跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/30 16:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曹梓毅
研究生(外文):Tzu-i Tsao
論文名稱:具高玻璃轉移溫度聚芳香醚之高分子物性及光電特性分析與應用
論文名稱(外文):Physical and Electro-Optical Characterization and Application of Novel Poly(arylene ether)s with High Tg’s
指導教授:黃文堯黃文堯引用關係
指導教授(外文):Wen-Yao Huang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:95
中文關鍵詞:聚合聚芳香醚高分子熱分析吸收光譜及放光光譜高分子薄膜
外文關鍵詞:Polymerizationpoly(arylene ether)sthermal analysisabsorption and photoluminescence spectrapolymer thin films
相關次數:
  • 被引用被引用:6
  • 點閱點閱:259
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究探討的有三種芳香醚單體成功被合成出來其名稱與本文中所使用的代碼為:
4,4’’’’-Difluore-3,3’’’’-bis(trifluoromethyl)-2’’,3’’,5’’,6’’-triphenyl(M4)、4,4’’’’-Difluore-3,3’’’’-bis(trifluoromethyl)-2’’,3’’,5’’-triphenyl(M3)、4,4’’’’-Difluore-3,3’’’’-bis(trifluoromethyl)-2’’,3’’-triphenyl(M2),延續前反應物的單體Mx經由親核性(nucleophilic)取代反應與二苯酚單體1,1Dihydroxydiphenyl cyclododecane產生聚縮合反應所生成相對應的高分子稱為P4-1,1C、P3-1,1C、P2-1,1C;使用MASS、GPC鑑定其分子量,NMR及FTIR對其官能基作定性分析,證明其為本研究所指的純化合物。此一系列的聚芳香醚化合物具有較高的轉化率和高分子量(Mw:2.24 x 105 g/mol)。
將單體以及高分子分別溶在二氯甲烷中調成稀薄溶液並且以旋轉塗佈的方式製作光學薄膜,分別將其做吸收光譜和發光光譜量測,發現單體及高分子溶液幾乎不吸收可見光,高分子薄膜在可見光區透光度超過90%,且放光強度強,範圍在350~380nm。
在熱分析方面,本研究利用TGA、DSC、TMA探測單體及其高分子之物理特性,並搭配XRD鑑定其結晶性。由DSC及TMA圖顯示本研究之高分子的Tg介於270 ~320°C,且圖譜內並沒有偵測到任何Tm點,這表示本研究中之高分子均為非晶材料。另外在TGA的部份,在充滿氮氣的環境下其Td5%落在440 ~460°C之間,由此可知本研究之高分子不僅耐熱性佳且熱穩定性高,因此更能接受較高溫的製程。
在薄膜光學特性方面,將製做好的高分子薄膜利用橢偏儀量測折射率(refractive index)並觀察出無雙折射(birefringence)現象;而量測表面接觸角和表面能發現為表面極性低且為疏水性。
本研究使用電化學-循環伏安法,量測芳香醚單體得知HOMO和LUMO能階算出能隙,並搭配吸收光譜加以證實。
綜合以上諸點的實驗結果,發現本研究之聚芳香醚高分子:在可見光範圍具有高穿透率、熱穩定度良好(High Tg) 、表面極性低且疏水性。此良好的材料特性,都是符合元件與商業應用於塑膠基板的條件。
There are three novel 2-trifluoromethyl-activated bisfluoro monomers have been successfully synthesized in this study, and the nomenclatures are shown as follows:
4,4’’’’-Difluore-3,3’’’’-bis(trifluoromethyl)-2’’,3’’,5’’,6’’-triphenyl(M4),
4,4’’’’-Difluore-3,3’’’’-bis(trifluoromethyl)-2’’,3’’,5’’-triphenyl(M3),
4,4’’’’-Difluore-3,3’’’’-bis(trifluoromethyl)-2’’,3’’-triphenyl(M2). Through polymerization with 1,1-dihydroxydiphenyl cyclododecane the monomers M2, M3 and M4 were accordingly converted into poly(arylene ether)s P2-1,1C, P3-1,1C and P4-1,1C, respectively. These polymers exhibit weight-average molecular weight up to 2.25×105g/mol. The molecular weight were investigated and confirmed by MASS and GPC. The molecular structures were investigated and confirmed by NMR and FTIR.
The UV-VIS absorption and photoluminescence spectra measurement of all the monomers and polymers in dilute solutions and in solid state were conducted. The results show that all monomers and polymers in dilute solutions have no absorption in the vision light region of spectrum. The absorption spectra of polymer thin films showed high optical transparency up to 90%. The photoluminescence spectra of all monomers and polymers in dilute solutions and thin film emits light with high intensity and wavelength in region of 350~380nm.
Thermal analysis studies were conducted with TGA, DSC, TMA and crystal property study was performed by XRD. The results show that these polymers did not show melting but showed ultrahigh Tg values ranging from 270~330°C in DSC and TMA measurements, so it indicated that three polymers were not crystalline materials. Outstanding thermal stability is over then 440~ 460°C for 5% weight loss in TGA under nitrogen atmosphere. So it could make manufacture in higher temperature and have higher thermal stability.
With optical properties of polymer thin films, we utilized Ellipsometer to measure refractive index and the results showed no birefringence for these polymers. The polymer thin films show low polarity and high hydrophobicity could be attested by the measured results of contact angle and surface energy.
The HOMO and LUMO energy level of monomers are both measured by Cyclic Voltammetry and theoretical calculation.
The absorption spectra of polymer thin films showed no absorption in the visible light region of the spectrum i.e., having a high optical transparency. All above stated material properties are good for doing as a plastic substrate of devices or panel display.
