(3.238.186.43) 您好!臺灣時間:2021/02/28 21:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:范鐸正
研究生(外文):To-cheng Fan
論文名稱:新式盤狀液晶結合聚丙烯醯胺材料開發與光電特性研究及其有機太陽能電池之應用
論文名稱(外文):Preparation and Electro-Optical Property of Novel Discotic Liquid Crystals and Poly(acrylamide) Dispersed LC with Application to Organic Solar Cells
指導教授:黃文堯黃文堯引用關係
指導教授(外文):Wen-Yao Huang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:123
中文關鍵詞:高分子盤狀液晶自組裝排列染料敏化太陽能電池聚丙烯醯胺側鏈型高分子液晶
外文關鍵詞:discotic liquid crystal polymerdye-sensitized solar cellsself-assemblyside-chain liquid crystal polymerpolyacrylamide
相關次數:
  • 被引用被引用:7
  • 點閱點閱:108
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以化學合成的方式開發製備兩種材料,其一為盤狀液晶 Acid-6,另一為新型高分子盤狀液晶 DLC-PAM。由 FT-MS、1H-NMR以及 FT-IR 鑑定其結構正確無誤後,將兩者當作光敏化染料,應用於染料敏化太陽能電池(dye-sensitized solar cells, DSSCs)製成元件。
本新型高分子盤狀液晶,是以高分子聚丙烯醯胺(polyacrylamide,PAM)當作主鏈,以化學合成的方式將盤狀液晶單體 Acid-6 接枝到高分子主鏈上所形成,屬於側鏈型高分子液晶,可展現出其液晶基 Acid-6 原來之特性。其一為具備桿狀液晶所欠缺的吸光能力,利用 UV-Vis spectrometer,可從吸收光譜看出其吸光波段約為 200 ~ 450 nm,座落於紫外與可見光區,的確可吸收太陽光當作光敏化染料。其二為盤狀液晶具有自組裝排列的特性,分子間可排列成六角柱狀之結構,具有更高的載子傳輸速率,而此部份藉由X-ray diffractmeter,可驗證出兩者確實具有六角柱狀液晶相。
經過定性鑑定和光學分析後,以 DLC-PAM 和 Acid-6 當作光敏化染料,分別製成兩 DSSCs 元件,不但光電流比預期高,甚至於光電轉換效率上亦有不錯的表現,分別可達 0.047 % 和 0.364 % 。因此,本論文成功驗證將兩材料當作光敏化染料,應用於染料敏化太陽能電池之可行性。
In this thesis we synthesize two organic materials, one is discotic liquid crystal Acid-6, and the other is novel discotic liquid crystal
polymer DLC-PAM. After demonstrating the molecular structures of Acid-6 and DLC-PAM by FT-MS, 1H-NMR and FT-IR, we use the two materials as photo-sensitized dyes for dye-sensitized solar cells(DSSCs) and manufacture two kinds of cells.
We use polyacrylamide(PAM) as main chain of the novel discotic liquid crystal polymer DLC-PAM and graft the discotic liquid crystal monomer Acid-6 onto PAM by chemical synthesis. DLC-PAM belongs to side-chain liquid crystal polymer, and it can show the properties of it’s discotic liquid crystal function. One of the properties is absorption of visible light. By observing the UV-Vis spectrum, we can realize the absorption band is located between 200 ~ 450 nm and confirm that it is able to be a photo-sensitized dye. Another property of discotic liquid crystal is the self-assembly ability, the moleculars can assemble into hexagonal columnar structure by themselves, and the property enable discotic liquid crystal to have better mobility. In this part, we can demonstrate DLC-PAM and Acid-6 really have hexagonal columnar structure by X-ray diffractmeter.
After qualitative demonstrating and optical analysis, we use DLC-PAM and Acid-6 as photo-sensitized dyes for DSSCs and manufacture two kinds of cells successfully. The more photocurrent occur when the two DSSCs are woking. Besides, the two DSSCs have good performance on power conversion efficiency which can achieve 0.047 % for DLC-PAM and 0.364 % for Acid-6. Therefore, in this research we prove that DLC-PAM and Acid-6 are able to be photo-sensitized dyes for DSSCs and successfully demonstrate that using the two materials to manufacture DSSCs is feasible.
