# 臺灣博碩士論文加值系統

(44.213.63.130) 您好！臺灣時間：2023/02/03 15:31

:::

### 詳目顯示

:

• 被引用:2
• 點閱:293
• 評分:
• 下載:0
• 書目收藏:0
 本研究是利用數值模擬的方法，分為兩階段來探討輪圈幾何形狀對大客車空氣動力行為之影響，第一階段：對獨立輪圈系統透過輪圈幾何形狀的差異，輪圈表面位置的改變以及輪圈在有無旋轉等參數，探討出上述之各種參數對輪圈空氣動力行為之影響。第二階段：將車輪裝置於大客車上，在不同幾何形狀之車輪以及車輪有無旋轉等參數下，經由上述之各種參數來探討車輪對大客車空氣動力行為之影響。經由數值計算模擬分析結果顯示：早期的輪圈空氣動力行為分析都是以簡單的平面車輪並在車輪無旋轉之狀態下及未裝置於車輛上來模擬分析車輪空氣動力行為，但是在本文中發現到不同的車輪形狀之差異、車輪有無旋轉之狀態以及車輪是否有裝置於車輛上所得到的阻力係數、升力係數都有明顯的差異，因此說明了：以數值模擬的方法來做相關的數值分析，若要得到更確實的分析結果，其所建立的計算模型愈接近實體模型及所設定之參數愈符合實際邊界條件是必須詳加考慮之。在探討車輪有無旋轉對於獨立輪圈空氣動力行為之影響，發現輪圈在未旋轉時的阻力、升力係數會大於輪圈旋轉時的阻力、升力係數，但是隨著輪圈的旋轉速度的增加，其阻力、升力係數改善的幅度越來越小。甚至有惡化之虞。另外在探討車輪裝置於大客車上以發現到車輪在旋轉時的阻力、升力係數會大於車輪未旋轉時的阻力、升力係數。關鍵字：輪圈、車輪、數值模擬、空氣動力學行為、阻力係數、升力係數
 This research uses the process of numerical simulation to study the effect of rim geometry of a bus. The numerical work in this thesis is divided into two stages. The first stage was to determine the aerodynamic behavior of a suitable single rim shape by considering different rim shape geometric parameters such as the rim surface position, the shift pattern, and the non-spinning condition. The second stage was to apply the rim shape to a bus. Based on current numerical results, it was found that early models of aerodynamic effect on rim shape geometry were somewhat less practical because they were determined using simple criteria such as flat surface and un-motional rim spin condition. However, in this thesis, we discovered that the bus would experience different drag and lift forces under the influence of rim shape geometry and rotational speed. By using more practical models, rim rotation conditions, and different shapes, we have obtained a more complete analysis of actual aerodynamic effect of a bus. The simulations have shown that the drag and lift coefficients of individual rim decrease as rim rotational speed increases. However, if identical rims are placed on a bus, the results are exactly opposite.Keywords: Rims, Wheels, Numeric Simulation, Aerodynamic Behavior, Drag Coefficient, Lift Coefficient
 目錄摘要………………………………………………………………………….IAbstract……………………………………………………………………..II誌謝………………………………………………………………………..III目錄………………………………………………………………………..IV表目錄…………………………………………………………………...VIII圖目錄……………………………………………………………...……...XI第1章 前言………………………...……………………………………...1 1.1 研究動機………………………………………………………….....1 1.2文獻回顧………………………………………………………..........2 1.3 本文內容………………………………………………………….....6第2章 數學模式…………………...……………………………………...8 2.1 流場之基本假設………………………………………………….....8 2.2 統御方程式……………………………………………………….....9 2.3 邊界條件…………………………………………………………...12 2.3.1 獨立不同形狀輪圈之計算模型系統…………………………13 2.3.1.1 輪圈旋轉速度不同之探討…………………………...........15 2.3.1.2 輪圈與地面接觸情形之探討……………………………...15 2.3.2 裝置不同幾何形狀及不同車輪數目之大客車計算 模型系統………………………………………………………16 2.3.3 底盤輪圈系統之阻力、升力係數公式說明…………………18 2.4 數值方法…………………………………………………………...18 2.4.1 離散方式(Discretisation Schemes)……………………………18 2.4.2 壓力與速度(Pressure-velocity coupling)之耦合算法………...20 2.5 格點系統………………………………………………………….. 22 2.6 收斂標準…………………………………………………………...25第3章 結果與討論...…………………………………………………….26 3.1輪圈之幾何形狀、表面位置及旋轉速度對輪圈空氣動 力行為之影響………………………………………………………26 3.1.1輪圈旋轉速度對不同幾何形狀輪圈空氣動力行為之影響.…29 3.1.2 不同幾何形狀之輪圈其輪圈表面位置距離輪圈中 心50mm之探討………………………………………………34 3.1.3 不同幾何形狀之輪圈其輪圈表面位置距離輪圈中 心140mm之探討……………………………………………..36 3.1.4 輪圈幾何形狀相同其表面位置不相同之探討………………37 3.2 車輪幾何形狀與車輪數目對大客車空氣動力行為之影響...........39 3.2.1 車輪數目之影響………………………………………………39 3.2.1.1 車輪數目不同之大客車整體阻力、升力係數探討……...39 3.2.1.2 車輪數目不同之大客車前車輪阻力、升力係數探討…...41 3.2.1.3 車輪數目不同之大客車外側後車輪阻力、升力係數 探討..………………………………………………………47 3.2.1.4 平面輪六輪大客車內側後車輪之空氣動力行為之探 討…………………………………………………………..54 3.2.1.5 車輪數目不同之大客車車體本身阻力、升力係數探 討…………………………………………………………..57 3.2.2車輪幾何形狀不同之影響…………………………………….60 3.2.2.1 車輪幾何形狀不同之大客車整體阻力、升力係數探討...61 3.2.2.2 車輪幾何形狀不同之大客車前車輪阻力、升力係數 探討………………………………………………………..62 3.2.2.3 車輪幾何形狀不同之大客車外側後車輪阻力、升力 係數探討…………………………………………………..70 3.2.2.4 車輪幾何形狀不同之大客車內側後車輪阻力、升力 係數探討…………………………………………………..75 3.2.2.5 車輪幾何形狀不同之大客車車體本身阻力、升力 係數探討…………………………………………………..79第4章 結論………………………………………………………………82參考文獻…………………………………………………………………..84作者簡介…………………………………………………………………..87
