跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 01:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:姜佩琪
研究生(外文):Chiang, Pei-Chi
論文名稱:白蝦凝固蛋白之cDNA分子選殖與外在因子對其轉錄表現之影響
論文名稱(外文):Molecular cloning of clottable protein (CP) of the white shrimp Litopenaeus vannamei and its transcription under extrinsic influences
指導教授:鄭文騰鄭文騰引用關係
指導教授(外文):Cheng, Winton
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:水產養殖系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:118
中文關鍵詞:凝固蛋白白蝦病原菌溫度鹽度
外文關鍵詞:clottable proteinLitopenaeus vannameipathogentemperaturesalinityammonia
相關次數:
  • 被引用被引用:0
  • 點閱點閱:281
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
開放式循環系統的水生動物,例如甲殼類動物,其血液凝固是必要的免疫機制,可使生物體有效的防止受傷或感染後,其體液的流失及微生物的入侵。本研究的主要目的是藉由分子選殖、組織表現及結構,企圖了解白蝦 (Litopenaeus vannamei) 凝固蛋白(clottable protein, CP) 的分子特性,並探討注射溶藻弧菌 (Vibrio alginolyticusc) 後及在不同溫度、鹽度和氨處理下,其血液凝固時間及CP mRNA表現。利用草蝦 (Penaeus monodon) 及淡水螯蝦 (Pacifastacus leniusculus) CP保守胺基酸區域設計引子,以反轉錄-聚合酶鏈鎖反應 (RT-PCR) 由白蝦心臟選殖CP cDNA。基因序列全長為5495 bp 包括1666 個胺基酸的轉譯讀窗及一段14個胺基酸的推測訊號胜肽,其分子量為187.917 kDa、等電點約5.27。白蝦CP序列上發現二個推測胞基質受器 (integrin) 結合區域RGD (Arg-Gly-Asp) 及三個醣基化位置。胺基酸全長序列比對結果顯示,與草蝦及螯蝦之相同性分別為85%和37%。使用RT-PCR與real-time PCR分析,發現白蝦CP在血球、心臟、鰓、肌肉、肝胰臟、類淋巴及腸道中均有表現。白蝦注射病原菌V. alginolyticus 12及24小時後,血液所需凝固時間明顯長於控制組。白蝦血液凝固時間在水溫22及34 ℃下2天,明顯長於28 ℃。7天後,水溫22 ℃的血液凝固時間明顯短於28 ℃,而在34 ℃下的血液凝固時間明顯長於28 ℃。在鹽度35及45 ‰下2及7天,血液凝固時間明顯長於其它鹽度組。白蝦浸泡於5及10 mg l-1氨-氮中7天,血液凝固時間明顯長於控制組及1 mg l-1濃度組。白蝦注射病原菌V. alginolyticus後,血球、肝胰臟和肌肉組織中CP表現量並無顯著差異,心臟CP表現量在注射24小時明顯較高,鰓CP之表現量在6小時明顯降低後,在12小時明顯地提高,在24小時恢復,腸道之CP表現量在第3小時明顯低於控制組、第6小時則恢復,但12小時則明顯高於控制組而24小時則又恢復無顯著差異。白蝦血球CP表現量在22 ℃及34 ℃下2天,會明顯高於28 ℃組,且在34 ℃下之表現量亦大於22 ℃。心臟及肝胰臟CP之表現量在34 ℃下2天,其表現量明顯的增加,但7天後恢復至原來水平。鰓CP之表現量在34 ℃下2天其表現量明顯的降低,但7天後明顯的增加。肌肉之CP表現量在34 ℃下2天,其表現量明顯的增加,但7天後明顯的降低。腸道CP之表現量在34 ℃下2天,其表現量明顯的增加,7天後22 ℃之CP表現量也明顯的增加。白蝦血球CP之表現量在鹽度45 ‰下2天,其表現量明顯的低於其它鹽度組,但7天後恢復至原來水平。心臟CP之表現量在鹽度5 ‰下2天,其表現量明顯的增加,但7天後恢復至原來水平。鰓在鹽度5 ‰下2天,其CP之表現量明顯的增加,但7天後恢復;在鹽度15 ‰下7天後,其表現量明顯的增加。肝胰臟CP之表現量在鹽度35及45 ‰下7天,其表現量明顯的增加。肌肉及腸道CP之表現量各組間及各時段間均無顯著性改變。血球CP之表現量在1、5及10 mg l-1氨-氮中7天,表現量明顯的增加。心臟、鰓及腸道CP之表現量在各組間及各時段間皆無顯著性改變。肝胰臟CP之表現量在1、5及10 mg l-1氨-氮中2天,表現量明顯的高於控制組。肌肉CP之表現量在10 mg l-1氨-氮中2天,其表現量明顯的增加,7天後5 mg l-1及10 mg l-1氨-氮處理組之CP表現量也明顯的增加。
Blood coagulation is an essential immune mechanism for aquatic animals with an open circulatory system such as crustaceans. This research is aimed to comprehend the molecular characteristics of the clottable protein in white shrimp, Litopenaeus vannamei, through molecular cloning of its cDNA and tissues expression, profiles. The expression of CP transcripts under different temperature, salinity and ammonia and post-Vibrio alginolyticusc injection were also investgated. CP cDNA was obtained from the heart of the white shrimp by a reverse-transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA using oligonucleotide primers based on the CP sequence of tiger shrimp, Penaeus monodon, and freshwater crayfish, Pacifastacus leniusculus. The full-length cDNAs of CP consisted of 5495 bp open reading frame encode 1666 amino acids (aa) with predicted include a 14-aa signal peptide, molecular mass of the mature protein was 187.917 kDa with an estimated pI of 5.27. Two putative integrin binding motif (cell adhesion site), RGD (Arg-Gly-Asp) and three N-glycosylation site were conserved in CP of white shrimp. Sequence comparison showed that CP deduced aa of L. vannamei had overall similarities of 85% and 37% to that of P. monodon and P. leniusculus respectively. Shrimp CP was found to exist in haemocyte, heart, gill, muscle, hepatopancreans, lymph organ and intestine by RT-PCR and real-time PCR. The clotting time of V. alginolyticus injection shrimps are significant longer than un-injection ones at 12 and 24 hours. At 22 and 34 ℃ water temperature for 2 days, the clotting time is significant longer than 28 ℃ treatment, moreover, after 7 days, it is significant shorter at 22 ℃treatment and significant longer at 34 ℃compared to 28 ℃. The clotting time in salinity 35 and 45 ‰ treatment for 2 and 7 days is significant longer than other treatments. When white shrimps expose to 5 and 10 mg l-1 ammonia-N for 7 days, the clotting time is significant longer than 1 mg l-1 and control groups. In V. alginolyticus challenge tests, shrimp CP expression in haemocyte, hepatopancrans and muscle were no significantly, heart CP was sharply increased post 24 h injection, but gill CP and