誌謝 I
摘要 II
Abstract IV
目錄 VI
圖目錄 XI
表目錄 XV
Scheme目錄 XVI
第一章 緒論 1
1.1 前言 1
1.2 染料敏化太陽能電池之歷史 2
1.3 研究動機與目的 4
第二章 理論基礎與文獻回顧 7
2.1 染料敏化太陽能電池之組成 7
2.2 染料敏化太陽能電池之工作原理 8
2.2.1 光敏化染料 10
2.2.2 透明導電層和工作層之組合電極(光電極)12
2.2.3 電解質 13
2.2.4 鍍鉑之對電極 13
2.3 有機太陽能電池之功率轉換效率 14
2.4 盤狀液晶(discotic liquid crystal, DLC) 15
2.5 高分子液晶材料 18
2.5.1 主鏈型高分子液晶材料(main-chain liquid crystal  polymer, MCLCP) 18
2.5.2 側鏈型高分子液晶材料(side-chain liquid crystal polymer, SCLCP) 18
2.5.3 複合型高分子液晶材料 19
第三章 實驗儀器及其原理 20
3.1 高磁場液態核磁共振儀(nuclear magnetic resonance, NMR) 20
3.1.1 儀器簡介 20
3.1.2 儀器原理 21
3.2 傅利葉轉換式質譜儀(fourier-transfer mass spectrometry, FT-MS) 22
3.2.1 儀器簡介 22
3.2.2 儀器原理 23
3.3 傅利葉轉換式紅外光光譜儀(fourier-transfer infrared spectrometer, FT-IR) 23
3.3.1 儀器簡介 23
3.3.2 儀器原理 24
3.4 粉末 X-ray 繞射儀(powder X-ray diffractmeter, XRD) 25
3.4.1 儀器簡介 25
3.4.2 儀器原理 25
3.5 場發射型掃描式電子顯微鏡(field emission gun scanning electron microscopy, FEG-SEM) 27
3.5.1 儀器簡介 27
3.5.2 儀器原理 28
3.6 熱重分析儀(thermogravimetric analyzer, TGA)29
3.6.1 儀器簡介 29
3.6.2 儀器原理 30
3.7 熱示差掃描卡量計(differential scanning calorimetry, DSC) 30
3.7.1 儀器簡介 30
3.7.2 儀器原理 31
3.8 紫外與可見光光譜儀(UV-Vis spectrometer)32
3.8.1 儀器簡介 32
3.8.2 儀器原理 33
3.9 螢光光譜儀(fluorescence spectrometer) 34
3.9.1 儀器簡介 34
3.9.2 儀器原理 35
3.10 太陽光譜模擬量測系統(solar simulator
system) 35
3.10.1 儀器簡介 35
3.10.2 儀器原理 36
第四章 實驗 38
4.1 染料-高分子盤狀液晶之合成 38
4.1.1 藥品 38
4.1.2 合成步驟與鑑定 40
4.2 DSSCs元件之製作 69
4.2.1 材料 69
4.2.2 製作流程 70
第五章 量測與結果分析 80
5.1 光學分析 80
5.1.1 紫外與可見光光譜之探討 80
5.1.2 螢光光譜之探討 82
5.2 熱分析 84
5.2.1 TGA 之探討 84
5.2.2 DSC 之探討 86
5.3 液晶相之鑑定與觀察 88
5.4 DSSCs元件效率之探討 91
5.4.1 量測步驟及儀器參數 91
5.4.2 量測結果與探討 91
第六章 結論與未來工作 96
參考資料 98
[1] C. W. Tang, “Two-layer organic photovoltaic
cell”,Appl. Phys. Lett. 48 (1986), pp. 183-185
[2] M. Granstro¨m, K. Petritsch, A. C. Arias, A. Lux, M.
R. Andersson, and R.H. Friend, Nature (London)
395, 257(1998).
[3] C. W. Tang and S. A. Van Slyke, Appl. Phys. Lett. 51,
913 (1987).
[4] Kim, E. H.; Moon, I. K.; Kim, H. K.; Lee, M. H.; Han,
S. G.; Yi, M. H.; Choi,K.-Y., Polymer 1999, 40, 6157.
[5] D. M. Chapin, C. S. Fuller, G. L. Pearson, “A New
Silicon p-n Junction Photocell for Converting
Solar Radiation into Electrical Power”, J. Appl.
Phys.25, 676, 1954
[6] H. Tsubomura, M. Matsumura, Y. Nomura and T.
Amamiya, “Dye sensitised zinc oxide/aqueous
electrolyte/platinum photocell” Nature
1976(261)402
[7] Vlachopouios et al., “Very high visible light energy
harvesting and conversion by spectral
sensitization of high surface area polycrystalline
titanium dioxide films” J. Am. Chem. Soc. 1988
(110)1216-1220
[8] M. Grätzel, “Conversion of sunlight to electric
power by Nanocrystalline DSSCs” J. Photochem.
& Photobio. A: Chem. 2004(164)
[9] B. O’Regan, M. Grätzel, “A low-cost, high-
efficiency solar cell based on dye-sensitized
colloidal TiO2 films” Nature 1991(353) 737-740
[10] H. Tsubomura, M. Matsumura, Y. Nomura and T.
Amamiya, “Dye sensitised zinc oxide / aqueous
electrolyte / platinu photocell “, Nature 261
(1976) 402.
