。鉛的移動性慢,但在污染時間較長之萬丹與彰化土壤其溶出量均不及污染時間較短的老埤土壤。
Acid rain has been a globally environmental issue. The probability of acid rain is 70-80 % through out rain events in Taiwan. Therefore、the lands contaminated with heavy metals need long time for survey、evaluation and announcement as contaminated sites. Under acid rain leaching、the heavy metals could be leached into groundwater. The objectives of study are to conduct three contrasting contaminated soils (fine-textured Lopi soil、medium textured Changhua soil and sand-textured Wandan soil) for evaluating heavy metal levels in the leacheates from soil column under simulated acid rain with different strength (pH 6.5、5.6、4.0、3.5、3.0 and 2.5) and capacity (10 pore volumes). However、the soil water was collected to analyze from the submergence of the study soils. The experimental results indicated that the Cd concentrations in the leachates from Wandan and Changhua soils were always lower than those from Lopi soil、which contaminated age and pH were low. Additionally、Cd level in the leacheate from Lopi soil was over the control standard of groundwater in Taiwan (0.05 mg/L). However、three valent Cr is predominant in reduced condition and Cr3+ decreased at high pH was completely precipitated as Cr(OH)3 in Wandan soil. The concentrations of Cu、Ni and Zn in the leachates were the highest in changhua soil. Due to Pb is low immobile、the Pb concentrations in the leachates from Wandan and Changhua soils were lower than those from Lopi soil、because the former two soils have been contaminated for much longer time.
摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VIII
圖目錄 IX
第1章 前言 1
1.1研究緣起 1
1.2研究目的 1
第2章 文獻回顧 2
2.1酸雨簡介 2
2.2酸雨之成因 2
2.3酸雨之危害 3
2.4酸雨之研究 4
2.4.1台灣酸雨之研究 4
2.4.2國際酸雨之研究 7
2.5台灣土壤重金屬污染調查 8
2.6重金屬污染場址判定與整治 9
2.7台灣地區重金屬污染來源 10
2.8一般土壤中重金屬之含量 11
2.9重金屬危害 12
2.9.1鎘 12
2.9.2鉻 12
2.9.3銅 12
2.9.4鎳 13
2.9.5鉛 13
2.9.6鋅 13
2.10重金屬於土壤中之行為 13
2.11經酸雨淋洗土壤重金屬於土壤中移動之影響因素 15
2.11.1酸雨強度與容量 15
2.11.2重金屬存在於土壤中之型態 15
2.11.3土壤pH值 16
2.11.4土壤質地與粘土礦物 16
2.11.5土壤有機質含量 16
2.11.6陽離子交換容量 16
2.11.7鐵鋁錳氧化物 16
第3章 材料與方法 19
3.1 供試土壤之採集與前處理 19
3.2 供試土壤基本性質分析 19
3.2.1 pH值 19
3.2.2粒徑分析 19
