跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/12 09:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳建璋
研究生(外文):Chen JanChang
論文名稱:遙測技術應用於植物葉綠素含量與反射光譜之研究
論文名稱(外文):Application of Remote Sensed Technique to Estimate Leaf Chlorophyll Content and Surface Spectral Reflectance
指導教授:陳朝圳陳朝圳引用關係
指導教授(外文):楊棋明
學位類別:博士
校院名稱:國立屏東科技大學
系所名稱:熱帶農業暨國際合作研究所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:105
中文關鍵詞:可攜式光譜儀植生指標葉綠素反射光譜新木薑子生態環境破壞性胡蘿蔔葉綠素
外文關鍵詞:Portable spectroradiometersLeaf chlorophyllVegetation indexSpectral reflectancefuturesystemtaiwandata
相關次數:
  • 被引用被引用:3
  • 點閱點閱:1050
  • 評分評分:
  • 下載下載:170
  • 收藏至我的研究室書目清單書目收藏:1
自20世紀70年代以來,人口的增加、資源的過度開發與經濟的快速增長,直接造成了環境的污染、森林的破壞與水土的流失等嚴重生態威脅;自古至今,人類無限的開發與應用新的資源,從木材的伐採至石化時代的來臨,所有資源的使用無疑是從自然界所取得,也因此造成生態環境的惡化甚至部分生態系的滅絕。有鑑於此,近年來與生態相關的研究大多以生態系永續經營、生物多樣性、生態工法、生物防治等接近天然的人為措施來探討或更進一步瞭解自然生態。然而在生態相關的基礎研究上,較少著墨於同一生態研究主題由微觀的小尺度研究至宏觀的大尺度研究;因此,本論文以遙測研究尺度單葉反射光譜與色素生化分析為主,研究區域選定南仁山保護區內三種不同地形生育地之主要優勢林木,針對反射光譜與植物生化參數間進行探討。
傳統上葉片葉綠素含量的估算可透過破壞性與非破壞性的分析模式求得,以往非破壞性的量測方法大多使用如SPAD-502可攜式葉綠素計來量測,而本文所使用的CM1000葉綠素計乃透過感測葉片自然光反射700 nm與840 nm的波長,來估算植物葉片葉綠素的相對含量亦屬非破壞性的量測模式之一。本研究主要應用CM1000與植物生化分析(丙酮萃取)的模式對於南仁山保護區4種林木(烏心石Michelia formosana、九節木Psychotria rubra、奧氏虎皮楠Daphniphyllum glaucescens、南仁新木薑子Neolitsea hiiranensis)進行葉片葉綠素含量之測量,分析結果將可推導出葉綠素計感測值與實際葉綠素含量的關係,對同一樹種而言,未來將可利用CM1000直接換算出實際的葉綠素含量,如此將可減少生化分析所需的工作時程。透過CM1000與葉片葉色素含量進行迴歸分析,結果得到最佳的估算模式烏心石(R2=0.79)、九節木(R2=0.84)、奧氏虎皮楠(R2=0.90)、南仁新木薑子(R2=0.75)。研究結果顯示利用CM1000非破壞性的量測葉片色素含量之變化進而監測林木生理狀況,為有效且可行的方法;利用上述之研究結果,進而針對台灣墾丁國家公園南仁山保護區內,受地形影響不同樹種間之葉綠素含量與反射光譜之差異進行研究;由於南仁山保護區中,植群與樹種結構之組成受到地形與東北季風影響甚劇,因此以本區域作為研究區域。研究中在反射光譜與葉綠素含量資料收集上使用可攜式光譜儀GER1500與葉綠素計CM1000,應用了數個遙感探測指數作為比較之依據,包含了常態化植生指標(NDVI)、修正後常態化植生指標(mNDVI)、簡單比率植生指數(SR)與修正後簡單比率植生指數(mSR)。研究結果顯示,在上述數個植生指數中以mSR705 nm與mNDVI705 nm對於不同地形之影響有顯著性之差異(P<0.01);而相較於其他指數而言mNDVI705 nm在不同樹種間葉綠素含量與地形影響的關係比較上將更為有效。研究結果發現,修正後之植生指數對於不同地形與樹種間之感測有更為敏感的效果。
本文中另外選取南仁山保護區內4個樹種分別為奧氏虎皮楠(Daphniphyllum glaucescens)、烏心石(Michelia formosana)、紅花八角(Illicium dunnianum)、大葉楠(Machilus kusanoi),探討高光譜資料(植被指數、紅邊光學參數)與森林植被葉綠素含量的關係;依照不同地形分布,分別測定各樹種之地面高光譜反射與葉片中之葉綠素及類胡蘿蔔素含量;並以GER1500感測探求高光譜紅邊(Red Edge Inflection Point; REP)特徵分析與其色素含量之關係,利用統計相關分析方法探討其差異與相關性;研究結果顯示紅邊與葉綠素含量的關係上分別為Daphniphyllum glaucescen (R2=0.508, P<0.000), Michelia formosana(R2=0.667, P<0.000), Illicium dunnianum (R2=0.503, P<0.000) and Machilus kusanoi (R2=0.774, P<0.000)均達到極顯著之相關,證實應用高光譜數據可對於植物葉片葉綠素濃度進行定量之推估。在植被指數與葉綠素含量的關係上其關係性分別為SR705 (R2=0.236, P<0.000),mSR705 (R2=0.5283, P<0.000),NDVI705 (R2=0.265, P<0.000),mNDVI705 (R2=0.573, P<0.000),由該結果發現,mSR與mNDVI於相同樹種的關係係數表現上均較SR與NDVI為高且兩指數間有顯著之差異,結果證實與傳統的寬波段遙感資料相比,高光譜遙感的特點對於植被葉綠素含量的感測特性實屬可行,且確定了植被葉綠素的敏感波段範圍,未來若有更多的高光譜衛星資料可供使用,對於實現快速、簡便、非損傷地評價植生葉綠素含量與健康狀況將是重要的研究發展趨勢。