intestine CP expression were down-regulation post 6 and 3 h, respectively, and return to initial levels at 24 and 24 h, respectively. Shrimp were exposed to 22 oC and 34 oC water for 2 days, hemocyte CP of shrimp at 34 oC was higher than shrimp at 22 oC, but both of them were higher than control shrimp at 28 oC. Heart CP and hepatopancreans CP were significantly raised when shrimp to be placed in 34 oC wate for 2 days, but return to initial levels after 7 days. Gill CP expression was significantly decreased after 2 days exposure to 34 oC water, and significantly increased after 7 days. The increment of CP expression was detected in muscle and intestine of shrimp at 34 oC for 2 days, but the graduals decrease of CP expression was detected in muscle of shrimp at 34 oC for 7 days. In salinity trials, heamocyte CP expression was lower than others treatments at 45 ‰ for 2 day, but return to initial levels post 7 days exposure to 45 ‰. Heart CP was down-regulation at 5 ‰ salt water for 2 days, but return to initial levels after 7 days. Shrimp at 15 ‰ salt water for 2 day, its gill CP expression was significantly increased, and a recovery was detected at 7 days. The expression of hepatopancreans CP was increase significantly at 35 and 45‰ for 7 days, and no significant different expression of CP was measured in muscle and intestine. Heamocyte CP expression was significantly increased after exposure to 1, 5 and 10 mg l-1 ammonia-N for 7 days, but no significantly different was found in the tissues of heart, gill and intestine. Up-regulation of CP was detected in shrimp at 1, 5 and 10 mg l-1 ammonia-N for 2 days when compared with control group. Muscle CP of shrimp at 10 mg l-1 ammonia-N for 2 days was increased significantly, and similar up-regulation was also to be found in muscle CP of shrimp at 5 and 10 mg l-1 ammonia-N for 7 days.
摘要....................................................................................................................I
Abstract ..........................................................................................................III
誌謝.................................................................................................................VI
目錄................................................................................................................VII
圖表目錄 ......................................................................................................XIII
第1章 前言 .....................................................................................................1
第2章 文獻回顧 .............................................................................................4
2.1台灣白蝦養殖現況 4
2.2白蝦的生態 5
2.2.1 白蝦的外型特徵 5
2.2.2白蝦分類系統上的地位 5
2.2.3白蝦對水質與環境的需求 6
2.2.4白蝦之疾病 6
2.3甲殼類防禦機制 8
2.3.1體液性免疫反應 8
2.3.1.1沉澱素 (precipitins) 9
2.3.1.2殺菌素 (bactericidins) 9
2.3.1.3凝集素 (agglutinins or lectins) 9
2.3.1.4調理素 (opsonins) 9
2.3.1.5抗微生物胜肽 (inducible antimicrobial peptides) 9
2.3.1.6抗病毒因子 (antiviral factors) 10
2.3.1.7血球凝集素 (hemagglutinin) 10
2.3.2細胞性防禦反應 10
2.3.2.1透明血球 (hyaline cell, HC) 12
2.3.2.2半顆粒血球 (semi-granular cells, SGC) 12
2.3.2.3顆粒血球細胞 (granular cell, GC) 12
2.4凝血系統 12
2.4.1無脊椎動物的凝血系統 13
2.4.2甲殼類凝血系統 13
2.5甲殼類動物CP的研究 15
2.6病原感染及外在因子對免疫因子變動之影響 17
2.6.1病原性細菌感染對甲殼類免疫的影響 17
2.6.2水溫對甲殼類免疫的影響 18
2.6.3鹽度對甲殼類免疫的影響 19
2.6.4氮代謝產物對甲殼類免疫的影響 19
第3章 材料與方法 .......................................................................................21
3.1白蝦clottable protein (CP) 基因選殖 21
3.1.1實驗用動物 21
3.1.2全量核醣核酸 (Total RNA) 之萃取 21
3.1.3 CP基因引子 22
3.1.3.1引子 (primer) 的設計 22
3.1.3.2退化性引子 (degenerated primer) 的設計 22
3.1.3.3專一性引子 23
3.1.4反轉錄-聚合酶連鎖反應 (reverse transcription polymerase chain reaction, RT-PCR) 24
3.1.4.1互補去氧核醣核酸之反轉錄之合成 (cDNA synthesis by reverse transcription, RT) 24
3.1.4.2聚合酵素鏈鎖反應 (polymerase chain reaction, PCR). 25
3.1.5 DNA凝膠電泳分析 26
3.1.6 勝任細胞之製備 (competent cell preparation) 26
3.1.7 DNA重組接合 (ligation) 27
3.1.8 質體轉型 (transformation) 27
3.1.9 選殖株篩選 (screening) 27
3.1.10互補去氧核醣核酸之快速增幅 (rapid amplification of cDNA ends, RACE ) 27
3.1.10.1互補去氧核醣核酸之5'端區域快速增幅 (5'- rapid amplification of cDNA ends, 5'-RACE) 27
3.1.10.2互補去氧核醣核酸之3'端區域快速增幅 (3'- rapid amplification of cDNA ends, 3'-RACE) 29
3.1.11核酸序列之分析整理和比對 29
3.1.12 CP基因親緣關係分析 (phylogeny) 30
3.2白蝦CP基因之組織分佈 31
3.2.1 RT-PCR分析CP基因之組織分佈 31
3.2.2 Real-time PCR分析CP基因之組織表現 31
3.3白蝦血液凝固時間試驗 31
3.3.1注射病原性細菌Vibrio alginolyticus及生理食鹽水對 白蝦血液凝固時間之影響 32
