跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/08 04:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:侯佳慧
研究生(外文):chia-hui hou
論文名稱:右美沙芬、甲氧基嗎啡喃與右啡烷在大白鼠的坐骨神經之局部麻醉效用
論文名稱(外文):The local anaesthetic effect of dextromethorphan, 3-methoxymorphinan, and dextrorphan on rat sciatic nerve blockade
指導教授:王志中王志中引用關係杜杰憲
指導教授(外文):Jhi-Joung WangChieh-Hsien Tu
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:獸醫學系
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:53
中文關鍵詞:右美沙芬局部麻醉劑坐骨神經阻斷
外文關鍵詞:DextromethorphanLocal Anesthetic EffectSciatic Nerve Blockade
相關次數:
  • 被引用被引用:0
  • 點閱點閱:435
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
右美沙芬 (dextromethorphan) 目前在臨床上主要用途是抑制咳嗽,為一種中樞性止咳劑,其化學結構是右旋性的嗎啡喃且沒有類鴉片之副作用,而且已被應用在止咳至少40年以上;本實驗主要的目的為評估右美沙芬與其代謝物—甲氧基嗎啡喃 (3-methoxymorphinan)與右啡烷 (dextrorphan)是否具有局部麻醉之效用;實驗方法係選擇大白鼠的周邊坐骨神經阻斷模式評估其運動功能 (motor function)、本體感覺(proprioception) 及疼痛反應(nociception)。
目前臨床上最常使用的局部麻醉劑是利多卡因 (lidocaine) ,所以本實驗選擇利多卡因做為實驗對照組。使用右沙美芬及其兩個主要代謝產物右啡烷與甲氧基嗎啡喃,針對藥物效力和藥物所持續時間,以及合併利多卡因一起給予時所產生之效能做評估。實驗結果在藥物效力的排列為:利多卡因>右美沙芬>甲氧基嗎啡喃>右啡烷 (p < 0.01);藥物持續時間則是甲氧基嗎啡喃與右啡烷藥效持續時間比利多卡因長 (p < 0.05)。當右美沙芬、右啡烷、甲氧基嗎啡喃與利多卡因合併給予具有加成作用 (additive effect) 。因此右美沙芬、右啡烷與甲氧基嗎啡喃在周邊坐骨神經具有局部麻醉效用,無論是運動功能、本體感覺或疼痛反應之藥物效力與持續時間都比利多卡因長;而且當右美沙芬、右啡烷、甲氧基嗎啡喃與利多卡因合併給予在大白鼠周邊的坐骨神經阻斷上亦具有加成作用。
關鍵字:右美沙芬、局部麻醉劑、坐骨神經阻斷。
Dextromethorphan has been used as an antitussive for more than 40 years and is considered a drug with a good margin of safety. The aim of the study was to evaluate whether dextromethorphan and its metabolites (3-methoxymorphinan and dextrorphan) had local anesthetic effect. Using a method of rat sciatic nerve blockade to evaluate the potency and duration of the three drugs.The items of the evaluation were motor function, propioception, and nociception. Lidocaine was used as a control. We found that dextromethorphan and its metabolites produced dose-related local anesthetic effects on sciatic nerve blockade. The potency from the top were lidocaine,dextromethorphan,3-methoxymorphinan, and dextrorphan ( p < 0.01 for each comparison). Under an equi-potent basis, dextrorphan and 3-methoxymorphinan had longer action than that of lidocaine ( p < 0.05 for each comparison). Co-administration of dextromethorphan or its metabolites with lidocaine produced additive effect on sciatic nerve blockade. In conclusion, dextromethorphan and its metabolites (3-methoxymorphinan and dextrorphan) had local anesthetic effect on sciatic nerve blockades of motor function, proprioception and nociception. Their duration of action was longer than that of lidocaine. Co-administration of dextromethorphan and its metabolites produced additive effect on sciatic nerve blockade.