From the 1970s, the explosion of population, the over-exploitation of natural resources and the fast development of the economy have led to the pollution of environment, the destruction of forests and soil-erosion, which constitute a big threat to the earth’s ecological system. From the beginning of human history up to now, the unsolicited exploitation of natural resources, from cutting trees to mining fossil fuels, has eventually resulted in the deterioration of the ecological system and the annihilation of some partial ecological systems. Because of this, in recent years the studies on ecological system are mostly concerned with sustained development, the diversity of life-forms, the construction method of ecological systems, the anti-disease methods, and some other human precautions, which are meant to further explore into the natural ecological system. Therefore, this thesis focuses on the spectral reflectance and the biochemical analysis of pigments of single leaves through remote sensing, which are based on Nanjenshan Nature Reserve, from which a group of plants are tested for the analysis of the relationship between spectral reflectance and chlorophyll content.
Traditionally, the estimation of leaf chlorophyll content can be carried out using two methods; a destructive biochemical analysis and nondestructive method with portable chlorophyll meter (SPAD-502, Minolta Camera Co. Ltd., Japan). The device used to nondestructively measure the quantity of chlorophyll in leaves was fieldscout CM1000 chlorophyll meter which can sense light at wavelengths of 700 nm and 840 nm. The objective of this study was to use and compare CM1000 chlorophyll meter and acetone extraction (destructive method) methods for determining chlorophyll content in 4 species of leaves from hardwood Michelia formosana, Psychotria rubra, Daphniphyllum glaucescens and Neolitsea hiiranensis. The calculated CM1000 readings positively correlated with total chlorophyll concentration (R2 >0.79, Michelia formosana; R2>0.84, Psychotria rubra; R2>0.9, Daphniphyllum glaucescens; R2>0.78, Neolitsea hiiranensis). The results of this study can be used to estimate the actual leaf chlorophyll content using low costing, less laborious and time-saving procedures.
This study was conducted to investigate variations of leaf chlorophyll content and surface spectral reflectance of different tree species across contrasting terrain in the Nanjenshan Nature Reserve of Kenting National Park, southern Taiwan. Tree species composition and forest types vary because of intense northeast monsoons that are frequent this area. In this study, we used several remote sensing techniques indices; normalized difference vegetation index (NDVI), modified normalized difference vegetation index (mNDVI), simple ratio (SR) and modified simple ratio (mSR) to analyze the spectral reflectance data which was collected from portable spectroradiometers - GER 1500, and CM1000 chlorophyll meters to estimate leaf chlorophyll content. The results showed that there were significant differences (P<0.01) only among the modified indices mSR705 and mNDVI705. The index mNDVI705 seemed more sensitive to detect chlorophyll content in a wide range of tree species across a terrain. Among the indices calculated, the mNDVI consistently deviated from the general relationship between chlorophyll content and spectral reflection in different vegetation. The findings indicated that the modified indices were more sensitive to studying different tree species than normalized indices across terrain.
