(3.227.208.0) 您好!臺灣時間:2021/04/20 15:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林秉毅
研究生(外文):Bin-yie Lin
論文名稱:鈦酸鋇陶瓷的液相燒結
論文名稱(外文):Liquid Phase Sintering of Barium Titanate Ceramics
指導教授:盧宏陽盧宏陽引用關係
指導教授(外文):Lu, Hong-Yang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料科學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:98
中文關鍵詞:異常晶粒成長
外文關鍵詞:abnormal grain growth
相關次數:
  • 被引用被引用:0
  • 點閱點閱:140
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在鈦酸鋇陶瓷的研究領域中,常常探討其引響成長的機制原因,不管是在不同溫度、時間、氧分壓、添加不純物等,都會使其產生晶粒成長或抑制的效果,在最近的研究中,常討論到異常的晶粒成長(AGG or EGG)對於鈦酸鋇晶粒造成的影響,而造成此一影響的因素為添加的不純物,雖然有些不純物會抑制其異常晶粒的成長,但卻也有人發現添加了某些不純物在鈦酸鋇表面時,會使得異常晶粒成長的效應非常明顯,甚至可以用此種方法長出鈦酸鋇單晶,而為了了解添加物在成長中所扮演的關鍵角色,本次的研究將探討在添加不同成分的不純物,在一大氣壓下(PO2=0.21 atm),且溫度高於共晶溫度(Te=1332 oC)燒結,對於鈦酸鋇試片的微結構產生何種影響,以及異常晶粒成長是否可在此研究中被發現。
目錄..........................................................................................................Ⅰ
圖目錄 ....................................................................................................Ⅲ
表目錄 ………….......VII
第 1 章 前言..........................................................................................1
第 2 章 文獻回顧..................................................................................3
2.1 鈣鈦礦陶瓷結構與特性...........................................................3
2.2 碳酸鋇結晶結構.......................................................................6
2.3正方體(tetragonal)鈦酸鋇結構................................................10
2.4 BaO-TiO2系統之相平衡圖燒結驅動力.................................12
2.5 Ba6Ti17O40..............................................................................16
2.6燒結驅動力...............................................................................16
2.7雙晶面邊界(TPRE) ..................................................................17
2.8液相形成(the liquid form) ........................................................19
2.9面間夾角(dihedral angle) .........................................................20
2.10主要異常晶粒成長PAGG (primary abnormal grain growth) 和二次異常晶粒成長SAGG (secondary abnormal grain growth)
………………………………………………………………..21
第 3 章 實驗步驟.................................................................................23
3.1 BaTiO3粉未.............................................................................23
3.2 BaTiO3試片的製備.................................................................25
3.3 微結構觀察和分析..................................................................28
3.3.1 x-ray繞射分析.................................................................29
3.3.2 光學顯微鏡(OM)............................................................29
3.3.3 掃瞄式電子顯微鏡(SEM)..............................................30
3.3.4 穿透式電子顯微鏡(TEM)..............................................30
3.3.4.1 試片的準備(Thin foil preparation).........................31
第 4 章 實驗結果..................................................................................33
4.1 X-ray繞射分析..........................................................................33
4.2光學顯微鏡觀察........................................................................35
4.3掃描式電子顯微鏡觀察添加Al2O3的試片...........................41
4.4掃描式電子顯微鏡觀察添加SiO2的試片..............................45
4.5掃描式電子顯微鏡觀察未添加的試片....................................49
4.6掃描式電子顯微鏡觀察夾層試片............................................52