Key words: Dextromethorphan, Local Anesthetic Effect, Sciatic Nerve Blockade.
目錄
摘要 I
Abstract II
誌謝 IV
目錄 V
圖表目錄 VI
縮寫對照表 IX
第1章 前言 1
第2章 文獻回顧 4
2.1 局部麻醉劑 4
2.1.1 局部麻醉劑的歷史 4
2.1.2 局部麻醉劑之藥理作用 4
2.1.3 局部麻醉劑之化學結構 5
2.1.4 局部麻醉劑的藥物動力學 7
2.1.5 局部麻醉劑的副作用與毒性 7
2.2 鹽酸利多卡因 Lidocaine Hydrochloride 之介紹 8
2.2.1 利多卡因 (lidocaine) 之物化性質 8
2.2.2 利多卡因之藥理學 9
2.2.3 利多卡因之藥物動力學 9
2.2.4 利多卡因之副作用與毒性 9
2.2.5 利多卡因臨床上之使用 10
2.2.6 利多卡因與藥品之交互作用 10
2.3 右美沙芬Dextromethorphan 之介紹 10
2.3.1 右美沙芬之物化性質 11
2.3.2 右美沙芬之藥理學 12
2.3.3 右美沙芬之藥物動力學 12
第3章 研究材料與方法 14
3.1 研究材料 14
3.1.1 實驗動物 14
3.1.2 實驗藥品 14
3.1.3 實驗相關儀器及材料 15
3.2 研究方法 15
3.2.1 動物實驗前準備 15
3.2.2 藥物注射 15
3.2.3 藥物配製 16
3.2.4 實驗流程 16
3.2.5 神經行為學的評估 17
3.2.6 實驗結果的分析流程 18
3.2.7 50%最大有效反應劑量 (ED50) 19
3.2.8 統計方法 19
第4章 結 果 20
4.1 右美沙芬與利多卡因之坐骨神經阻斷效能 20
4.2 右美沙芬、右啡烷、甲氧基嗎啡喃與利多卡因藥效劑量反應 20
4.3 右美沙芬、右啡烷、甲氧基嗎啡喃和利多卡因藥物效力之維持時間 21
4.4 右美沙芬、右啡烷或甲氧基嗎啡喃有/無合併利多卡因在大白鼠周邊坐骨神經的影響 21
第5章 討 論 42
第6章 結 論 45
參考文獻 46
摘要 I
Abstract II
誌謝 IV
目錄 V
圖表目錄 VI
縮寫對照表 IX
第1章 前言 1
第2章 文獻回顧 4
2.1 局部麻醉劑 4
2.1.1 局部麻醉劑的歷史 4
2.1.2 局部麻醉劑之藥理作用 4
2.1.3 局部麻醉劑之化學結構 5
2.1.4 局部麻醉劑的藥物動力學 7
2.1.5 局部麻醉劑的副作用與毒性 7
2.2 鹽酸利多卡因 Lidocaine Hydrochloride 之介紹 8
2.2.1 利多卡因 (lidocaine) 之物化性質 8
2.2.2 利多卡因之藥理學 9
2.2.3 利多卡因之藥物動力學 9
2.2.4 利多卡因之副作用與毒性 9
2.2.5 利多卡因臨床上之使用 10
2.2.6 利多卡因與藥品之交互作用 10
2.3 右美沙芬Dextromethorphan 之介紹 10
2.3.1 右美沙芬之物化性質 11
2.3.2 右美沙芬之藥理學 12
2.3.3 右美沙芬之藥物動力學 12
第3章 研究材料與方法 14
3.1 研究材料 14
3.1.1 實驗動物 14
3.1.2 實驗藥品 14
3.1.3 實驗相關儀器及材料 15
3.2 研究方法 15
3.2.1 動物實驗前準備 15
3.2.2 藥物注射 15
3.2.3 藥物配製 16
3.2.4 實驗流程 16
3.2.5 神經行為學的評估 17
3.2.6 實驗結果的分析流程 18
3.2.7 50%最大有效反應劑量 (ED50) 19
3.2.8 統計方法 19
第4章 結 果 20
4.1 右美沙芬與利多卡因之坐骨神經阻斷效能 20
4.2 右美沙芬、右啡烷、甲氧基嗎啡喃與利多卡因藥效劑量反應 20
4.3 右美沙芬、右啡烷、甲氧基嗎啡喃和利多卡因藥物效力之維持時間 21
4.4 右美沙芬、右啡烷或甲氧基嗎啡喃有/無合併利多卡因在大白鼠周邊坐骨神經的影響 21
第5章 討 論 42
第6章 結 論 45
參考文獻 46
作者簡介 53
參考文獻