This study mainly explores into the relationship between the hyperspectral dates including vegetation index and red edge optical parameter and the chlorophyll contents of forest plants. Four species are selected from the Nanjenshan Nature Reserve, including Daphniphyllum glaucescens, Michelia formosana, Illicium dunnianum, and Machilus kusanoi. Based on different topographic conditions, the hyperspectral reflectance and the chlorophyll and carotenoid contents are determined, GER1500 is used to explore the relationship between the feature of the hyperspectral REP (Red Edge Inflection Point) and pigment contents and correlation analyzing method based on statistics is adopted to investigate some differences and correlations. The study shows that the relation between REP and chlorophyll content are: Daphniphyllum glaucescen (R2=0.508, P<0.000), Michelia formosana(R2=0.667, P<0.000), Illicium dunnianum (R2=0.503, P<0.000) and Machilus kusanoi (R2=0.774, P<0.000), respectively, which showed the obvious correlation between them, proving that hyperspectral data can be used to estimate the fixed quantity of chlorophyll content of leaves. The correlation between the vegetation index and chlorophyll content were as follows: SR705 (R2=0.236, P<0.000),mSR705 (R2=0.5283, P<0.000),NDVI705 (R2=0.265, P<0.000),mNDVI705 (R2=0.573, P<0.000). From the results we know that, on the basis of correlation coefficient for the same species, mSR and mNDVI are higher than SR and NDVI, and there is a huge difference between those two sets of indices. The result also proves that, compared with traditional broad band remote sensing data, hyperspectral remote sensing is feasible for measuring the chlorophyll content of plants, and it also decides the sensitive wavelength range for chlorophyll contents. In the future, if more hyperspectral materials collected from satellite can be applied, they would be a very important help for assessing vegetations’ chlorophyll contents and their health conditions rapidly, easily, and without damage.
CONTENTS
摘 要 I
Abstract IV
誌 謝 VIII
CONTENTS X
LIST OF TABLES & ILLUSTRATIONS XIII
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 LITERATURE REVIEW 6
2.1. Plants’ Reflection Spectrum and Physiology 6
2.2. The Relationship between Plant Pigments and Reflection Spectrum 12
2.2.1. Chlorophyll 13
2.2.2. Carotenoids 15
2.3. Remote Sensing and Vegetation Productivity 21
2.4. Ecological and Physiological Studies in Nanjenshan Nature Reserve 24
CHAPTER 3 Evaluation of a Portable Chlorophyll Meter CM1000 to Estimate Chlorophyll Contents in Hardwood Leaves 27
3.1. Introduction 27
3.2. Materials and Methods 28
3.2.1 Leaf sampling 28
3.2.2 CM1000 chlorophyll meter 29
3.2.3. Measurement of chlorophyll content 30
3.3. Data Analysis 31
3.4. Results and Discussions 31
3.4.1. The relationship between the index with chlorophyll meter and the chlorophyll content 31
3.4.2. Analysis of variance for 4 species leaves samples with CM1000 readings and total chlorophyll content 34
3.5. Conclusions 36
CHAPTER 4 Leaf Chlorophyll Content and Surface Spectral Reflectance of Tree Species Along a Terrain Gradient in Kenting National Park of Taiwan 37
4.1. Introduction 37
4.2. Materials and Methods 38
4.2.1. Study area 38
4.2.2. Leaf sampling 40
4.2.3. Reflectance measurements 41
4.2.4. Quantification of chlorophyll 41
4.2.5. Vegetation indices 43
4.2.6. Data analysis 44
4.3. Results and Discussion 44
4.3.1. Vegetation indices and chlorophyll content 44
4.3.2. Terrain effect 47
4.4. Conclusion 49
CHAPTER 5 Correlation Analysis on Vegetation Indices of Tree Leaf Spectral Reflectance and Chlorophyll Content in Kenting National Park of Taiwan 51
5.1. Introduction 51
5.2. Materials and Methods 54
5.2.1. Study area 54
5.2.2. Plant materials 55
5.2.3. Measurement of leaf chlorophyll content and spectral reflectance 55
5.2.4. Data analysis 56
5.3. Results and Discussion 57
5.3.1. Spectral reflectance of four species 58
5.3.2. Relationship between REP and chlorophyll content 61
5.3.3. Vegetation index and chlorophyll content 68
5.3.4. Terrain effects 73
5.4. Conclusions 84
CHAPTER 6 CONCLUSION & PROSPECT 86
REFERENCE 88
AUTHOR INTRODUCTION 105
Aase, J. K., and F. H. Siddoway (1980) Stubble height effects on seasonal microclimate, water balance, and plant development of no-till winter wheat. Agricultural Meteorology 21: 1-20.
Anten, N. P. R., R. Casado-Garcia, R. Pierik, and T. L. Pons (2006) Ethylene sensitivity affects changes in growth patterns, but not stem properties, in response to mechanical stress in tobacco. Physiologia Plantarum 128: 274-282.
Asrar, G., M. Fuchs, E. T. Kanemasu, and J. L. Hatfield (1984) Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in Wheat. Agronomy Journal 76: 300-306.
Atkinson, P. M. (1997) Scale and Spatial Dependence. p.35-60. In: Gardingen, P. R. Van, G. M. Foody, and P. J. Curran (eds.) Scaling-up: from cell to landscape. Cambridge University Press, Cambridge, UK.