4.7穿透式電子顯微鏡觀察添加Al2O3的試片.............................57
4.8穿透式電子顯微鏡觀察夾層的試片........................................66
第 5 章 實驗結果討論..........................................................................69
5.1 SEM橫切面觀察添加Al2O3的分析......................................69
5.2 SEM橫切面觀察添加SiO2的分析.........................................69
5.3 TEM觀察添加Al2O3的分析..................................................70
5.4夾層試片的分析……………………………………………….71
5.5 OM的種晶試片分析………………………………………….71
第 6 章未來工作....................................................................................72
參考文獻(reference)................................................................................74
附錄 (appendix)......................................................................................79
附錄1 實驗中所研究結構於JCPDS-ICDD卡之相對資料........79
附錄2 型號3010 AEM之量測規格...............................................83
附錄3 正方相鈦酸鋇結構由[001]方向上所得立體投影圖….....84
附錄4 正方相鈦酸鋇結構之標準Kikuchi電子繞射圖...............85
附錄5 藉由電腦模擬所得標準繞射電子圖..................................86

圖目錄
圖 2.1.1 立方體鈦酸鋇結構(a) A-type和(b) B-type單胞….................4
圖2.1.2 A-type單胞藉由添加不同原子於DO9和B2兩種晶體中,而 形成立方體鈣鈦礦結(E21)......................................................5
圖2.1.3 B-type單胞藉由添加不同原子於L12晶體中,而形成立方體鈣鈦礦結(E21)..............................................................................6
圖2.2.1 鈦酸鋇結構中八面體之TiO6原子間相對位移的形…............7
圖2.2.2 晶格參數大小隨溫度改變而改變.............................................8
圖2.2.3 介電常數隨溫度變化而變化....................................................8
圖2.2.4 鈦酸鋇晶格常數與相轉換順序................................................9
圖2.3正方體結構 : (a)晶體單胞(b)在100面上、(c)在110和(d)在111面上原子排列情.........................................................................11
圖2.4 BaO和TiO2系統相圖(a) Rase et al. 1955[11], (b) O''Bryan et al. 1974[2], (c) Negas et al. 1974[12], (d) Ritter et al. 1986 and[13][15], (e) Kirby-Wechsler, 1991[14].............................................................12
圖2.7晶核於雙晶邊界(TPRE)上成長情形..........................................19
圖2.9.1 固相-固相-液相平衡的平面夾角............................................20
圖2.9.2 二次相在不同的平面角度分佈情形......................................21
圖2.10示意圖(a) singular, (b) vicinal or stepped, (c) rough表面........22
圖3.3 實驗的製作流程圖.....................................................................26
圖3.4夾層試片壓製的方法..................................................................27
圖3.5夾層試片的製作及分析流程圖..................................................27
圖3.6 SEM 種晶(111)的微結構分布....................................................28
圖4.1.1 初始粉體和在空氣下燒結X-ray繞射圖...............................34
圖4.1.2 添加0.1 mol% Al2O3 1350oC 8小時的鈦酸鋇試片X-ray繞射圖.............................................................................................34
圖4.2.1 添加0.1 mol% Al2O3 1350oC燒結8小時後的鈦酸鋇試片橫切面..........................................................................................35
圖4.2.2 添加1 mol% SiO2 1350oC燒結8小時後的鈦酸鋇試片橫切面..............................................................................................36
圖4.2.3夾層試片經1000oC燒結20h後再以1400oC燒結的橫切面.37
圖4.2.4 (a) upper, (b) middle 和 (c) lower較高倍率的微結構分佈…39
圖4.2.5在TiO2過量的鈦酸鋇試片表面添加5 wt% seed grain 1000oC燒結20h後再以1400oC燒結的橫切面................................40
圖4.3.1 (a)SEI (b)BEI coating 0.1 mol% Al2O3 1350oC for 8 h............42