3.2.3飽和導水度 20
3.2.4陽離子交換容量 22
3.2.5有機碳含量 22
3.2.6游離鐵、鋁、錳 23
3.2.7供試土壤之陰離子測定 23
3.2.8供試土壤之重金屬全量分析 23
3.2.9事業廢棄物毒性特性溶出程式 24
3.2.10 DTPA可萃取量 24
3.3土壤管柱淋洗試驗 24
3.3.1土壤管柱之裝填 24
3.3.2人工酸雨之配製 24
3.3.3土壤管柱淋洗與浸泡 25
3.3.4土壤管柱淋洗試驗分析項目 27
第4章 結果與討論 28
4.1供試土壤之基本理化性質 28
4.2有害事業廢棄物毒性特性溶出試驗 30
4.3 DTPA可萃取量 30
4.4人工酸雨之化學組成 31
4.5土壤管柱淋洗 31
4.5.1鎘在不同pH值之酸雨淋洗的累積溶出量 31
4.5.2鉻在不同pH值之酸雨淋洗的累積溶出量 36
4.5.3銅在不同pH值之酸雨淋洗的累積溶出量 40
4.5.4鎳在不同pH值之酸雨淋洗的累積溶出量 43
4.5.5鉛在不同pH值之酸雨淋洗的累積溶出量 47
4.5.6鋅在不同pH值之酸雨淋洗的累積溶出量 50
4.5.7氯在不同pH值之酸雨淋洗的累積溶出量 57
4.5.8硫酸根在不同pH值之酸雨淋洗的累積溶出量 59
4.5.9硝酸態氮在不同pH值之酸雨淋洗的累積溶出量 61
4.5.10銨態氮在不同pH值之酸雨淋洗的累積溶出量 63
4.6土壤管柱浸泡 65
4.6.1鎘在不同pH值之酸雨浸泡下的溶出量 65
4.6.2鉻在不同pH值之酸雨浸泡下的溶出量 69
4.6.3銅在不同pH值之酸雨浸泡下的溶出量 74
4.6.4鎳在不同pH值之酸雨浸泡下的溶出量 78
4.6.5鉛在不同pH值之酸雨浸泡下的溶出量 81
4.6.6鋅在不同pH值之酸雨浸泡下的溶出量 85
4.6.7氯在不同pH值之酸雨浸泡下的溶出量 91
4.6.8硫酸根在不同pH值之酸雨浸泡下的溶出量 92
4.6.9硝酸態氮在不同pH值之酸雨浸泡下的溶出量 94
4.6.10銨態氮在不同pH值之酸雨浸泡下的溶出量 96
第5章 結論與建議 98
5.1 結論 98
5.2 建議 99
參考文獻 100
附錄 106
作者簡介 122
土壤及地下水污染整治網 http://ivy4.epa.gov.tw/soilgw/。
王一雄、陳尊賢、李達源 (1995) 土壤污染學。國立空中大學。
王銀波、劉黔蘭、宋昌勳 (1996) 酸雨對農耕土壤的影響。農業氣象、空氣污染與酸雨對農業生產影響及因應措施研究會論文專輯。台灣省農業試驗所。
中央氣象局全球資訊網 http://www.cwb.gov.tw/。
行政院環保署 (2001a) 土壤污染監測基準(2001.11.21 環署水地0073654號令)。台北市。
行政院環保署 (2001b) 土壤污染監測基準(2001.11.21 環署水地0073684號令)。台北市。
行政院環保署 (2001) 地下水污染管制標準(2001.11.21 環署水地0073680號令)。台北市。
行政院環保署環境檢驗所 (2003a) 土壤重金屬檢測方法-王水消化法,NIEA S321.63B。桃園。
行政院環保署環境檢驗所 (2003b) 事業廢棄物毒性特性溶出程式,NIEA R201.13C。桃園。
台灣酸雨資訊網 http://acidrain.atm.ncu.edu.tw/。
李明國 (2002) 酸雨對焚化底灰掩埋滲出污染物之影響。淡江大學水資源及環境工程研究所碩士論文,79頁。
洪佳章、劉文徹、張晉華、曾景山、李松伍 (1992) 台灣農用土壤緩衝酸雨之評估。台灣糖業研究所研究彙報地138號,11-19頁。
陳淨修、邱景昆 (1986) 酸雨大氣物化過程及簡化雨沖模式。工業污染防治 5(2):76-94。
陳淨修 (1993) 台灣地區酸雨防治策略。台灣地區空氣污染與農業氣象對農業生產影響研討會專輯。中華農業氣象學會。台中。第70-79頁。
陳尊賢 (2002) 台灣地區受重金屬污染土壤之整治技術與限制。環保月刊 第九期,第71-72頁。
郭魁士 (1997) 土壤學。之宜出版社,801頁。
梁家祺、王明光、金恆鑣 (1998) 福山森林土壤中硫酸根吸附行為之探討。中國農業化學會誌 36(1):42-56。
康敏捷 (1992) 模擬酸與對蓮華池森林土壤陽離子交換容量。國立台灣大學農業化學研究所碩士論文,91頁。
張仁福 (1998) 土壤污染防治學。覆文圖書出版社,第325-340頁。
樊邦棠 (1994) 環境工程化學。科技圖書股份有限公司,495頁。
謝清洲 (2002) 塔塔加地區不同植被下土壤離子濃度隨季節之變化與模擬酸雨對土壤陽離子淋溶之影響。國立台灣大學農業化學研究所,68頁。
羅良慧 (1997) 應用地理資訊系統土壤鎘污染危害評估方法之研究。國立中興大學資源管研究所碩士論文,130頁。
Allaway、W. H. (1968) Advance in Agronomy. 20: 240-243.