誌 謝................................................... I
中文摘要 ......................................II
Abstract ................................................IV
目錄.....................................................VI
圖目錄.................................................. IX
表目錄................................................ XIII
第一章 導論...............................................1
1-1 前言..............................................1
1-2 常見的軟性基板....................................3
1-3 研究目的..........................................5
第二章 研究材料與理論介紹.................................7
2-1 聚芳香醚高分子材料簡介............................7
2-2 單體與聚芳香醚高分子材料合成流程圖................9
2-3 螢光理論(Luminescence Theory) .....................12
2-3-1 吸收與放光原理..............................12
2-3-2 化學結構與螢光的關係........................14
第三章 實驗方法與儀器原理............................... 15
3-1 實驗方法步驟流程圖.............................. 15
3-2 樣品調配與鑑定...................................16
3-2-1 高解析度質譜儀..............................16
3-2-2 高磁場液態核磁共振儀........................16
3-2-3 凝膠滲透層析儀..............................16
3-3 傅立葉轉換紅外光譜儀量測及原理...................17
3-4 紫外光-可見光光譜儀量測及原理....................18
3-5 螢光光譜儀量測及原理.............................20
3-6 熱重量分析儀量測及原理...........................21
3-7 熱示差掃瞄卡計量測及原理.........................22
3-8 原子力顯微鏡量測及原理...........................24
3-9 雙晶薄膜X光繞射儀量測及原理..................... 26
3-10 表面張力分析儀量測及原理........................27
3-11 生命週期螢光光譜儀量測及原理....................29
3-12 橢偏儀量測及原理................................30
3-13 電化學-循環伏安法...............................31
3-14 單體分子結構模擬................................31
第四章 結果與討論 ...33
4-1 材料結構鑑.......................................33
4-2 材料光譜分析.....................................44
4-3 材料熱分析.......................................54
4-4 材料表面分析.....................................64
4-5 材料能階分析.....................................74
第五章 總結..............................................78
參考文獻 ................................................80
[1] G.Yu, J. Gao, J. C. Hummelen, F.Wudl, A. J. Heeger, Science 270,
1789-1791 (1995)
[2] K. M. Coakley, M. D. McGehee, Appl. Phys. Lett. 83,3380-3382
(2003)
[3] W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Science 295, 2425-2427
(2002).
[4] S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Pardinger, T. Fromherz
, J.C. Hummelen, Appl. Phys. Lett. 78, 841-843 (2001).
[5] M. Pope, H.P. Kallmann, Magnante, J. Chem. Phys. 38, 2042 (1963).
[6] C.W Tang, S.A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).
[7] D. Leeuw, D. M., Nature 407,422 (2000).
[8] Huitema, H. E.; Golinck, G. H.; van der Putten, J. B. P. H.; Kuijk, K.
E.;Herwig, P. T.; van Breement, A. J. J. M.; de leeuw, D. M., Nature
414, 599 (2001).
[9] Chen, Y.; Au, J.; Kazlas, P.; Ritenour, A.; Gates, H.; McCreary, M.,
Nature 423 136 (2003).
[10] Whinfield, J. R.,Dickson, J. T., ”Polymeric Linear Terephthalic
Esters”, 1949, US. Patent 2465319
[11] Jabarin, S. A. and Lofgren, E. A., ”Thermal Stability of Polyethylene
Terephthalate”, Polymer Engineering and Science, 24(13), 1056-
1062 (1984).
[12] J. G. Cook, H. Huggill, A. Lowe, Polyster Fibers [P].GB BP604073,
(1948).
[13] G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, A. J.
Heeger, Nature 357,477 (1992).
[14] G. Gu, P. E. Burrows, S. Venkatesh, S. R. Forrest, Opt.Lett. 22,172
(1997)
[15] H. Li, D. R. Powell, R. K. Hayashi, R. West, Macromolecules 31,
52-58 (1998)
[16] C. Weder, M. S. Wrighton, Macromolecules 29, 5157-5165 (1996)
[17] Banerjee, S. Maier, G. Burger, M., Macromolecules 32, 4279 (1999).
[18] Qi, Y. Ding, J. Day, M. Jiang, J. Callender, C. L., Chem. Mater. 17,
676 (2005).
81
[19] Park, S. K.; Kim, S. Y., Macromolecules, 31, 3385 (1998).
[20] Labadie, J. W. Hedrick, J. L., Polym. Prepr. (Am. Chem. Soc., Div.
Polym. Chem.), 31 (1), 344 (1990).
[21] S,Banerjee, M. K. Madhra, A. K. Salunke, D. K. Jaiswal, Polym. 44,
613-622 (2003).
[22] Z. H. Li, K. L. Tong, M. S. Wong, S. K. So, J. Mater. Chem. 16,
765-772 (2006).
[23] S. Banerjee, M. Burger, G. Marier, Polym. Preper.(Am. Chem. Soc.,
Div. Polym. Chem.)
[24] 陳立偉,國立台灣科技大學化學工程系碩士論文,氟化2”,3”,5”,
6”-四苯基[1,1’;4’,1’’;4”,1’’’;4’’’,1’’’’] 五聯苯新單體和雙酚反應
合成高玻璃轉移溫度和低介電常數之聚苯基醚高分子及其性質
研究.
[25] C. Kittel,“Introduction to Solid State Physics”, 6th edition, John
Wiley & Son, Singapore (1986).
[26] Zhan XW, Lin YQ, Wu X, Wang S, Zhu DB. Macromolecules 35,
2529-2537 (2002).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top