3.3.2水溫對白蝦血液凝固時間之影響 32
3.3.3鹽度對白蝦血液凝固時間之影響 32
3.3.4氨對白蝦血液凝固時間之影響 32
3.4相對定量PCR (Relative Real-time quantitation PCR) 33
3.4.1 real-time PCR 專一性引子之設計 33
3.4.2即時聚合酶鏈鎖反應 (real-time quantitation PCR) 33
3.4.3資料分析彙整 35
3.5白蝦CP基因表現 35
3.5.1注射病原性細菌Vibrio alginolyticus及生理食鹽水對 白蝦CP表現量之影響 35
3.5.2水溫對白蝦CP表現量之影響 35
3.5.3鹽度對白蝦CP表現量之影響 35
3.5.4氨對白蝦CP表現量之影響 36
3.6統計分析 36
第4章 結果 ...................................................................................................37
4.1白蝦凝固蛋白 (clottable protein, CP) 基因選殖及序列分析 37
4.2 CP基因親緣關係分析 44
4.3白蝦CP基因之組織分佈 48
4.3.1 RT-PCR分析CP基因之組織分佈 48
4.3.2 Real-time PCR分析CP基因之組織分佈 49
4.4病原感染及外在因子對白蝦血液凝固時間試驗與CP基因表現 量之影響 51
4.4.1注射病原菌Vibrio alginolyticus及生理食鹽水對白蝦血液 凝固時間之影響 51
4.4.2注射病原菌Vibrio alginolyticus及生理食鹽水對白蝦CP 表現量之影響 52
4.4.3水溫對白蝦血液凝固時間之影響 57
4.4.4水溫對白蝦CP表現量之影響 58
4.4.5鹽度對白蝦血液凝固時間之影響 64
4.4.6鹽度對白蝦CP表現量之影響 65
4.4.7氨對白蝦血液凝固時間之影響 70
4.4.8氨對白蝦CP表現量之影響 71
第5章 討論 ...................................................................................................76
5.1白蝦凝固蛋白 (clottable protein, CP) 基因選殖 76
5.2白蝦CP之組織表現 77
5.3病原感染及外在因子對白蝦血液凝固時間和CP基因之表現 78
5.3.1病原菌感染對白蝦免疫的影響 78
5.3.2環境因子對白蝦免疫的影響 80
第6章 結論 ...................................................................................................84
參考文獻 ……….............................................................................................85
附錄一 實驗儀器及器材 ...........................................................................106
附錄二 反應試劑 .......................................................................................107
附錄三 縮寫對照 ………...........................................................................114
附錄四 Map of pCP ® II-TOPO ® .............................................. ……….115
附錄五 蝦類體內免疫系統概圖 ………...................................................116
附錄六 甲殼類凝血系統圖 ………...........................................................117
作者簡介 ………...........................................................................................118
中華民國台灣地區漁業統計年報,2002。行政院農業委員會漁業署。
中華民國台灣地區漁業統計年報,2005。行政院農業委員會漁業署。
行政院農業委會編印,1994。蝦病之管理對策。農委會漁業特刊第四十九號。pp. 9-47。
王融雍,2004。鹽度與溫度變化影響白蝦免疫反應及其抗Vibrio alginolyticus感染之研究。國立臺灣海洋大學水產養殖學系碩士論文。
余俊億,2000。太平洋白蝦感桃拉症病毒後血漿之分析。國立臺灣大學動物研究所碩士論文。
林明男、曾寶順。1999。近月來白蝦置台灣湠栽紀錄-兼談完全養殖系統建立的寄望。養魚世界4:20-26。
邱子庭,2001。分子選殖與草蝦抗微生物胜肽特性之研究。國立臺灣海洋大學水產養殖學系碩士論文。
洪嘉文,2006。白蝦轉醯胺酵素cDNA分子選殖與外在因子對其轉錄之影響。國立屏東科技大學水產養殖學系碩士論文。
陳弘成,1999。白蝦養殖與管理方式。養魚世界273:66-68。
陳弘成,2004。第十一章白蝦養殖要點修正。國立台灣大學動物系。
陳忠廷,1993。水中氨濃度對草蝦和斑節蝦之血淋巴氮代謝及滲透壓調節之影響。國立台灣海洋大學水產養殖學系碩士論文。
徐榮彬,1996。養殖草蝦白斑病。南區水產動物簡訊。
郭恩展,2006。氨對白蝦之毒性影響研究。國立臺灣大學漁業科學研究所碩士論文。
張福平,1999。國際市場資訊-美國蝦類白點病。水產種苗23:13。
蔡瓊慧,2005。白蝦脂多醣及β-1,3-葡聚醣結合蛋白之cDNA分子選殖與內外在因子對其轉錄表現之影響。國立屏東科技大學水產養殖系碩士論文。
賴靜怡,2004。南美白蝦原酚氧化酵素cDNA分子選殖與表現之研究。國立屏東科技大學水產養殖系碩士論文。
鄭錦德,1994。草蝦白點病。台南市水產動物防疫報導。
盧民益、黃美瑩、張錦宜、張振元、劉文御、徐崇仁。2000。白蝦室內高密度養殖初步試驗。養魚世界285:69-77。
Anderson, D.P., 1992. Immunostimulant, adjuvants and vaccine carriers in fish: Application to aquaculture. Annual. Rev. Fish Dis. 2, 281-307.
Anderson, J.J., Okubo, A., Robbins, A.S., Richard, F.A., 1982. A model for nitrite and nitrate distributions in oceanic oxygen minimum zones. Deep Sea Research 29, 1113-1140.
Armstrong, D.A., 1979. Nitrogen toxicity to crustacean and aspects of its dynamics in culture system. In: D. Lewis, J. Ling, (eds.), 2nd Biennial Crustacean Health Workshop. Texas A and M Sea Grant, TAMM-SE-79-114, Texas pp. 329-360.
Bachère, E., Destoumieux, D., Bulet, P., 2000. Penaeidine, antimicrobial peptides of shrimp: a comparison with other effectors of innate immunity. Aquaculture 191, 71-88.
Bachère, E., Mialhe, E., Rodriguez, J., 1995. Identification of defence effectors in the haemolymph of crustaceans with particular reference to the shrimp Penaeus Japonicus (Bate): prospects and application. Fish Shellfish Immuol. 5, 597-612.
Barracco, M.A., Duvic, B., Söderhäll, K., 1991. The β-1,3-glucanbinding protein from the crayfish Pacifastacus leniusculus, when reacted with a β-1,3-glucan, induces spreading and degranulation of crayfish granular cells. Cell Tissue Res. 266, 491-497.
Bauchau, A.G., 1981. Crustaceans. Invertebrate Blood Cells. Academic Press, New York, 2, 385-420.
Bell, T.A., Lightner, D.V., 1988. A handbook of normal penaeid shrimp histology. Allen Press, Lawrence, Kansas, USA. 1, 26-33.
Binns, R., Peterson, A.J., 1969. Nitrogen excretion by the spiny lobster Jasus edwardsi (Hutton). The role of the antennal gland. Biol. Brll. 136, 147-153.