Azia, F., and K. Stewart (2001) Relationships between extractable chlorophyll and SPAD values in muskmelon leaves. Journal of Plant Nutrition 24: 961-966.
Barker, D. H., G. G. R. Seaton, and S. A. Robinson (1997) Internal and external photoprotection in developing leaves of the CAM plant Cotyledon orbiculata. Plant Cell and Environment 20: 617-624.
Barnes, J. D., L. Balaguer, E. Manrique, S. Elvira, and A. W. Davison (1992) A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environmental and Experimental Botany 32(2): 85-100.
Bauerle, W. L., D. J. Weston, J. D. Bowden, J. B. Dudley, and J. E. Toler (2004) Leaf absorptance of photosynthetically active radiation in relation to chlorophyll meter estimates among woody plant species. Scientia Horticulturae 101: 169-178.
Blackburn, G. A. (1998) Quantifying chlorophylls and caroteniods at leaf and canopy scales: Anevaluat ion of some hyperspectral approaches. Remote Sensing of Environment 66: 273-285.
Bouman, B. A. M. (1992) Linking physical remote sensing models with crop growth simulation models, applied for sugar beet. International Journal of Remote Sensing 13: 2565-2581.
Brogea, N. H., and E. Leblancb (2000) Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment 76: 156-172.
Buschman, C., and E. Nagel (1993) In vivo spectroscopy and internal optics of leaves as a basis for remote sensing of vegetation. International Journal of Remote Sensing 14: 711-722.
Chang, S. H., and W. Collins (1983) Confirmation of the airborne biogeochemical mineral exploration technique using laboratory methods. Economic Geology 78: 723-736.
Chang, S. T., S. Y. Wang, T. F. Yeh, and C. L. Wu (1997) Rapid extraction and determination of chlorophyll using ultrasonics. (in Chinese). Taiwan Journal of Forest Science 12(3): 329-334.

Chang, S. X., and D. J. Robison (2003) Nondestructive and rapid estimation of hardwood foliar nitrogen status using the SPAD-502 chlorophyll meter. Forest Ecology and Management 181(3): 331-338.
Chappelle, E. W., M. S. Kim, and J. E. I. McMurtrey (1992) Ration analysis of reflectance spectra (RARS): an algorithm for the remote estimation of the concentrations of chlorophyll a, chlorophyll b, and carotenoids in soybean leaves. Remote Sensing of Environment 39: 239-247.
Chen, C. T. (1999) Seasonal variation of vegetation greenness of Nanjenshan forest ecosystem. (in Chinese). Quarterly Jounal of Chinese Forestry 32(1): 53-66.
Cheng, C. C., C. R. Chiou, and Y. C. Chen (1997) Applying a remote sensing method for estimating leaf area index of Taiwania plantations. (in Chinese). Taiwan Journal of Forest Science 12(3): 309-317.
Cheng, C. C., L. T. Hsu, and Y. C. Chen (1998) Integration of GIS and remote sensing in estimating stand volume. (in Chinese). Taiwan Journal of Forest Science 13(2): 155-167.
Chiao, K. M. (1990) Study on estimating forest productivity using spectral reflectance characteristics of Cryptomeria. (in Chinese). Journal of the Experimental Forest of National Taiwan University 4(4): 41-69.
Chiao, K. M. (1994) A study on optimum wavebands selection for forest surveys. Journal of Photogrammetry and Remote Sensing 25: 53-72.
Choudhury, B. J. (1994) Synergism of multispectral satellite observations for estimating regional land surface evaporation. Avenue of the Americas 49: 264-274.
Cihlar, J., L. St.-Laurent, and J. A. Dyer (1991) Relation between the normalized difference vegetation index and ecological variables. Remote Sensing of Environment 35: 279-298.
Clevers, J. G. P. W., and H. J. C. van Leeuwen (1996) Combined use of optical and microwave remote sensing data for crop growth monitoring. Remote Sensing of Environment 56: 42-51.
Cleves, J. G. P. W., C. Buker, H. J. C. Van Leeuwan, and B. A. M. Bouman (1994) A framework for monitoring crop growth by combining directional and spectral remote sensing information. Remote Sensing Environment 50: 161-170.
Collins, W. (1978) Remote sensing of crop type and maturity. Photogrammetric Engineering and Remote Sensing 44: 43-55.
Collins, W., and S. H. Chang (1982) Application of geophysical environmental research airline scanner data for detection of hydrophane alteration in Nevada. In: Proceedings of 6th Thematic Conference on Remote Sensing for Exploration Geology. Huston, Texas.
Craig, J. C. (2001) Muti-scale remote sensing techniques for vegetation stress detection. Ph. D. dissertation, University of Florida, Gainesville, FL. 172pp.