Alloway、B. J. (1990) Heavy metals in soils、John Wiley & Sons、Inc、New York、USA p.339.
Baker、D. E. (1990) Copper. In Heavy metals in soils (ed B. J. Alloway)、
Blackie and Son、New York. p.151-176.
Beckett、P. H. T. (1989) The use of extractants in studies on trace metals in soils、sewage sludges、and sludge treated soils. Advances of Soil Science. 9: 143-176.
Bruemmer、G. W.、K. J. Tiller、U. Herms、and P. M. Clayton (1983) Adsorption-desorption and precipitation-dissolution process of zinc in soils. Geoderma. 31: 337-354.
Chang、K. H.、F. T. Jeng、Y. L. Tsai、and P. L. Lin (2000) Modeling of long-range transport on Taiwan’s acid deposition under different weather conditions. Atmospheric Environment. 34: 3281-3295.
Christenesn、T. H. (1984) Cadmium soil sorption at low concentration : I. Effect of time、cadmium load、pH、and cadmium. Water、air and soil pollution. 21: 105-114.
Daivs、A. P.、and B. V. Hotha (1998) Washing of various lead compound from a contaminated soil column. Journal of Environmental Engineering. 124: 1066-1075.
Doner、H. E. (1978) Chloride as a factor in mobilities of Ni(I)、Cr(II)、and Cd(II) in soil. Soil Science Society America Journal. 42: 882-885.
Egozy、Y. (1980) Adsorption of cadmium and cobalt on montmorillonote as a function of solution composition. Journal of Soil Science. 28: 311-318.
Gee、G. P.、and J. W. Bauder (1986) Particle-size analysis. p. 383-411. In A. Klut (eds.) Methods of Soil Analysis、Part 1. 2nd ed. Agron. Monogr. 9. ASA and ASSS、Madison、WI、USA.
Gerhardsson、L.、A. Oskarsson、and S. Skerfving (1994) Acid precipitation effects on trace elements and human health. Science of the Total Environment. 153: 237-245.
Gong、C.、and R. J. Donahoe (1997) An experimental study of heavy metal attenuation and mobility in sandy loam soils. Applied Geochemistry. 12: 243-254.
Goodrich、J. A.、B. W. Lykins、and R. M. Clark (1991) Drinking water from arriculturally contaminated groundwater. Journal of Environment Quality. 20: 707-717
He、Q. B.、and B. R. Singh (1993) Effect of oganic matter on the distribution、extractability and uptake of cadmium in soil. Journal of Soil Science. 44: 641-650.
Holtzclaw、K. M.、D. A. Keech、A. L. Page、G. SPosito、T. J. Ganje、and N. B. Ball (1978) Trace metal distrbutions among the humic acid、the fulvic acid、and precipitable fractions extracted with NaOH from sewage sludges. Journal of Environment Quality. 7: 124-127.
Jarvis、S. C.、and L. H. Jones (1980) The contents and sorption of cadmium in sorue agricultrural soils of England and Wales. Journal of Soil Science. 31: 469-479.
Johnson、D. W.、and D. W. Cole (1977) Atmospheric sulfate additions and cation leaching in a Douglas-fir ecosystem. Water Resources Research. 13: 313-317.
Johnson、D. W.、and D. E. Todd (1983) Sulfate adsorption and desorption reversibility in a variety of forest soils. Journal of Environment Quality. 18: 419-426.
Katherine、F. M.、and C. M. Davidson. 2003. Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper、iron、lead、manganese and zinc in soils and sediments. Analytica Chimica Acta. 478: 111-118.
Kim、J. G.、J. B. Dixon、C. C. Chusuei、and Y、Deng (2002) Oxidation of chromium (III) to (VI) by manganese oxides. Soil Science Society America Journal. 66: 306-315.
Klute、A.、and C. Dirksen (1986) Hydraulic conductivity and diffusivity:Laboratory methods. p. 687-734. In A . Klute (ed.) Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA、Madison、WI.