蔡秋帆、湯念胡、王耀宏。藥理學 第2版。新文京開發出版有限公司,168-173,2002。

Albers GW, Saenz RE, Moses JA JR, Choi DW. Safety and tolerance of oral dextromethorphan in patients at risk for brain ischemia. Stroke 22: 1075-1077, 1991.

Beck PW, Handwerker HO, Zimmermann M. Nervous outflow from the cat's foot during noxious radiant heat stimulation. Brain Res 67: 373-386, 1974.

Bem JL, Peck R. Dextromethorphan. An overview of safety issues. Drug Saf 7: 190-199, 1992.

Carlsson KC, Hoem NO, Moberg ER, Mathisen LC. Analgesic effect of dextromethorphan in neuropathic pain. Acta Anaesthesiol Scand 48: 328-336, 2005.

Chen YW, Huang KL, Liu SY, Tzeng JI, Chu KS, Lin MT, Wang JJ. Intrathecal tri-cyclic antidepressants produce spinal anesthesia. Pain 112: 106-112, 2004.

Cherng CH, Yang CP, Wong CS. Epidural fentanyl speeds the onset of sensory and motor blocks during epidural ropivacaine anesthesia.Anesth Analg 101: 1834-1837, 2005.

Chow LH, Huang EYK, Ho ST, Tsai SK, Tao PL. Dextromethorphan potentiates morphine-induced antinociception at both spinal and supraspinal sites but is not related to the descending serotoninergic or adrenergic pathways. J Biomed Sci 11: 717-725, 2004.

Damaj MI, Flood P, Ho KK, May EL, Martin BR. Effect of dextromethorphan and dextrorphan on nicotine and neuronal nicotinic receptors: in vitro and in vivo selectivity. JPET 312: 780-785, 2005.

Du C, Hu R, Csernansky CA, Liu XZ, Hsu CY, Choi DW. Additive neuroprotective effects of dextrorphan and cycloheximide in rats subjected to transient focal cerebral ischemia. Brain Res 718: 233-236, 1996.

Duedahl TH, Rømsing J, Møiniche S, Dahl JB. A qualitative systematic review of peri-operative dextromethorphan in post-operative pain. Acta Anaesthesiol Scand 50: 1-13, 2006.

Fozzard HA, Lee PJ, Lipkind GM. Mechanism of local anesthetic drug action on voltage-gated sodium channels. Curr Pharm Des 11: 2671-2686, 2005.

Fink BR, Cairns AM. Lack of size related differential sensitivity to equilibrium conduction block among mammalian myelinated axons exposed to lidocaine. Anesth Analg 66: 948-953, 1987.

Fink BR. Toward the mathematization of spinal anesthesia (1992 Labbat lecture). Reg Anesth 17: 263-273, 1992.

Fisher RS, Cysky BJ, Lesser RP, Pontecorve MJ, Ferkany JT, Schwerdt PR, Hart J, Gordon B. Dextromethorphan for treatment of complex partial seizures. Neurology 40: 547-549, 1990.

Franz DN, Perry RS. Mechanism for differential block among single myelinated and non-myelinated axons by procaine. J Physiol 236: 193-210, 1974.
Franklin PH, Murray T. High affinity〔3H〕dextrorphan binding in rat brain is localized to a noncompetitive antagonist site of the activated N-Methyl-D-aspartate receptor-cation channel. Mol. Pharmcol 41: 134-146, 1991.
Gerner P, Nakamura T, Quan CF, Anthony DC, Wang GK. Spinal tonicaine: potency and differential blockade of sensory and motor functions. Anesthesiology 92: 1350-1360, 2000.