Busselen, P., 1970. Effects of moulting cycle and nutritional conditions on hemolymph proteins in Carcinus maenas. Copm. Biochem. Physiol. 37, 73-80.
Cai, S., Huang, J., Wang, C., Song, X., Sun, X., Yu, J., Zhang, Y., Yang, C., 1995. Epidemiological studies on the explosive epidemic diseases of prawn in 1993-1994. J. Fish China. 19, 112-117.
Castilles, F.J., Lawrence, A., 1981. The effect of salinity on the osmotic, sodium and chloride concentrations in the hemolymph of euryhaline shrimp of the genus Penaeus. Comp. Biochem. Physiol. 68, 78-80.
Cerenius, L., Liang, Z., Duvic, B., Keyser, P., Hellman, U., Palva, E.T., Iwanaga, S., Söderhäll, K., 1994. Structure and Biological activity of a l,3-β-D glucan binding protein in Crustacean Blood. J. Biological Chemistry. 269, 29462-29467.
Chen, J.C., Chen, J.M., 1997. Arginase specific activity and nitrogenous excrition of Penaeus japonicus exposed to elevated ambient ammonia. Mar. Ecol. Prog. Ser. 153, 197-202.
Chen, J.C., Cheng, S.Y., 1995a. Accumulation of urea in the haemolymph and ammonia of Penaeus japonicus exposed to ambient nitrite. Comp. Biochem. Physiol. 110, 1-6.
Chen, J.C., Cheng, S.Y., 1995b. Changes of oxyhemocyanin and protein levels in the hemolymph of Penaeus japonicus exposed to ambient nitrite. Aquat. Toxicol. 33, 215-226.
Chen, J.C., Lin, M.N., Ting, Y.Y., Lin, J.N., 1995. Survival, haemolymph osmolality and tissue water of Penaeus chinensis juveniles acclimated to different salinities and temperature levels. Comp. Biochem. Physiol. 110, 253-258.
Chen, M.Y., Hu, K.Y., Huang, C.C., Song, Y.L., 2005. More than one type of transglutaminase is involved in shrimp coagulation. Dev. Comp. Immunol. 29, 1003-1016.
Chen, Y.L., Huang, S.H., Cheng, J.H., Tsai, I.H., 1993. Relationship between hemolyph coagulation and disease in shrimps: (II) Purification and characterization of the hemolymph coagulogen of penaeids, COA Fisheries Series, No. 40 (Kou K. H. Eds.), Taipei, ROC. Fish Disease Res. 13, 1-9.
Cheng, W., Chen, J.C., 2000. Effects of pH, temperature and salinity on immune parameters of the freshwater prawn, Macrobrachium rosenbergii. Fish Shellfish Immuol. 10, 387-391.
Cheng, W., Chen, J.C., 2001. Effects of intrinsic and extrinsic factors on the haemocyte profile of the prawn, Macrobrachium rosenbergii. Fish Shellfish Immunl. 11, 53-63.
Cheng, W., Chen, J. C., 2002. The virulence of Enterococcus to freshwater prawn Macrobrachium rosenbergii and its immune resistance under ammonia stress. Fish Shellfish Immuol. 12, 97-109.
Cheng, W., Liu, C.H., Chen, J.C., 2002. Effects of nitrite on interaction between the giant freshwater prawn Macrobrachium rosenbergii and its pathogen Lactococcus garvieae. Dis. Aquat. Org. 50, 189-197.
Chisholm, J.R.S., Smith, V.J., 1994. Variation of antibacterial activity in the haemocytes of the shore crab, Carcinus maenas, with temperature. J. Mar. Biol. Assoc. U.K. 74, 979-982.
Dall, W., Smith, D.M., 1981. Ionic regulation of four species of penaeid prawn. J. Exp. Mar. Biol. Ecol. 54, 55-64.
Dean, J.M., Vernberg, F.J., 1966. Hypothermia and the blood of crabs. Comp. Biochem. Physiol. 17, 19-22.
Destoumieux, D., Bulet, P., Loew, D., Dorsselaer, A.V., Rodriguez, J., Bachère, E., 1997. Penaeidins, a new family of antimicrobial peptides isolated from the shrimp, Penaeus vannamei (Decapoda). J. Biol. Chem. 72, 28398-28406.
Destoumieux, D., Bulet, P., Strub, J.M., Bachère, E., 1999. Recombinant expression and range of activity of penaeidins, antimicrobial peptides from penaeid shrimp. Eur. J. Biochem. 266, 335-346.
Destoumieux, D., Saulnier, D., Garnier, J., Jouffrey, C., Bulet, P., Bachère, E., 2001. Crustacean immunity-antifungal peptides are generated from the c-terminus of shrimp hemocyanin in response to microbial challenge. J. Biol. Chem. 276, 47070-47077.
Dhar, A.K., Michelle, M.R., Pain, A., Klimpel, K.R., 2002. The Lipopolysaccharide and β-1,3-glucan binding protein gene is upregulated in white spot virus-infected shrimp (Penaeus stylirostris). J. Virol. 76, 7140-7149.
Doolittle, R.F., Rily, M., 1990. The amino-terminal sequence of lobster fibrinogen reveals common ancestry with vitellogenins. Biochem. Biophys. Res. Commun. 167, 16-19.
Dresel, E.I.B., Moyle, V., 1950. Nitrogenous excretion in amphipod and isopods. J. Exp. Biol. 27, 210-223.
Duncan, D.B., 1955. Multiple-range and multiple F test. Biometrics. 11, 1-42.
Durliat, M., 1985. Clotting processes in crustacea decapod. Biol. Rev. 60, 473-498.
Durliat, M., Vranckx, R., 1982a. Protein of aqueous extracts from the hepatopancreas of Astacus leptodacrylus. 1. Changes in protein during the molt cycle. Comp. Biochem. Physiol. 71, 155-164.
Durliat, M., Vranckx, R., 1982b. Protein of aqueous extracts from the hepatopancreas of Astacus leptodacrylus. 2. Immunological identities of proteins from hepatopancreas and blood. Comp. Biochem. Physiol. 71, 165-173.
Durliat, M., Vranckx, R., 1983. Immunochemical study of the proteins of various tissues in Crustacea (Decapoda): nature, role, origin. Arch. Int. Physiol. Biochim. 91, 297-332.
Durliat, M., Vranckx, R., 1989. Relationships between plasma and hemocyte proteins in Decapoda. Comp. Biochem. Physiol. 92, 595-603.