Curran, P. J., G. M. Foody, and P. R. Van Gardingen (1997) Scalling-up. p.1-6. In: Gardingen, P. R. Van, G M. Foody, P. J. Curran (eds.) Scaling-up: from cell to landscape. Cambridge University Press, Cambridge, UK.
Dalezios, N. R., C. Domenikiotis, S. T. Tzortzios, and C. Kalaitzidis (2001) Cotton yield estimation based on NOAA/AVHRR produced NDVI. Physics and Chemistry of Earth (B) 26(3): 247-251.
Datt, B. (1998) Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a + b, and total carotenoid content in Eucalyptus leaves. Remote Sensing of Environment 66: 111-121.
Datt, B. (1999) A new reflectance index for remote sensing of chlorophyll content in higher plants: tests using Eucalyptus leaves. Journal of Plant Physiology 154: 30-36.
Dawson, T. P., and P. J. Curran (1998) A new technique for interpolating red edge position. International Journal of Remote Sensing 19(11): 2133-2139.
Dawson, T. P., P. J. Curran, and S. E. Plummer (1998) LIBERTY - modeling the effects of leaf biochemical concentration on reflectance spectra. Remote Sensing of Environment 65: 50-60.
De Boer, T. A. (1993) Botanical characteristics of vegetation and their influence on remote sensing. p.89-106. In: Buiten, H. J. and J. G. P. W. Clevers (eds.) Land observation by remote sensing theory and applications. Gordon and Breach Science, Pennsylvania, U.S.
Demarez, V., and J. P. Gastellu-Etchegorry (2000) A modeling approach for studying forest chlorophyll content. Remote Sensing of Environment 71: 226-238.
Demmig-Adams, B., and W. Adams (1996) The role of xanthophylls cycle carotenoids in the protection of photosynthesis. Trends in Plant Science 1: 21-27.
Dodd, I. C., C. Critchley, G. S. Woodall, and G. R. Stewart (1998) Photoinhibition in differently coloured juvenile leaves of Syzygium species. Journal of Experimental Botany 49: 1437-1445.
Filella, I., and J. PeÑuelas (1994) The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. Internal Journal of Remote Sensing 15: 1459-1470.
Fuchs, M. (1990) Canopy thermal infrared observations. p.323-333. In: Goel, N. S. and J. M. Norman (eds.) Instrumentation for studying vegetation canopies for remote sensing in optical and thermal infrared regions. Harwood Acad. Publ. Gmb H, UK.
Gamon, J. A., and H. Qiu (1999) Ecological applications of remote sensing at multiple scales. p.805-846. In: Pugnaire F. I., and F. Valladares (eds.) Handbook of Functional Plant Ecology. Marcel Dekker, Inc. New York.
Gamon, J. A., and S. Surfus (1999) Assessing leaf pigment content and activity with a reflectometer. New Phytologist 143: 105-117.
Gamon, J. A., J. PeÑuelas, and C. B. Field (1992) A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment 41: 35-44.
Gates, D. M., H. J. Keegan, H. J. Schleter, and V. R. Weidner (1965) Spectral properties of plants. Applied Optics 4: 11-20.
Gausman, H. W. (1982) Visible light reflectance, transmittance, and absorptance of differently pigmented cotton leaves. Remote Sensing of Environment 13: 233-238.
Gausman, H. W., W. A. Allen, R. Cardenas, and A. J. Richardson (1970) Relation of light reflectance to histological and physical evaluations of cotton leaf maturity. Application of Optics 9: 545-552.

Gilbert, M. A. D., D. Seggara, and J. Melia (1990) A simplified algorithm for the evaluation of frost-affected citrus, application of chlorophyll fluorescence. p.273-284. In: Lichtenthaler, Hong Kong.
Gitelson, A. A., and M. N. Merzlyak (1994) Spectral reflectance changes associate with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves: spectral features and relation to chlorophyll estimation. Journal of Plant Physiology 143: 286-292.
Gould, K. S., D. N. Kuhn, D. W. Lee, and S. F. Oberbauer (1995) Why leaves are sometimes red. Nature 378: 241-242.
Green, E. P., P. J. Mumby, A. J. Edwards, C. D. Clark, and A. C. Ellis (1997) Estimating leaf area index of mangroves from satellite data. Aquatic Botany 58: 11-19.
Guo, M. S., and B. H. Sheu (1996) Compartion of the methods for extraction and determination of chlorophyll from spinach leaf tissue. (in Chinese). Bulletin of the experimental forest of National Chung Hsing University 18(2): 113-118.
Hendry, G. A. F., J. D. Houghton, and S. B. Brown (1987) The degradation of chlorophyll - a biological enigma. New Phytologist 107: 255-302.