 參考文獻[1]城井幸保（1998）自動車的自動解析技術。日本東京都：朝倉書店，自動車技術系列第7版。[2]Basara, B., G. Bachler, and H. Schiffermuller (1996) Calculation of Vortex Shedding from Bluff Bodies with Reynolds Stress Model.15th International Numerical Methods in Fluid Dynamics Conf. Monterty, California.[3]Basara, B., B. Beader, and V. P. Przulj (2000) Numerical Simulation of the Air Flow around a Rotating Wheel. In 3RD MIRA International Vehicle Aerodynamics Conference.[4]Baysal, O.,and I. Bayraktar (2000) Computation Simulations for the Extern Aerodynamics of Heavy Trucks. SAE Paper No. 2000-01-3501.[5]Benodekar, R., R. Issa, R. Sanatian, and S. Uslu (1994) CFD Biathlon： Two Turbulent Flow Simulatuons by the STAR-CD Code. ASME FED,Lake Tahoe.[6]Cogotti, A. (1983) Aerodynamics Characteristics for Car Wheels Impact on Aerodynamics on Vehicle Design. Int. J. of Vehicle Design SP3 London:173-196.[7]Deng, G.B., J. Piquet, P. Queutey, and M. Visonneau(1993) Vortex Shedding Flow Predictions with Eddy-Viscosity Models,pp.143-152. In Engineering Turbulence Modeling and Experiments, Rodi, W., Martelli, F.,(eds). Elsevier Science Publishers.[8]Fabijanic, J. (1996) An Experimental Investigation of Wheel Well Flows.SAE paper No. 960901.[9]Franke, R. (1991) Numerische Berechnung der instationaren Wirbelablosung hinter zylindrishchen Korpern. Uupublished PhD diss. Germany : Univeristy of Karlsruhe.[10]Fujimoto, T., A. Niinuma, and K. Sakai (1995) Shape Study for a Low air Resistance Air Deflector-The Second Report.SAE No. 950633.[11]Garry, K., P. (1981) Development of Container-Mounted Devices for Reducing the Aerodynamic Drag of Commercial Vehicles. Journal of Wind Engineering and Industrial Aerodynamics.[12]Hucho, W.H. (1998) Aerodynamic Drag of Passenger Cars,pp180-185. In Aerodynamics of Road Vehicles, Hucho, W. H.,(eds). SAEInt.[13]Kim, M.H. (2003) Numerical Steady on the Wake Flow and Rear-Spoiler Effect of a Commercial Bus Body. SAE Paper No.2003-01-1253.[14]Launder, B.E.,and D.B. Spalding (1974) The Numerical Computation of Turbulent Flows. Computer Methods in Applied Mechanics and Engineering 3: 269-289.[15]Mason, W. T., and P.S. Beebe (1978) The Drag Related Flow Field Characteristics of Truck and Buses. in Aerodynamics Drag Mechanisms of Bluff Bodies and Road Vehicles, Plenum Press.[16]Mercker, E., and H. Berneburg (1992) On the simulation of road driving of a passenger car in a wind tunnel using a moving belt and rotating wheel. 3rd Int. Conf. Innovation and Reliability, Florence.[17]Mercker, E., N. Breuer, H. Berneburg, and H. J. Emmelmann (1991) On the Aerodynamic Interference Due to the Rolling Wheels of Passenger Car. SAE Paper No. 910311.[18]Ohshima, T., K. Hamatani, M. Ninoyu, and K. Nakagawa (1998) Influence of the Cooling Air Flow Outlet on the Aerodynamic Characteristics. JSAE 19:137-142.[19]Oswald, L. J., and A. L. Browne (1981) The Airflow Field Around An Operating Tire and Its Effect on Tire Power Loss. SAE paper No. 810166.[20]Orszag, S. A., V. Yakhot, W. S. Flannery, F. Boysan, D. Choudhury, J. Maruzewski, and B. Patel (1993) Renormalization Group Modelling and Turbulance Simulations, pp.1031-1046.In Near-Wall Turbulent Flows, So, R.M.C., Speziale, C.G., Launder, B.E.,(eds). Elsevier Science Publishers B. V.[21]Patanker, S. V. (1980) Numerical Heat Transfer and Fluid Flow. New York :Mcgraw-Hill.[22]Przulj, V. (1998) Computational Modelling of Vortex Shedding Flows. Unpublished PhD diss, City University, London.[23]Przulj, V., and B. A. Younis (1993) Some Aspects of the Prediction of Turbulent Vortex Shedding From Bluff Bodies Symposium on Separated Flow. ASMED FED Summer Meeting, Washington.[24]Schenkel, F.K.(1997) The Origins of Drag and Lift Reductions on A- utomobiles with Front and Rear Spoilers.SAE Paper No. 770389.[25]Scibor-Rylski, A. J. (1984) Road Vehicle Aerodynamics.2nd ed. Pentech Press, London.[26]Skea, A. F., and P. R. Bullen (2000) CFD Simulations and Experimental Measurements of the Flow Over a Rotating Wheel in a Wheel Arch. SAE Paper No. 2000-01-0487.[27]Sovran, G., and T. Manson (1978) Aerodynamic Drag Mechanisms of Bluff Bodies and Road Vehicles. pp.69-77.[28]Takemori, Y., S. Kato, Y. Masumitsu, and T. Mizutani (1992) Drag Reduction of Bluff-Based by wake control Vanes (Effective Utilization of Under Floor Flow). FISITA World Automotive Congress Paper No. F2000G357.[29]Wickern, G., K. Zwicker, and M. Pfadenhauer (1997) Rotating Wheels-Their Impact on Wind Tunnel Test Techniques and on Vehicle Drag Results. SAE Paper No. 970133.[30]Wiedemann, J. (1996) The Influence of Ground Simulation and Wheel Rotation on Aerodynamic Drag Optimization-Potential for Reducing Fuel Consumption. SAE Paper No. 960672.[31]Yakhot, V., S. A. Orszag, S. Thangam, T. B. Gatski, and C.G. Speziale (1992) Development of Turbulence Models for Shear Flow by a Double Expansion Technique. Physics of Fluids A4: 1510-1520.
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 汽車輪圈的動態與靜態圖像之感性認知研究 2 以感性工學探討住宅客廳設計元素與構成 3 沙灘車（ATV）輪圈焊接殘留應力分析 4 圓柱橋墩周圍二維流場之數值模擬 5 三角翼外流場之力源分析 6 以數值模式研究受水流衝擊之橋面版 7 小型風力機葉片二維翼型流固耦合分析 8 緊鄰壁面之物體在時變流場中之昇阻力---物理實驗 9 以大渦模擬研究淹溢矩形柱體周遭流場 10 三杯式風速計之氣動力研究及設計應用 11 水下滑翔機加裝CTD之流體動力分析 12 雨刷支架結構對雨刷系統空氣動力行為之探討 13 利用流場控制抑制方柱作用力之研究 14 外流場力源特性分析 15 聲波激擾法對三維機翼空氣動力性能之影響