Duvic, B., Söderhäll, K., 1990. Purification and characterization of a β-1,3-glucan binding protein from plasma of the crayfish Pacifastacus leniusculus. J. Biol. Chem. 265, 9327-9332.
Eddy, F.B., Williams, E.M., 1987. Nitrite and fresh water fish. Journal of Chemical Ecology 3, 1-38.
Ey, P.L., 1991. Phagocytosis in crustacea: The role of opsonins. In: Gupta, A.P. (ed.), Immunology of insects and other arthropods. CRC Press, Boca Raton, Florida. 34, 201-235.
Fontaine, C.T., Lightner, D.V., 1974. Observations on the phagocytosis and elimination of carmine particles injected into the abdominal musculature of the white shrimp, Penaeus setiferus. J. Invert Pathol. 24, 141-148.
Fuller, G.M., 1978. Are lobster fibrinogen and cold in soluble- immunoglobulin related molecules? Ann. NY Acad. Sci. 312, 31-37.
Fuller, G.M., Doolittle, R.F., 1971a. Studies of invertebrate fibrinogen. I. Purification and characterization of fibrinogen from the spiny lobster. Biochemistry. 10, 1305-1311.
Fuller, G.M., Doolittle, R.F., 1971b. Studies of invertebrate fibrinogen. II. Transformation of lobster fibrinogen into fibrin. Biochemistry. 10, 1311-1355.
Ghidalia, W., Vendrely, R., Montmory, C., Coiraut, Y., Brouard, M.O., 1981. Coagulation in decapod crustacean. Comparative studies of the clotting process in species from group A, B and C. J. Comp. Physiol. 142, 473-478.
Gillespie, J.P., Kanost, M.R., Trenczek, T., 1997. Biological mediators of insect immunity. Annual. Rev. Ento. 42, 611-643.
Goldenberg, P.Z., Huebner, E., Greenberg, A.H., 1984. Activation of lobster haemocytes for phagocytosis. J. Invert. Pathol. 43, 77-88.
Götz, P., 1986. Encapsulation in arthropods. In: Immunity in Invertebrates: Brehelin, M., (Ed.), Cells, Molecules, and Defense Reactions. Springer-Verlag, Berlin. Heidelberg. pp. 153-170.
Gunnarsson, S.G.S., Lackie, A.M., 1985. Haemocytic aggregation in Schistocerca gregaria and Periplaneta amerricana as a response to injected substances of microbial origin. J. Invert. Phathol. 46, 312-319.
Hall, M., van Heusden, M.C., Söderhäll, K., 1995. Idetification of the major lipoproteins in crayfish hemolymph as proteins involved in immune recognition and clotting. Biochem. Biophys. Res. Commun. 216, 939-946.
Hall, M., Wang, R., van Antwerpen, R., Sottrup-Jensen, L., Söderhäll, K., 1999. The crayfish plasma clotting protein: a vitellogenin-related protein responsible for clot formation crustacean blood. Proc. Natl. Acad. Sci. 96, 1965-1970.
Hartenstein, R., 1970. Nitrogen metabolism in non-insect arthropods. In: J. M. Campbell (Ed), Comparative Biochemistry of Nitrogen Metabolism. Academic Press, New York, pp. 289-372.
Hennig, O.L., Andreatta, E.R., 1998. Effect of temperature in an intensive nursery system for Penaeus paulensis. Aquacluture 164, 167-172.
Higgins, D.G., Bleasby, A.J., Fuchs, R., 1992. CLUSTAL V: improved software for multiple sequence alignment. Comput. Appl. Biosci. 8, 189-191.
Hoffmann, J.A., Reichhart, J.M., Hetru, C., 1996. Innate immunity in higher insects. Curr. Opin. Immunol. 8, 8-13.
Hose, J.E., Martin, G.G., Grenard, A.S., 1990. A decapod hemocyte classification scheme integrating morphology, cytochemistry and function. Biol. Bull. 178, 11-45.
Huang, H.J., 1983. Factors affecting the successful culture of Penaeus stylirostris and Penaeus vannamei at an estuarine power plant site: temperature, salinity, inherent growth variability, damselfly nymph predation, population density and distribution, and polyculture. Ph. D dissertation. Texas A & M University, College Station, TX, USA 221.
Huggins, A.K., Mounday, K.A., 1968. Crustacean metabolism. In: O. Lowenstein (Ed.), Advances in Comparative. Com. Biochem. Physiol. 3, 271-378.
Inouye, K., Miwa, S., Oseko, N., Nakano, H., Kimura, T., Momoyama, K., Hiraoka, M., 1994. Mass mortalities of cultured kuruma shrimp Penaeus japonicus in Japan in 1993: electron microscopic evidence of the causative virus. Fish Pathol. 29, 149-158.
Iwanaga, S., Kawabata, S., 1998. Evolution and phylogeny of defense molecules associated with innate immunity in horseshoe crab. Front. Biosci. 3, 973-984.
Jiravanichpaisal, P., Söderhäll, K., Söderhäll, I., 2004. Effect of water temperature on the immune response and infectivity pattern of white spot syndrome virus (WSSV) in freshwater crayfish. Fish Shellfish Immuol. 17, 265-275.
Johansson, M.W., 1999. Cell adhesion molecules in invertebrate immunity. Dev. Comp. Immunol. 23, 303-315.
Johansson, M.W., Keyser, P., Sritunyalucksana, K., Söderhäll K., 2000. Crustacean haemocytes and haematopoiesis. Aquaculature 19, 45-52.
Johansson, M.W., Söderhäll, K., 1985. Excytosis of the prophenoloxidase activating system from crayfish hemocytes. J. Comp. Physiol. 156, 175-181.
Johansson, M.W., Söderhäll, K., 1988. Isolation and purification of a cell adhesion factor from crayfish blood cells. J. Cell Biol. 106, 1795-1803.
Johansson, M.W., Söderhäll, K., 1989a. A cell adhesion factor from crayfish hemocytes has degranulating activity towards crayfish granular cells. Insect Biochem. Mol. Biol. 2, 183-190.
Johansson, M.W., Söderhäll, K., 1989b. Cellular immunity in crustaceans and the proPO system. Parasitol. Today. 5, 171-176.
Johansson, M.W., Söderhäll K., 1995. The prophenoloxidase activating system and associated proteins in invertebrates. Invertebrate Immunology. Rinkevich, B. and Muller, W. E. G., eds., Springer, Berlin. 15, 46-66.
Johnson, P.T., 1987. A review of fixed phagocytic and pinocytic cells of decapod crustaceans with remark on hemocytes. Dev. Comp. Immunol. 23, 303-315.