[11] K. Kalyanasundaram, M. Grätzel, “Applications
of functionalized transition metal complexes in
photonic and optoelectronic devices”, Coord.
Chem. Rev. 77 (1998) 347.
[12] M. K. Nazeeruddin, E. Miiller, P. Liska, N.
Vlachopoulos, and M. Grätzel, “Conversion of
light to electricity by cis-X2Bis (2,2’-bipyridyl-
4,4’-dicarboxylate) ruthenium(II) charge-transfer
sensitizers (X=Cl−, Br−, I−, CN− and SCN−) on
nanocrystalline TiO2 electrodes” , J. Am.
Chem. Soc. 115 (1993) 6382.
[13] J. Wienke, J. M. Kroon, P.M. Sommeling, R.
Kinderman, M.Späth, J.A.M. van Roosmalen,
W.C. Sinke, “Dye-semsitized nanocrystalline
TiO2 solar cells on flexible substrates”, ECN
contributions 2nd World Conference and
Exhibition on Photovoltaic Solar Energy
Conversion, Vienna 6 - 10 July 1998.97
[14] Christophe J. Barbe, Francine Arendse, Pascal
Comte, Marie Jirousek,Frank Lenzmann, Valery
Shklover, and Michael Grätzel, “Nanocrystalline
Titanium Oxide Electrodes for Photovoltaic
Applications”, J. Am. Ceram. Soc. 80 (1997)
3157.
[15] K. Tennakone, G R R A Kumara, I R M Kottegoda,
K G U Wijayantha and V P S Perera, “A solid-
state photovoltaic cell sensitized with a
ruthenium bipyridyl complex”, J. Phys. D:
Appl.Phys. 31 (1998) 1492.
[16] M. K. Nazeeruddin, P. Pĕchy and M
Grätzel, “Efficient Panchromatic sensitization of
nanocrystalline TiO2 films by a black dye based
on a trithiocyanato–ruthenium complex”,
Chem. Comm. (1997) 1705.
[17] Kohjiro Hara, Kazuhiro Sayama, Yasuyo Ohga,
Akira Shinpo, Sadaharu Suga and Hironori
Arakawa, “A coumarin-derivative dye sensitized
nanocrystalline TiO2 solar cell having a high
solar-energy conversion efficiency up to 5.6 %”,
Chem. Comm. (2001) 569.
[18] 角野 裕康, 村井 伸次, 御子柴 智, “Dye-sensitized
solar cells using solid electrolytes”, 東芝レビュー
56 (2001) 7.
[19] Henrik Lindstro1m, Anna Holmberg, Eva
Magnusson, Sten-Eric Lindquist, Lennart
Malmqvist, and Anders Hagfeldt, “A new Method
for manufacturing nanostructured electrodes on
plastic substrates”,Nano Letters 1 (2001) 97.
[20] Wataru Kubo, Takayuki Kitamura, Kenji
Hanabusa, Yuji Wada and Shozo
Yanagida, “Quasi-solid-state dye-sensitized
solar cells using room temperature molten salts
and a low molecular weight gelator”, Chem.
Comm. (2002) 374.
[21] 原 浩二郎, “有機色素増感太陽電池で変換効率
7.5%の世界最高性能を達成”, AIST Today 12
(2002) 14.
[22] Nick Vlachopoulos, Paul Liska, Jan Augustynski,
and Michael Grätzel, “Very efficient visible light
energy harvesting and conversion by spectral
sensitization of high surface area polycrystalline
titanium dioxide films”, J. Am. Chem. Soc. 110
(1988) 1216.
[23] W. U. Huynh, J. J. Dittmer, and A. P. Alivisattos, D.
J. Hybrid nanorod-polmer solar cells,Science
295, 2425-2427(2002)
[24] H. Schurmann, N. Koch, P. Imperia, S. Schrader,
M. Landke, P. Strohriegl,Brehmer, Synth. Metals,
102, 1069(1999)
[25] Journal;Hager Hanker, J.Am.Pharm.Assoc.,
44,1955,138-141.
[26] D. Matthews, P. Infelta, and M.
Grätzel, “Calculation of the Photocurrent-
Potential Characteristic for Regenerative,
Sensitized Semiconductor Electrodes,” Solar
Energy Mater. Sol. Cells, 44, 119, 1996.
[27] D. Cahen, G. Hodes, M. Grätzel, J. F. Guillemoles,
and I. Riess,“Nature of Photovoltaic Action in
Dye-Sensitized Solar cells, ”J.Phys.Chem.
B,104, 2053, 2000.
[28] J. Halme, ”Dye-Sensitized Nanostructured and
Organic Photovoltaic Cells:Technical Review and
Preliminary Tests, ” Helsinki university of
technology, 2002.