Gerner P, Mujtaba M, Khan M, Sudoh Y, Vlassakov K, Anthony DC, Wang GK. N-phenylethyl amitriptyline in rat sciatic nerve blockade. Anesthesiology 96: 1435-1442, 2002.

Glick SD, Maisonneuve IM, Dickinson HA, Kitchen BA. Comparative effects of dextromethorphan and dextrorphan on morphine, methamphetamine and nicotine self-administration in rats. Eur J Pharmacol 422: 87-90, 2001.

Grant GJ, Vermeulen K, Zakowsky MI, Sutin KM, Ramanathan S, Langerman L, Weissman TE, Turndorf H: A rat sciatic nerve model for independent assessment of sensory and motor block induced by local anesthetic. Anesth Analg 75: 889-894, 1992.

Hou CH, Tzeng JI, Chen YW, Lin CN, Lin MT, Tu CH, Wang JJ. Dextromethorphan, 3-methoxymorphinan, and dextrorphan have local anesthetic effect on sciatic nerve blockade in rats. Eur J Pharmacol 544:10-16, 2006.

Joshi GP. Multimodal analgesia techniques for ambulatory surgery. Int Anesthesiol Clin 43: 197-204, 2005.

Kato H, Kanellopoulos GK, Matsuo S, Wu YJ, Jacquin MF, Hsu CY, Choi DW, Kouchoukos NT. Protection of rat spinal cord from ischemia with dextrorphan and cycloheximide: effects on necrosis and apoptosis. J Thorac Cardiovasc Surg 114: 609-618, 1997.

Kim EM, Lee JS, Park MJ, CHoi SK, Lim MA, Chung HS. Standardization of method for the analysis of dextromethophan in urine. Epub 161(2-3): 198-201, 2006.

Mather LE, Chang DH. Cardiotoxicity with modern local anaesthetics: is there a safer choice? Drugs 61: 333-342, 2001.

Mao J, Price DD, Hayes RL, Lu J, Mayer DJ, Frenk H. Intrathecal treatment with dextrorphan or ketamine potently reduces pain-related behaviors in a rat model of peripheral mononeuropathy. Brain Res 605: 164-168, 1993.

Mao J, Price DD, Caruso FS, Mayer DJ. Oral administration of dextromethorphan prevents the development of morphine tolerance and dependence in rats. Pain 67: 361-368, 1996.

McLure HA, Rubin AP. Review of local anaesthetic agents. Minerva Anesthesiol 71: 59-74, 2005.

Milne RJ, Gamble GD. Habituation to sham testing procedures modifies tail-flick latencies: Effects on nociception rather than vasomotor tone. Pain 39: 103-107, 1989.

Minkin S, Kundhal K. Likelihood-based experimental design for estimation of ED50. Biometrics 55: 1030-1037, 1999.

Mordecai S, Dafang W, Victoria OS, Werner K, Edward S. Pharmacokinetics of dextromethorphan and metabolites in humans: influence of the CYP2D6 phenotype and quinidine inhibition. J Clin Psychopharmacol 15: 263-269, 1995.

Moses JA Jr, Choi DW. Safety and tolerance of oral dextromethorphan in patients at risk for brain ischemia.Albers GW, Saenz RE, Stroke 22(8): 1075-1077, 1991.

Netzer R, Pflimlin P, Trube G. Dextromethorphan blocks N-methyl-D-aspartate-induced currents and voltage-operated inward currents in cultured cortical neurons. Eur J Pharmacol 238: 209-16, 1993.

Peter Gemer, Mustafa Mujtaba, Catherine J.Sinnott, Ging Kuo Wang. Amitriptyline versus Bupivacaine in Rat Sciatic Nerve Blockade.Anesthesiology 94: 661,2001.