Lin、N. H.、H. M. Lee、and M. B. Chang (1999) Evaluation of the characteristics of acid precipitation in Taipei、Taiwan using cluster analysis. Water、Air and Soil pollutantion. 113: 241-260.
Longhurst、J. W. S.、D. W. Raper、D. S. Lee、B. A. Heath、B. Conlan、and H. J. King (1993) Acid deposition:A select review 1852-1990-1. emissions、transport、deposition、effect on freshwater system and forest. Fuel. 72: 1261-1280.
Mannings、S.、S. Smith、and J. B. Bell (1996) Effect of acid deposition on soil acidification and metal mobilization. Applied Geochemistry. 11: 139-143.
McBride、M. B. (1994) Environmental chemistry of soild. Oxford university press、New York.
McGrath、S. P. and Smith S. (1990) Chromium and nickel. In Heavy metals in soils (ed B. J. Alloway)、p.125-150. Blackie and Son、New York.
McKenzie、R. M. (1980) The adsorption of lead and other heavy metals on oxides of manganes and iron. Australian Journal Soil of Research. 18: 61-73.
Mclean、E. O. (1982) Soil pH and lime requirement. P. 199-244. In A. L. Page et al. (eds.) Methods of soil Analysis、Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA、Madison、WI、USA.
Mehra、O. P.、and M. L. Jackson (1960) Iron osides removed from soils and clays by a dithonite-citrate system buffered with sodium bicarbonate. Clays and Clay Minerals. 7: 317-327.
Mench、M. J.、V. L. Didier、M. Loffler、A. Gomez、and P. Masson (1994) A mimicked In-situ remediation study of metal-contaminated soils with emphasis on cadmium and lead. Journal of Environment Quality. 23: 58-63.
Mengel K.、and E. A. Kirkby (1981) Principles of Plant Nutrition. pp: 335-340.
Nelson、D.W.、and L.E. Sommers (1982) Total carbon、OC、and organic matter. p. 539-577. In A. L. Page et al.(eds.) Methods of Soil Analysis、Part 2. 2nd ed. Agron. Monogr. 9. ASA and ASSS、Madison、WI、USA.
Oene、H. V. (1992) Acid deposition and forest nutrient imbalances. Water、Air and Soil Pollution. 63:33-49.
Rarfitt、R. L.、and R. C. Smart (1978) The mechanism of sulfate adsorption on iron oxides. Soil Science Society America Journal. 42: 48-50.
Raynoret、G. S.、and J. V. Hayes (1982) Conecntration of some ionic speciesin central long Island、New York precipitation in relation to meteorological variables. Water、Air and Soil Pollutantion. 17: 309-335.
Reuss J. O.、and D.W. Johnson (1985) Effect of soil processes on the acidification of water by acid deposition. Journal of Environment Quality. 14: 26-31.
Schmalfuss、K.、and G. Reinicke (1960) The effect of increasing potassium rate in the form of KCl and K2SO4 on yield and content of water 、N-compounds、K、Cl、and S fractions of spinach grown in pot experiments. Z. Pflanzenernahr、Dung. Bodenk. 91: 21-29.
Seinfeld、J. H. (1986) Atmospheric Chemistry and Physics of Air Pollution、A Wiley-Interscience Publication、New York、USA p.738.
Senfeld、J. H.、and S. N. Pandis (1998) Atmospheric chemistry and physics: from air pollution to climate change、A Wiley-Interscience Publication、New York.
Shaun、A. W.、C. H. Thomas、and P. S. S. Eric (1999) The impact of simulated acid rain on soil leachate and xylem chemistry in a jack pine(pinus banksiana lamb) stand in Northern Ontario、Canada. Water 、Air 、and Soil Pollution. 111: 89-108.
Sheppard、M. I.、and D. H. Thibault (1992) Desorption and extraction of selected heavy metals from soils. Soil Science Society of America Journal. 56: 415-423.
Singh、B. R.、G. abrahamsem and A. Stuanes (1980) Effect of simulated acis rain on sulfate movement in acid forest soils. Soil Science Society of America Journal. 44: 75-80.