Kimura, M., 1980. A simple method for estimating rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111-120.
Kinne, O., 1963. The effect of temperature and salinity on marine and brackish water animals. Oceanogr. Mar. Biol. Annu. Rev. 1, 301-340.
Kobayashi, M., Johansson, M.W., Söderhäll K., 1990. The 76 kDa cell-adhesion factor from crayfish haemocytes promotes encapsulation in vitro. Cell Tissue Res. 260, 13-18.
Koizumi, N., Morozumi, A., Imamura, M., Tanaka, E., Iwahana H., Sato, R., 1997. Lipopolysaccharide-binding proteins and their involvement in the bacterial clearance from the hemolymph of the silkworm Bombyx mori. Eur. J. Biochem. 248, 217-224.
Koizumi, N., Imamura, M., Kadotani, T., Yaoi, K., Iwahana, H., Sato, R., 1999. The lipopolysaccharide-binding protein participating in hemocyte nodule formation in the silkworm Bombyx mori is a novel member of the C-type lectin superfamily with two different tandem carbohydrate-recognition domains. FEBS Lett. 443, 139-143.
Komatsu, M., Ando, S., 1998. A very-high-density lipoprotein with clotting ability from hemolymph of sand crayfish, Ibacus ciliatus. Biosci. Biotechnol. Biochem. 62, 459-463.
Kopáček, P., 0, M., Söderhäll, K., 1993. Characterization of a clotting protein, isolation from plasma of the freshwater crayfish Pacifastacus leniusculus. Eur. J. Biochem. 213, 591-597.
Kumar, S., Tamura, K., Jakobsen, I.B., Nei, M., 2001. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics. 17, 1244-1245.
Le Moullac, G., Haffner, P., 2000. Environmental factors affecting immune responses in crustacea. Aquaculture 191, 121-131.
Lee, K.K., Chen, Y.L., Liu, P.C., 1999. Hemostasis of tiger prawn Penaeus monodon affected by Vibrio harveyi, extracellular products and a toxic cysteine protease. Blood Cells Mol. Dis. 15, 180-192.
Lee, K.K., Chen, F.R., Yu, S.R., Yang, T.I., Liu, P.C., 1997. Effects of extracellular products of Vibrio alginolyticus on penaeid prawn plasma components. Lett. Appl. Microbiol. 24, 98-100.
Lee, S.Y., Söderhäll, K., 2001. Characterization of a pattern recognition protein, a masquerade-like protein, in the freshwater crayfish Pacifastacus leniusculus. J. Immunol. 166, 7319-7326.
Lightner, D.V., 1999. The Penaeid shrimp viruses TSV, IHHNV, WSSV, YHV: current status in the Americas, available diagnostic method and management strategies. J. Appl. Aquacult. 9, 27-52.
Liu, C.H., Chen, J.C., 2004. Effect of ammonia on the immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus. Fish Shellfish Immuol. 16, 321-334.
Liu, C.H., Cheng, W., Chen, J.C., 2005. The peroxinectin of white shrimp is synthesized in the semi-granular and granular cell, and its transcript is up-regulated in post Vibrio alginolyticus infection. Fish Shellfish Immuol. 18, 431-444.
Liu, P.C., Lee, K.K., Yii, K.C., Kou, G.H., Chen, S.N., 1996. Isolation of Vibrio harveyi from diseased prawn Penaeus joponicus. Curr Microbiol. 33, 129-132.
Madaras, F., Chew, M.Y., Parkin, J.D., 1981. Purification and characterization of the sand crab (Ovalipes bipustulatus) coagulogen (fibrinogen). Thromb. Haemost. 45, 77-81.
Martin, G.G., Hose, J.E., Kimn J.J., 1987. Structure of hematopoietic nodules in the ridgeback prawn, Sicyonia ingentis: light and electron microscope observations. J. Morphol. 192, 193-204.
Martin, G.G., Hose, J.E., Ormori, S., Chong, C., Hoodbhoy, T., McKrell, N., 1991. Localization and roles of coagulogen and transglutaminase in hemolymph coagulation in decapod crustaceans. Comp. Biochem. Physiol. 100, 517-522.
Mc Cumber, L.J., Hoffmann, E.M., Clem, L.W., 1979. Recognition of viruses and xenogeneic proteins by the blue crab, Callinectes sapidus: a humoral receptor for T2 bacteriophage. J. Invert. Phathol. 33, 1-9.
Menz, A., Blake, B.F., 1980. Experiments on the growth of Penaeus vannamei Boone. J. Exp. Mar. Biol. Ecol. 48, 99-111.
Mix, M.C., Sparks, A.K., 1980. Hemocyte classification and differential counts in the dungenes crab, Cancer magister. J. Invert Pathol. 35, 134-143.
Miyata, T., Tokunaga, F., Yoneya, T., Yoshikawa, K., Iwanaga, S., Niwa, M., Takao, T., Shimonishi, Y., 1989. Antimicrobial peptides, isolated from horseshoe crab hemocytes, tachyplesin II and polyphemusins I and II: chemical structures and biological activity. J. Biol. Chem. 106, 663-668.
Montaño-Pérez, K., Yepiz-Plascencia, G., Higuera-Ciapara, I., Vargas- Albores, F., 1999. Purification and characterization of the clotting protein from the white shrimp Peanaeus vannamei. Comp. Biochem. Physiol. 122, 381-387.
Mori, K., Stewart, J.E., 1978. Natural and induced bactericidal activity of the hepatopancreas of the american lobster, Homarus americanus. J. Invert. Phathol. 32, 171-176.
Muta, T., Iwanaga, S., 1994. Clotting and immune defense in Limulidae. In Rinkevich, B., Müller, WEG., (Eds.), Invertebrate immunology. Department of Biology. Kyushu University, Fukuoka. 15, 154-189.
Muta, T., Iwanaga, S., 1996. The role of hemolymph coagulation in innate immunity. Curr. Opin. Microbiol. 8, 41-47.
Nakamura, T., Furunaka, H., Miyata, T., Tokunaga, F., Muta, T., Iwanaga, S., Niwa, M., Takao, T., Shimonishi, Y., 1988. Tachyolesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab Tachypleus tridentatus. J. Biol. Chem. 263, 16709-16713.
O`Donnell, M.J., Wright, J., 1995. Nitrogen excretion in terrestrial crustaceans. In: P. J. Walsh, P. A. Wright (Eds), Nitrogen Metabolism and Excretion. CRC Press, Boca Raton, FL., 105-118.