圖4.3.2 (a)、(b) SEM-SEI玻璃相在試片的上表面晶界均勻分佈情形(c)SEM-BEI玻璃相沿晶界分佈1350oC for 2 h.....................44
圖4.3.3 (a) SEM-SEI (b)SEM-BEI在試片中間區域的觀察;(c) SEM-SEI (d)SEM-BEI在試片底部區域的觀察1350oC for 8 h................................................................................................45
圖4.4.1 (a)SEI (b)BEI coating 1 mol% SiO2 1350oC for 8 h.................47
圖4.4.2 (a)、(b)SEM-SEI試片的上表面分佈情形..............................48
圖4.4.3 (a) SEM-SEI (b)SEM-BEI在試片中間區域的觀察;(c) SEM-SEI (d)SEM-BEI在試片底部區域的觀察....................48
圖4.5.1 (a)SEM-SEI (b)SEM-BEI at 1350oC for 8 h..............................50
圖4.5.2 (a)、(b) SEM-SEI試片的上表面分佈情形..............................51
圖4.6.1 (a)SEM-SEI (b)SEM-BEI at 1000oC for 20 h 1400oC for 1 h....52
圖4.6.2 (a) SEM-SEI、(b)SEM-BEI試片的上層分佈情形..................53
圖4.6.3 (a) SEM-SEI、(b)SEM-SEI、(c)SEM-BEI試片的中層分佈情形..............................................................................................55
圖4.6.4 (a) SEM-SEI、(b)SEM-BEI試片的下層分佈情形..................56
圖4.7.1 低倍率下BT-B6T17界面的觀察.............................................57
圖4.7.2 高倍率下BT-B6T17界面的觀察.............................................58
圖4.7.3 BT-amorphous-BT界面的觀察..................................................59
圖4.7.4 B6T17-amorphous-B6T17 界面的觀察........................................59
圖4.7.5 BT-unknown phase-BT界面的觀察...........................................60
圖4.7.6 unknown phase在高倍率下的觀察...........................................61
圖4.7.7 TEM-EDS定性分析量測在不同鈦酸鋇晶粒的點...................61
圖4.7.8 TEM-EDS在a點的定性分析...................................................62
圖4.7.9 TEM-EDS在b點的定性分析...................................................62
圖4.7.10 TEM-EDS在c點的定性分析.................................................63
圖4.7.11 TEM-EDS在d點的定性分析.................................................63
圖4.7.12 鈦酸鋇晶粒和母相顆粒間的分佈觀察..................................64
圖4.7.13 鈦酸鋇晶粒分佈情形..............................................................64
圖4.8.1. SAGG的晶界處分布情形........................................................66
圖4.8.2. 小顆粒鈦酸鋇分布情形..........................................................67
圖4.8.3. SAGG的晶界處分布情形........................................................67
圖4.8.4. SAG界面處的faceting現象..................................................68
圖4.8.5. SAG和amorphous界面.........................................................68
表目錄
表2-1 鈦酸鋇正方體結構之原子位置和原子半徑..............................10
表2-2 BaO和TiO2相平衡圖中,不同鋇鈦莫耳數比之相對組成結構..................................................................................................12
表3-1 BaTiO3粉未的特性............……………………………………..23
表3-2 0.9894鈦酸鋇粉未的特性....……………………………………24
表3-3 1.0007鈦酸鋇粉未的特性....……………………………………24
[1]G. Arlt, D. Hennings and G. D. With, “Dielectric Properties of Fine-Grained Barium Titanate Ceramics,” J. Appl. Phys., 58 [3] 1619-1625 (1985).
[2]H. M. O’Bryan, Jr. and J. Thomson, Jr., “Phase Equilibria in the TiO2-Rich Region of the system BaO-TiO2, ” J. Am. Ceram. Soc., 57 [12] 522-26 (1974).
[3]M. K. Kang, Y. S. Yoo and D. Y. Kim, “Growth of BaTiO3 Seed Grains by the Twin-Plane Reentrant Edge Mechanism,” J. Am. Ceram. Soc., 83 [2] 385-90 (2000).
[4]B. K. Lee, Y. I. Jung S.J. L. Kang and J. Nowotny, “{111} Twin Formation and Abnormal Grain Growth in Barium Strontium Titanate,” J. Am. Ceram. Soc., 86 [1] 155-60 (2003).