Henry, H. A. L., and S. C. Thomas (2002) Interactive effects of lateral shade and wind on stem allometry, biomass allocation and mechanical stability in Abutilon theophrasti (Malvaceae). American Journal of Botany 89: 1609-1615.
Holm, G. (1954) Chlorophyll mutations in barley. Acta Agricul Truae Scandinavica. 4:457-461.
Horler, D. N. H., M. Dockray, and J. Barber (1983) The red edge of plant leaf reflectance. Internal Journal of Remote Sensing 4: 273-288.
Howard, J. A., R. D. Watson, and T. D. Hessin (1971) Spectral reflectance properties of Pinus ponderosa in relation to the copper content of the soil - Malachite Mine, Jefferson Country, Colorado. p.285-296. In: Proceedings of the 7th International Symposium on Remote Sensing of Environment. May 17-21, 1971. Ann Arbor, MN, Univ. Michigan, USA.
Hsieh, C. F., I. F. Sun, and C. C. Yang (2000) Species composition and vegetation patteren of a lowland rain forest at the Nanjenshan LTER site, southern Taiwan. Taiwania 45: 107-119.
Hsieh, H. C., and C. C. Cheng (1995) An analysis of vegetation greenness of Fu-shan with SPOT XS multitemporal data. (in Chinese). Bulletin of Taiwan Forestry Research Institute 10:105-120.
Hsieh, K. J. (2002) The unique features of the Nanjenshan forest ecosystem. (in Chinese). Ms. dissertation, National Pingtung University of Science & Technology, Department of Tropical Agriculture. 164pp.
Hsieh, T. H., and C. F. Hsieh (1990) Woody floristic composition and distribution pattern in the subtropical forest of Nanjenshan Area. (in Chinese). The National Museum of Natural Science 121-146.
Hsu, M. H., W. D. Huang, Z. W. Yang, Y. Z. Tsai, S. S. Chang, and C. M. Yang (2003) Remote estimation of pigment content in sweet potato leaves by reflectance spectra. (in Chinese). Chinese Agronomy Journal 13: 1-12.
Idso, S. B., R. D. Jackson, and R. J. Reginato (1977) Remote sensing of crop yields. Science 196: 19-25.
Jacquemoud, S., and F. Baret (1990) PROSPECT: a model of leaf optical properties spectra. Remote Sensing of Environment 34:75-91.
Jacquemoud, S., S. L. Ustin, J. Verdebout, G. Schmuck, G. Andreoli, and B. Hosgood (1996) Estimating leaf biochemistry using the PROSECT leaf optical properties model. Remote Sensing of Environment 56: 194-202.
Jakubauskas, M., K. P. Lulla, and P. W. Mausel (1990) Assessment of vegetation change in a fire-altered forest lanscape. Photogrammetry Engineering and Remote Sensing 56: 371-377.
Johnson, L. F., C. A. Hlavka, and D. L. Peterson (1994) Multivariate analysis of AVIRIS data for canopy biochemical estimation along the Oregon transect. Remote Sensing of Environment 47: 216-230.
Kahn, V. M., N. Avivi-Bieise, D. Von Wettstein (1976) Genetic regulation of chlorophyll synthesis analyzed with double mutants in barley. P.119-131. In: Bhuchler T. Genetics and Biogenesis of Chloroplasts and Mitochondria. Elsevier: North-Holland Biomembrane Press.
Kuo, Y. L., and Y. P. Lee (2003) Comparing dehydration tolerance and leaf mass per area between tree species inhabiting windward and leeward sites of Nanjenshan forest in southern Taiwan. (in Chinese). Taiwan Journal of Forest Science 15(3): 351-363.
Le Maire, G., C. Francois, and E. Dufrene (2004) Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sensing of Environment 89: 1-28.


Lee, S. J. (1999) Physiological and growth responses in seedlings of six tree species at canopy gap and understory on two elevations of Nanjenshan. (in Chinese). National Pingtung University of Science & Technology, Department of Tropical Agriculture. 84pp.
Lichtenthaler, H. K. (1987) Chlorophylls and carotenoid: pigments of photosynthetic biomembrane. Methods Enzymol 148: 350-382.
Lichtenthaler, H. K., and A. R. Wellburn (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions 603: 591-592.
Lillesand, T. M., and R. W. Kiefer (1994) Remote sensing and image interpretation. 3th edition, John Wiley & Sons, INC., New York. 750pp.
Lilliefors, H. W. (1967) On the Kolmorogrov–Smirnov test for normality with mean and variance unknown. Journal of the American Statistical Association 62: 399-402.
Madeira, A. C., A. Mendonca, M. E. Ferreira, and R. L. Freitas (2000) Relationship between spectroradiometric and chlorophyll measurements in green beans. Communication in Soil Science and Plant Analysis 31(5-6): 631-643.