Oka, M., 1969. Studies on Penaeus orientalis Kishinouye. VIII. Structure of newly found lymphoid organ. Bull. Japan Soc. Sci Fish. 35, 245-250.
Olson, K.W., Fromm, P.O., 1971. Excretion of urea by two teleost exposed to different concentration of ambient ammonia. Comp. Biochem. Physiol. 39B, 855-872.
Omori, S.A., Martin, G.G., Hose, J.E., 1989. Morphology of hemocyte lysis and clotting in the ridgeback prawn, Sicyonia ingentis. Cell Tissue Res. 255, 117-123.
Ornberg, R.L., Reese, T.S., 1979. Secretion in Limulus amebocytes is by exocytosis. Prog. Clin. Biol. Res. 29, 125-130.
Pante, M.J.R., 1990. M.Sc. Thesis: Influence of Environmental Stress on the Herirability of Molting Frequency and Growth Rate of the Penaeid Shrimp, Penaeus vannamei. University of Houston-Clear lake, Houston, TX, USA.
Parry, G., 1960. Ecretion. In: T. H. Waterman (Ed), The Physiology of Crustacea. Academic Press, New York. 1, 341-366.
Perazzolo, L.M., Lorenzini, D.M., Daffre, S., Barracco, M.A., 2005. Purification and partial characterization of the plasma clotting protein from the pink shrimp Farfantepenaeus paulensis. Comp. Biochem. Physiol. 142, 302-307.
Pérez-Farfante, I., Kensley, B.F., 1997. Penaeoid and sergestoid shrinps and prawns of the world, Keys and diagnoses for the Families and Genera. Mém. Mus. Nat. Hist. Nat. 175, 1-233.
Persson, M., Vey, A., Söderhäll, K., 1987. Encapsulation of foreign particles in vitro by separated blood cells from crayfish, Astacus leptodactylus. Cell Tissue Res. 247, 409-415.
Ponce-Palafox, J., Martinez-Palacios, C.A., Ross, L.G., 1997. The effect of salinity and temperature on the growth and survival rates of juvenile white shrimp, Peneaus vannamei Boone, 1993. Aquaculture 157, 107-115.
Prayitno, S.B., Latchford, J.W., 1995. Experimental infections of crustaceans with luminous bacteria related to Photobacterium and Vibrio. Effect of salinity and pH on infectiosity. Aquaculture 132, 105-112.
Ratanapo, S., Chulavatnatol, M., 1990. Monodin, a new sialic acidspecific lectin from black tiger prawn (Penaeus monodon). Comp. Biochem. Physiol. 97, 515-520.
Ratcliffe, N.A., 1993. Cellular defense responses of insects: unresolved problems. In: Parasites and Pathogens of Insects. (Beckage NE, Thompson SN, Federici BA, eds.). 1, 267-304.
Ratcliffe, N.A., Rowley, A.F., Fitzgerald, S.W., Rhodes, C.P., 1985. Invertebrate immunity: basic concepts and recent advances. Int. Rev. Cytol. 97, 186-350.
Ratner, S., Vinson, S.B., 1983. Phagocytosis and encapsulation: cellular immune response in arthropoda. Am. Zool. 23, 185-194.
Regnault, M., 1983. Influence á long terme du taux protéique du ŕegime sur léxcretion dázote et le métabolisme de la crevett Crangon crangon. L. Oceanis. 9, 241-253.
Regnault, M., 1987. Nitrogen excretion in marine and fresh-water crustacean. Biol. Rev. 62, 25-44.
Rodriguez, J., Boulo, V., Mialhe, E., Bachère, E., 1995. Characterization of shrimp hemocaytes and plasma components by monoclonal antibodies. J. Cell Science. 108, 1043-1050.
Rodriguez, J., Le Moullac, G., 2000. State of the art of immunological tools and health control of penaeid shrimp. Aquaclture 191, 109-119.
Roux, M.M., Pain, A., Klimpel, K.R., Dhar, A.K., 2002. The lipopolysaccharide and β-1,3-glucan binding protein gene is upregulated in white spot virus-infected shrimp (Penaeus stylirostris). J. Virol. 76, 7140-7149.
Ruoslahti, E., 1996. RGD and other recognition sequences for integrins. Ann. Rev. Cell Biol. 12, 697-715.
Ruoslahti, E., Pierschbacher, M.D., 1987. New perspectives in cell adhesion: RGD and integrins. Science 238, 491-497.
Sambrook, J., Fritsch, E.F., Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. 16, 32-36.
Sequeira, T., Tavares, D., Arala-Chaves, M., 1996. Evidence for circulating hemocyte proliferation in the shrimp Penaeus japonicus. Dev. Comp. Immunol. 20, 97-104
Sharma, B., Ahlert, R.C., 1977. Nitrification and nitrogen removal. Wat. Res. 11, 897-925.
Sharma, M.L., 1969. Trigger mechanisms to increased urea product ion by the crayfish Orconect esrusticus under osmotic stress. Comp. Biochem. Physiol. 63B, 207-214.
Smith, H.W., 1930. The absorption and excretion of water and salts by marine teleosts. Am. J. Physiol. 93, 480-505.
Smith, V.J., Chisholm, J.R.S., 1992. Non-cellular immunity crustacean. Fish Shellfish Immuol. 2, 1-31.
Smith, V.J., Ratclffe, N.A., 1980. Host defence reactions of the shore crab, Carcinus maenas (L.); clearance and distribution of injected test particles. J. Mar. Biol. Assoc. U. K. 60, 89-102.
Solorzano, L., 1969. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceanogr. 14, 799-801.
Söderhäll, K., Cerenius, L., 1992. Crustacean immunity. Annual. Rev. Fish Dis. 2, 3-23.
Söderhäll, K., Cerenius, L., 1998. Role of the prophenoloxidase activating system in invertebrate immunity. Curr. Opin. Microbiol. 10, 23-28.
Söderhäll, K., Smith, V.J., 1983. Separation of the hemocyte populations of Carcinus maenas and other marine decapods, and uptake of bacteria by isolated hemocyte populations of two crustacwan: analysis of reactive oxygen species. Dev. Comp. Immunol. 18, 201-209.
Söderhäll, K., Smith, V.J., 1986a. The prophenoloxidase activating system as a recognition and defence system in arthropods. In: Gupta, A. P., editor. Hemocytic and humoral immunity in arthropods. New York: Wiley, pp. 251-286.