[29] A. Hagfeldt, M. Grätzel, “Light-Induced Redox
Reactions in Nanocrystalline Systems”, Chem.
Rev. 95 (1995) 49.24. M. Grätzel, “Mesoporous
oxide junctions and nanostructured solar cells”,
Current Opinion in Colloid & Interface Science 4
(1999) 314.98
[30] K. Kalyanasundaram and M.
Grätzel, “Applications of Functionalized
transition metal complexes in photonic and
optoelectronic devices”,Coord. Chem. Rev. 77
(1998) 347.
[31] Xin-Tong Zhang, Hong-Wu Liu, Taketo Taguchi,
Qing-Bo Meng, Osamu Sato, Akira
Fujishima, “Slow interfacial charge
Recombination in solid-state dye-sensitized
solar cell using Al2O3-coated nanoporous TiO2
films”, Sol. Energy Mater. Sol.Cells 81 (2004)
197.
[32] David Cahen and Gary Hodes, M.
Grätzel, “Nature of Photovoltaic Action in Dye-
Sensitized Solar Cells”, J. Phys.Chem. B 104
(2000)2053.
[33] 劉茂煌, 奈米光電電池, 工業材料 203 期91-97
[34] C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F.
Lenzmann, V. Shklover, M. Grätzel, “
Nanocrystalline Titanium Oxide Electrode for
Photovoltaic Application”, J.Am. Ceram. Soc. 80
(1997)3157.
[35] Park, J. van de Lagemaat, A. J.
Frank, “Comparison of dye-sensitized
rutile- and anatase-based TiO2 solar cells”, J.
Phys.Chem. B 104(2000) 8989.
[36] Park, G. Schlichtho1rl, J. van de Lagemaat, H. M.
Cheong, A. Mascarenhas, J. Frank, “Dye-
sensitized TiO2 solar cells: structural and
photoelectrochemical characterization of
nanocrystalline electrodes formed from the
hydrolysis of TiCl4”,J. Phys. Chem. B 103 (1999)
3308.
[37] S. Ito, Takayuki Kitamura, Yuji Wada, Shozo
Yanagida,“Facilefabrication of mesoporous
TiO2 electrodes for dye solar cells: chemical
modification and repetitive coating”, Sol. Energy
Mater. Sol.Cells 76 (2003) 3.
[38] S. Nakade, M. Matsuda, S. Kambe, Y. Saito, T.
Kitamura, T.Sakata, Y. Wada, H. Mori, and S.
Yanagida, “Dependence of TiO2 nanoparticle
preparation methods and annealing temperature
on the efficiency of dye-sensitized solar cells”, J.
Phys. Chem. B 106 (2002) 10004.
[39] D. Gebeyehu, C. J. Brabec, “Hybrid solar cells
based on dye-sensitized nanoporous TiO2
electrodes and conjugated polymers as hole
transport materials”, Synth. Met. 125 (2002)279.
[40] U. Bach, D. Lupo, M Grätzel, “Solid-state dye-
sensitized mesoporous TiO2 solar cells with high
photon-to-electron conversion fficiencies”,
Nature 395 (1998) 583.
[41] A. Key and M. Grätzel, “Low cost photovoltaic
modules based on dye sensitized nanocrystalline
titanium dioxide and carbon powder”, Sol.
Energy Mater. Sol. Cells 44 (1996) 99.
[42] Zaban, J. Zhang, Y. Diamant, O. Melemed, and J.
Bisquert, “Internal reference electrode in dye
sensitized solar cells for three-electrode
electrochemical characterizations”, J. Phys.
Chem. B 107 (2003) 6022.
[43] Dipl.Ing. Klaus Petritsch, “Organic Solar Cell
Architectures”, Cambridge andGraz, 2000
[44] Chandrasek, S.Sadashiva, B.K. , Suresh,
K.A.Pramana, 9,471,1977
[45] 賴耿陽編著;液晶製法與應用,1997,復漢出版
社。
[46] Boden, N.; Bushby, R., J.; Clements, J.; Movaghar,
B. J. Mater. Chem.1999, 9, 2081-2086.
[47] 張建中,孫存普 《磁共振教程》 中國科學技術大學
出版社 1996
[48] G. Hersberg, “Molecular Spectra and Molecular
Structure III Electronic Spectra and Electronic
Structure of Polyatomic Molecules, van Nostrand
Reihold Company Inc., New York, 1966.
[49] Jena.A.K.;Rath.Nigam P.Sahoo,Bhagirathi;
Sahoo.B.Indian.J.Chem. ect.A.EN:22,5,1983,371-
375.
[50] G. Hersberg,“Molecular Spectra and Molecular
Structure III. Electronic Spectra and Electronic
Structure of Polyatomic Molecules,van Nostrand
Reihold Company Inc., New York, 196
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