Peter Gemer, Mustafa Mujtaba, Mohammed kuo Khan, Yukari Sudoh, Kamen Vlassakov. N-Pbenyletbyl Amitriptyline in Rat Sciatic Nerve Blockade.Anesthesiology 96: 1435-1442, 2002.

Ruetsch YA, Boni T, Borgeat A. From cocaine to ropivacaine: the history of local anesthetic drugs. Curr Top Med Chem 1: 175-182, 2001.

Raymond SA, Gissen AJ. Mechanism of differential nerve block.Handbook of Experimental Pharmacology.Volume 81.Edited by Strichartz GR.Heidelberg,Springer-Verlag, pp95-164, 1987.

Raymond SA, Steffensen SC, Gugino LD, Strichartz GR. The role of length of nerve exposed to local anesthetics in impulse blocking action. Anesth Analg 68: 563-570, 1989.

Ritshel WA, Kearm GL. Area under the blood level-time curve,Handbook of Basic Pharmacokinetics Including Clinical Applications, 6th edit. Am Pharm Assoc, Washington, D.C, pp179-187, 2004.

Schadel M, Wu D, Otton SV, Kalow W, Sellers EM. Pharmacokinetics of dextromethorphan and metabolites in humans: influence of the CYP2D6 phentype and quinidine inhibition. J Clin Psychopharmacol 15: 263-269, 1995.

Scholz A. Mechanisms of (local) anaesthetics on voltage-gated sodium and other ion channels. Br J Anaesth 89: 52-61, 2002.

Steinberg GK, Kunis D, DeLaPaz R, Poljak A. Neuroprotection following focal cerebral ischaemia with the NMDA antagonist dextromethorphan, has a favourable dose response profile. Neurol Res 15: 174-80, 1993.

Sudoh Y, Cahoon EE, Gerner P, Wang GK. Tricyclic antidepressants as long-acting local anesthetics. Pain 103: 49-55, 2003.

Susan Budavari, Maryadele J. O,Neil, Ann Smith, Patricia E. Heckelman, Joanne F. The merck index an encyclopedia chemical, drug, and biologicals. 12th edition. Whitehouse station, NJ, pp936-937, 1996.

Szekely JI, Sharpe LG, Jaffe JH. Induction of phencyclidine-like behavior in rats by dextrorphan but not dextromethorphan. Pharmacol Biochem Behav 40: 381-386, 1991.
Tallarida RJ. Drug synergism: its detection and applications. J Pharmacol Exp Ther 298: 865-872, 2001.

Terada H, Kazui T, Takinami M, Yamashita K, Washiyama N, Muhammad BA. Reduction of ischemic spinal cord injury by dextrorphan: comparison of several methods of administration. J Thorac Cardiovasc Surg 122: 979-985, 2000.

Thalhammer JG, Vladimirova M, Strichartz GR. Differential evaluation of sensory and motor function during peripheral nerve block with lidocaine in rats. Reg Anesth 18(suppl 2): 110, 1993.

Thalhammer JG, Vladimirova M, Bershadsky B, Strichartz GR. Neurologic evaluation of the rat during sciatic nerve block with lidocaine. Anesthesiology 82: 1013-1025, 1995.

Trube G, Netzer R. Dextromethorphan: cellular effects reducing neuronal hyperactivity. Epilepsia 35: S62-S67, 1994.

Wakisaka S, Kajander KC, Bennett GJ. Abnormal skin temperature and abnormal sympathetic vasomotor innervation in an experimental painful peripheral neuropathy. Pain 46:299-313, 1991.

Weinbroum AA, Rudick V, Paret G, Ben-Abraham R. The role of dextromethorphan in pain control. Can J Anesth 47: 585-596, 2000.

Willis WD. Control of nociceptive transmission in the spinal cord. Progress in Sensory Physiology. Edited by Autrum H, Ottoson D, Perl ER, Schmidt RF. Berlin, Springer-Verlag, pp 8-39, 1982.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top