Malanson, G. P., and L. Trabaud (1987) Post-fire development of canopy structure in a mediterranean shrub. Quercus Coccifera L. Physical Geography 8: 266-274.
Marquard, R. D., and J. L. Tipton (1987) Relationship between extractable chlorophyll and in situ method to estimate leaf greenness. HortScience 22(6): 1327.
Masoni, A., L. Ercoli, and M. Mariotti (1997) Spectral properties of leaves deficient in iron. Sulfur, Magnesium, and Manganese. Agronomy Journal 88: 937-943.
Merzlyak, M. N., A. A. Gitelson, O. B. Chivkunova, and V. Y. Rakitin (1999) Non-destructive optical detection of leaf senescence and fruit ripening. Physiologia Plantarum 106: 135-141.
Mojarro, F. (1988) Analysis of the effect of water, nitrogen and weather on growth, grain yield, biomass production and light use efficiency of winter wheat (Triticum aestivum L.). Ph.D. dissertation, Department of Agronomy, Kansas State University, Manhattan, Kansas.
Netto, A. T., E. Campostrini, J. G. Oliveira, and R. E. Bressan-Smith (2005) Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Scientia Horticulturae 104: 199-209.
Niklas, K. J. (1998) Effects of vibration on mechanical properties and biomass allocation pattern of Capsella bursa-pastoris (Cruciferae). Annals of Botany 82: 147-156.
Oechel, W. C., and C. D. Reid (1984) Photosynthesis and biomass of chaparral shrubs along fire-induced age gradient in southern California. Bulletin de la Societe Chimique de France 131: 399-409.
Ommen, O. E., A. Donnelly, S. Vanhoutvin, M. Van Oijen, and R. Manderscheid (1999) Chlorophyll content of spring wheat flag leaves grown under elevated CO2 concentrations and other environmental stresses within the ‘ESPACE-wheat’ project. European Journal of Agronomy 10: 197-203.

Pattey, E., I. B. Strachan, J. B. Boisvert, R. L. Desjardins, and N. B. McLaughlin (2001) Detecting effect of nitrogen rate and weather on corn growth using micrometeorological and hyperspectral reflectance measurements. Agriculture and Forest Meteorology 108: 85-99.
Penuelas, J., and I. Filella (1998) Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends in Plant Science 3: 151-156.
PeÑuelas, J., I. Filella, and F. Baret (1995) Semiempirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica 31: 221-230.
Philip, H. S., and M. D. Shirly (1978) Remote sensing: the quantitative approach. p.226-227. Mc Graw-Hill, New York.
Prasad, V. K., Y. Kant, and K. V. S. Badarinath (2002) Estimation of potential GHG emissions from net primary productivity of forests - a satellite based approach. Advances in Space Research 29(11): 1793-1798.
Price, J. C., and W. C. Bausch (1995) Leaf area index estimation from visible and near-infrared reflectance data. Remote Sensing of Environment 52: 55-65.
Pu, R. L., and P. Gong (2002) Hyperspectral remote sensing and its application. (in Chinese). Wu-Nan Culture Enterprise, Taipei. 332pp.
Reicosky, D. A., and J. W. Hanover (1978) Physiological effects of surface waxes. Plant Physiology 62: 101-104.

Rock, B. N., D. L. Willams, and J. E. Vogelmann (1985) Field and airborne spectral characterization of suspected acid deposition damage in red spruce (Picea rubens) from Vermont. p.71-81. In: Proceedings of the 11th International Symposium on Machine Processing of Remotely Sensed Data. Purdue University, West Lafayette.
Rock, B. N., T. Hoshizaki, and J. R. Miller (1986) Comparison of in situ and airborne spectral measurements of the blue shift associated with forest decline. Remote Sensing of Environment 24: 109-127.
Porra, R. J., W. A. Thompson, and P. E. Kriedermann (1989) Determination of accurate extinction coefficients and simultaneous equation for assaying chlorophyll a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975: 384-394.
Rouse, J. W., Jr., R. H. Haas, D. W. Deering, J. A. Schell, and J. C. Harlan (1974) Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. NASA/GSFC Type III Final Report, Greenbelt, MD. 371pp.
Schieh, H. C., K. M. Chiao, and Y. K. Chen(1992) A Study on the effect of Landsat data for forest volume estimation. (in Chinese). Journal of the Experimental Forest of National Taiwan University 6(4): 189-224.
Shioi, Y., and T. Sasa (1986) Purification of solubilized chlorophyllase from Chlorella pvototkecoides. Methods Enzymol 123: 421-427.
Simorte, V., G. Bertoni, C. Dupraz, and P. Masson (2001) Assessment of nitrogen nutrition of walnut trees using foliar analysis and chlorophyll measurements. Journal of Plant Nutrition 24: 1645-1660.