Söderhäll, K., Smith, V.J., 1986b. The prophenoloxidase activating system: The biochemistry of its activation and role in arthropod celluloar immunity, with special reference to crustaceans. In: Brehelin, M., ed. Immunity in invertebrates. Berlin: Springer Verlag, pp. 208-223.
Söderhäll, K., Smith, V.J., Johansson, M.W., 1986. Excytosis and uptake of bacteria by isolated hemocyte populations of two crustacean: evidence for cellular co-operation in the defense reactions reactions of arthropods. Cell Tissue Res. 245, 43-49.
Söderhäll, K., Sritunyalucksana, K., 2000. The proPO and clotting system in crustaceans. Aquaculture 191, 53-69.
Söderhäll, K., Wingren, A., Johansson, M.W., Bertheussen, K., 1985. The cytotoxic reaction of hemocytes from the freshwater crayfish, Astacus astacus. Cellular Immunology. 94, 326-332.
Song, Y.L., Hu, K.Y., Huang, C.C., Chen, M.Y., 2005. More than one type of transglutaminase in invertebrates? A second type of transglutaminase is involved in shrimp coagulation. Dev. Comp. Immunol. 29, 1003-1016.
Song, Y.L., Yu, C.I., Lien, T.W., Huang, C.C., Lin, M.N., 2003. Haemolymph parameters of Pacific white shrimp (Litopenaeus vannamei) infected with Taura syndrome virus. Fish Shellfish Immuol. 14, 317-331.
Spargaren, D.H., Richard, P., Ceccaldi, H.J., 1982. Excretion of nitrogenous products by Penaeus japonicus Bate inrelation to environment osmotic conditions. Comp. Biol. Physiol. 72, 673-678.
Srimal, S., Dorai, D.T., Somasundaran, M., Bachhawat, B.K., Miyata T., 1985. A new hemagglutinin from the amoebocytes of the horesehoe crab Carcinoscorpius rotundicauda. Purification and role in cell aggregation, Biochem. J. 230, 321-328.
Stern, S., Daniels, H., Letellier, E., 1990. Tolerance of post larvae and juvenile Penaeus vannamei to low salinity. World Aquaculture 90, Halifax, Nova Scotia, Canada, T30. 12. National Research Councill Canada, Ottawa, Canada.
Stewart, J.E., Foley, E.M., 1969. A precipitin reaction of the hemolymph of the lobster Homarus americanus. J. Fish Res. Bd Can. 26, 1392-1397.
Stewart, J.E., Zwicker, B.M., 1972. Natural and induced bactericidal activities of the lobster, Homarus americanus: products of hemocyte-plasma interaction. Canadian Journal of Microbiology 18, 1499-1509.
Tait, J., 1911. Types of Crustacean blood coagulation. J. Mar Biol. Assoc. U.K. 9, 191-198.
Takahashi, Y., Ltami, T., Kondo, M., 1995. Immunodefense system of Crustacea. Fish Pathol. 30, 141-150.
Theopold, U., Li, D., Scherfer, C., Korayem, A.M., Zhao, Z., Schmidt, O., 2002. Insect hemolymph clotting: evidence for interaction between the coagulation system and the prophenoloxidase activating cascade. Insect Biochem. Mol. Biol. 32, 919-928.
Theopold, U., Schmidt, O., Söderhäll, K., Dushay, M.S., 2004. Coagulation in arthropods: defence, wound closure and healing. Trends Immunol. 25, 289-294.
Thörnqvist, P.O., Johansson, M.W., Söderhäll K., 1994. Opsonic activity of cell adhesion proteins and β-1,3-glucan binding proteins from two crustaceans. Dev. Comp. Immunol. 18, 3-12.
Torshin, I., 2002. Structural criteria of biologically active RGD-sites for analysis of protein cellular function-a bioinformatics study. Med. Sci. Monit. 8, 301-312.
Truscott, R., White, K.N., 1990. The influence of metal and temperature stress on the immune system of crabs. Funct. Ecol. 4, 455-461.
Tseng, I.T., Chen, J.C., 2004. The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus under nitrite stress. Fish Shellfish Immunol. 17, 325-333.
Tyson, C.J., Jenkin, C.R., 1974. The cytotoxic effect of haemocytes from the crayfish (Parachaeraps bicarinatus) on tumor cells of vertebrates. Aust. J. Exp. Biol. Med. Sci. 52, 915-923.
Tzou, P., DeGregorio, E., Lemaitre, B., 2002. How Drosophila combats microbial infection: a model to study innate immunity and host-pathogen interactions. Curr. Opin. Microbiol. 5, 102-110.
Vargas-Albores, F., Baltazar, P.H., Clark, G.P., Barajas, F.M., 1998. Influence of temperature and salinity on the yellowlegs shrimp, Farfantepenaeus californiensis Holmes, prophenoloxidase system. Aquacult. Res. 29, 549-553.
Vargas-Albores, F., Guazmán, M.A., Ochoa, J.L., 1993. A lipopolysaccharide-binding agglutinin isolated from brown shrimp (Penaeus californiensis Holmes) haemolymph. Comp. Biochem. Physiol. 104, 407-413.
Wang, L.U., Chen, J.C., 2005. The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus at different salinity levels. Fish Shellfish Immuol. 18, 269-278.
Wickins, J.F., 1976. The tolerance of warm-water prawns to ecieculated water. Aquaculture 9, 19-37.
Wongprasert, K., Khanobdee, K., Glunukarn, S.S., Meeratana, P., Withyachumnarnkul, B., 2003. Time-course and levels of apoptosis in various tissures of black tiger shrimp Penaeus monodon infected with white-spot syndrome virus. Dis. Aquat. Org. 55, 3-10.
Wyban, J., Walsh, W.A., Godin, D.M., 1995. Temperature effects on growth, feeding rate and feed conversion of the pacific white shrimp (Penaeus vannamei). Aquaculture 138, 267-279.
Yamada, K.M., Kennedy, D.W., 1984. Dualistic nature of adhesive protein function: fibronectin and ist biologically active peptide fragments can autoinhibit fibronectin function. J. Cell Biol. 99, 29-36.
Yeh, M.S., Chen, Y.L., Tsai, I.H., 1998. The hemolymph clottable proteins of tiger shrimp, Penaeus monodon, and related species. Comp. Biochem. Physiol. 121, 169-176.
Yeh, M.S., Huang, C.J., Leu, J.H., Lee, Y.C., Tsai, I.H., 1999. Molecular cloning and characterization of a hemolymph clottable proteins of tiger shrimp (Penaeus monodon). Eur. J. Biochem. 266, 624-633.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top