Spalding、R. F.、and M. E. Exner (1993) Occurrence of nitrate in groundwater-a review. Journal of Environmental Quality. 22: 392-402.
Tan、C. S.、C. F. Drury、W. D. Reynolds、P. H. Groenevelt、and H. Dadfar (2000) Water and nitrate loss through tiles under a clay loam soil in Ontario after 42 years of consisten fertilization and crop rotation. Agriculture、Ecosystems and Environment. 93: 121-130.
Tessier A.、F. Rapin、and R. Carignan (1985) Trace metals in oxic lake sediments: Possible adsorption onto iron oxyhydroxicies. Geochimica et Cosmochimica Acta. 49: 183-194.
Thomas、G. W. (1982) Exchangeable cation. In A. L. Page et al.(eds.) Methods of Soil Analysis、Part 2. 2nd ed. Agron. Monogr. 9. ASA and ASSS、Madison、WI、USA. p.159-165.
Walna、B.、S. Drzymala、and J. Siepak (1998) The impact of acid on calcium and magnesium status in typical soils of the Wielkopolski National Park.
The Science of the Total Environment. 220: 115-120.
Walna、B.、and J. Siepak (1999) Research on the variability of physico-chemical parameters characterising acid precipitation at the Jeziory Ecological Station in the Wielkopolski National Park (Poland). The Science of the Total Environment. 239: 173-187.
Wang、W.、J. Liang、and Y. Cheng (1992) Regional sources of acid deposition in South China. Journal of China Environmental Science. 12:1-16. (in Chinese).
Wang、T. J.、L. S. Jin、Z. K. Li、and K. S. Lam (2000) A modeling study on acid rain and recommended emission control strategies in China. Atmospheric Environment. 34: 4467-4477.
Wolff、G. T.、P. J. Golub、and H. Hawkins (1979) Acid precipitation in the New York meteoroplitan area its relationship to meteorogical factor. Environmental Science and Technology. 13: 209-212.
Wu、C. C.、W. S. Kou、and C. S. Yang (1991) A study on long-range transport of air pollutants over East Asia. Proc. 8th Conf. Air Pollutant Control and Technol、Taipei、Taiwan、p. 277-287.(in Chinese).
Yong、R. N.、A. M. O. Mohamed、and B. P. Warkentin (1992) Principles of contaminant transport in soils. Elsevier Science Publisher B. V.、Amsterdam. p.342.
Zhang、J. E.、Y. Ouyang、and D. J. Ling (2007) Impacts of simulated acid rain on cation leaching from the Latosol in south China. Chemosphere. 67:2131-2137.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
First Page Prev Page Next Page Last Page top
1. The Study of Risk Assessment Framework on Cadmium Pollution in Soils by Using Geographical Information System
2. Influence of Acid Pricipitation on Leachate from Landfill of Incinerator Bottom Ashes
3. Cations leaching from Lien-Hua-Chi watershed forest soil treated by simulated acid rain solutions
4. Evaluating bioavailability of heavy metals in twenty-two soils of Taiwan by chemical extractions and uptake by Chinese cabbage
5. Temporal variation of soil ion concentrations and effect of simulated acid rain solutions on leaching soil cations at diffferent vegetations of the Ta-Ta-Chia region
6. Evaluation of Legume Growth in the Arsenic Polluted Acid Soil Using Various pH Soils Amendments
7. Investigation of Phosphorous Removal in River Water with Basic Oxygen Furnace Slag
8. Investigation of Heavy Metal Accumulation and Leaching in Farmland Soils Influenced by Irrigated Effluent from Electronic Wastewater
9. Chemical Characterization of Heavy Metal and Organic Matter in Swine Manure Compost and Its Amended Soils
10. Geostatistical Analysis of Soil Heavy Metal Content in Taiwan
11. Phytoextraction of copper , lead and cadmium from polluted soil
12. The assessment for changes of heavy metal contents in soils
13. Estimating Spatial Distribution of Heavy Metals in Soil
14. Comparison of Different Digestion Methods for Heavy Metal Contents Using Soils, Sediments, Composts, Sludges, and Solid Wastes
15. A study on the establishment of heavy metal bearing capacity in soil through the risk assessment and apply to a hazardous waste site
 
system icon system icon