Sims, D. A., and J. A. Gamon (2002) Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment 81: 337-354.
Slaton, M. R., Hunt, E. R., and W. K. Smith, (2001) Estimating near-infrared leaf reflectance from structural characteristics. American Journal of Botany 88: 278-284.
Specht, R. L. (1981) Primary productivity in Mediterranean-climate ecosystems regenerating after fire. p.257-267. In: Di Castri, D. W. F., and R. L. Specht (eds.) Mediterranean-type Shrublands. Elsevier, Amsterdam.
Spectrum Technologies, Inc. (2002) CM1000 Operation Manual. Plainfield, Illinois. 13pp.
Su, H. J., and C. Y. Su (1988) Multivariate analysis on the vegetation of Kentin National Park. (in Chinese). Quarterly Journal of Chinese Forestry 21: 17-32.
Su, M. R., and C. M. Yang (1999) Estimation of rice growth from reflectance spectra of vegetative cover. Journal of Photogrammetry and Remote Sensing 4(4): 13-23.
Su, M.W. (1993) The leaf structure of canopy of Nanjenshan subtropical rain forest. (in Chinese). Ms. dissertation, National Taiwan University, Department of Plant Biology. 80pp.
Thenkabail, P. S., R. B. Simth, and E. D. Pauw (2000) Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing of Environment 71: 158-182.

Tian, Y., Y. Wang, Y. Zhanga, Y. Knyazikhin, J. Bogaerta, and R. B. Mynenia (2002) Radiative transfer based scaling of LAI retrievals from reflectance data of different resolutions. Remote Sensing of Environment 84: 143-159.
Tucker, C. J. (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8: 127-150.
Van den Berg, A. K., and T. D. Perkins (2004) Evaluation of a portable chlorophyll meter to estimate chlorophyll and nitrogen contents in sugar maple (Acer saccharum Marsh.) leaves. Forest Ecology and Management 200: 113-117.
Vane, G., and A. F. H. Goetz (1993) Terrestrial imaging spectrometry: current status, future trends. Remote Sensing of Environment 44(2): 117-126.
Verhoef, W. (1984) Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model. Remote Sensing of Environment 16: 125-141.
Viedma, O., J. Melia, D. Segarra, and H. J. Garcia (1997) Modelling rates of ecosystem recovery after fires by using Landsat TM data. Remote Sensing of Environment 61: 383-398.
Vogelmann, J. E., B. N. Rock, and D. M. Moss (1993) Red edge spectral measurements from sugar maple leaves. International Journal of Remote Sensing 14: 1563-1575.
Wang, C. N. (1995) The leaf water status under various habitats of Nanjenshan subtropical rain forest. (in Chinese). Ms. dissertation, National Taiwan University, Department of Plant Biology. 120pp.

Wessman, C. A., J. D. Aber, and D. L. Peterson (1989) An evaluation of imaging spectrometry for estimating forest canopy chemistry. International Journal of Remote Sensing 10 (8): 1293-1316.
Wood, C. W., D. W. Reeves, and D. G. Himelrick (1993) Relationships between chlorophyll meter readings and leaf chlorophyll concentration, N status, and crop yield: A review. Proceeding Agronomy Society New Zealand 23: 1-9.
Yamamoto, A., T. Nakamura, J. J. Adu-Gyamfi, and M. Saigusa (2002) Relationship between chlorophyll content in leaves of sorghum and pigeonpea determined by extraction method and by chlorophyll meter (SPAD-502). Journal of Plant Nutrition 25: 2295-2301.
Yang, C. M., K. W. Chang, M. H. Yin, and H. M. Huang (1998) Methods for the determination of the chlorophylls and their derivatives. Taiwania 43(2): 116-122.
Yang, J. F. (1997) Ecophysiological studies of four dominant tree species of subtropical rain rorest in Nanjenshan. (in Chinese). Ms. dissertation, National Taiwan University, Department of Plant Biology. 88pp.
Yoder, B. J., and R. E. Pettigrew-Crosby (1995) Predicting nitrogen and chlorophyll content and concentration from reflectance spectra (400-2500nm) at leaf and canopy scales. Remote Sensing of Environment 53: 199-211.
Zarco-Tejada, P. J., J. R. Miller, G. H. Mohammed, and T. L. Noland (2000a) Chlorophyll fluorescence effects on vegetation apparent reflectance: I. Leaf-Level measurements and model simulation. Remote Sensing of Environment 74: 582-595.

Zarco-Tejada, P. J., J. R. Miller, G. H. Mohammed, and T. L. Noland (2000b) Chlorophyll fluorescence effects on vegetation apparent reflectance: II. Laboratory and airborne canopy-level measurements with hyperspectral data. Remote Sensing of Environment 74: 596-608.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