 1 游森期（2001）。E 世代青少年網路成癮及網路使用之輔導策略。學生輔導，74，34-43。 2 郭欣怡、林以正（1998）。網路使用者的心理特性與人際關係。教育資料文摘，42， 3 孫春望（1998）。童話幻想曲-合作式電腦遊戲設計。教學科技與媒體，37，2-9。 4 施香如（2002）。迷惘、迷網—談青少年網路使用與輔導。學生輔導，74，18-25。

 1 休旅車空氣動力數值模擬分析 2 普及運算環境下之應用層情境感知服務 3 支援HMIPv6之最佳化多層式MAP架構 4 一個新的以群聚概念為基礎的蟻群最佳化技術用於車輛途程問題之研究 5 雨刷支架結構對雨刷系統空氣動力行為之探討 6 輪胎對懸吊動態影響的模擬 7 汽車外型設計變更構想對性能的影響評估 8 LED燈具散熱鰭片設計之數值研究 9 利用行車紀錄資訊分析大客車異常駕駛事件研究 10 訂單式生產環境下價格、交期與排程的決策 11 支援代理伺服器輔助視訊串流之區段式流量控制機制 12 蝴蝶蘭鱗長跳蟲(LepidocyrtusnearcyaneusTullberg)(彈尾目：長角跳蟲科)之形態、生活史及其防治研究 13 模糊集合理論應用於檜木林生育地之潛勢分析 14 以微衛星DNA研究鱸鰻之族群結構 15 軟、硬水環境飼糧蝦紅素對血鸚鵡成長、活存、呈色與麻醉緊迫之影響

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室