[5]J. G. Fisher, B. K. Lee, A. Brancquart, S. Y. Choi and S. J. L. Kang, “Effect of Al2O3 dopant on abnormal grain growth in BaTiO3” J. Eur. Ceram. Soc., 25, 2033-2036 (2005).
[6]H. Y. Lee and . S. Kim, “Effect of Twin-Plane Reentrant Edge on the Coarsening Behavior of Barium Titanate Grains,” J. Am. Ceram. Soc., 85 [4] 977-80 (2002).
[7]Y. S. Yoo, H. Kim and D. Y. Kim, “Effect of SiO2 and TiO2 Addition on the Exaggerated Grain Growth of BaTiO3,” J. Am. Ceram. Soc., 17 , 805-811 (1997).
[8]A. J. Moulson and J. M. Herbert, “electroceramics,” Chapman and Hall, 1990.
[9]B. Jaffee, W. R. Cook and H. Jaffee, Peizoelectric Ceramics, Academic Press, N. Y, 1971.
[10]R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides,” Acta Cryst., A32, 751 (1976).
[11]D. E. Rase and R. Roy, “Phase Equilibria in the System BaO-TiO2,” J. Am. Ceram. Soc., 38 [3] 102-113 (1955).
[12]T. Negas, R. S. Roth, H. S. Parker and D. Minor, “Subsolidus Phase Relations in the BaTiO3-TiO2 System,” J. Sol. Stst. Chem., 9, 297-307 (1974).
[13]J. A. E. Javadpour, “Raman Spectroscopy of Higher Titanate Phases in the BaTiO3-TiO2 System,” J. Am. Ceram. Soc., 71 [4] 206-213 (1988).
[14]K. W. Kirby, “Phase Relations in the Barium Titanate-Titanium Oxide System,” J. Am. Ceram. Soc., 74 [8] 1841-1847 (1991).
[15]J. J. Ritter, R. S. Roth and J. E. Blendell, “Alkoxide Precursor Synthesis and Characterization of Phases in the Barium-Titanium Oxide System,” J. Am. Ceram. Soc., 69 [2] 155-162 (1986).
[16]C. H. Lei, C. L. Jia, M. Siegert and K. Urban, “Inrestigation of {111} stacking faults and nanotwins in epitaxial BaTiO3 thin films by high-resolution transmission electron microscopy,” Phil. Mag. Lett., 80 [6] 371-380 (2000).
[17]E. Tillmanns and W. H. Baur, “The Crystal Structure of HexaBarium 17-Titanate,” Acta Cryst., B26 1645-1654 (1970).
[18]J. S. Chun, N. M. Hwang, D. Y. Kim and J. K. Park, “Abnormal Grain Growth Occurring at the Surface of a Sintered BaTiO3 Specimen,” J. Am. Ceram. Soc., 87 [9] 1779-1781 (2004).
[19]Y. S. Yoo, M. K. Kang, J. H. Han, H. Kim and D. Y. Kim, “Fabrication of BaTiO3 Single Crystals by Using the Exaggerated Grain Growth Method,” J. Eur. Ceram. Soc., 17, 1725-1727 (1997).
[20]D. R. Uhlmann, H. K. Bowen, W. D. Kingery, Introduction to Ceramics, 209-215 (1975).
[21]B. K. Lee, S. Y. Chung and S. J. L. Kang, “Grain Boundary Faceting and Abnormal Grain Growth In BaTiO3,” Acta mater., 48, 1575-1580 (2000).
[22]Y. H. Hu, H. M. Chan, Z. X. Wen and M. P. Harmer, “Scanning Electron Microscopy and Transmission Electron Microscopy Study of Ferroelectric Domains in Doped BaTiO3” J. Am. Ceram. Soc., 69 [8] 594-602 (1986).
[23]V. P. Pavlovic, M. V. Nikolic, Z. Nikolic, G. Brankovic, L. Zivkovic, V. B. Pavlovic and M. M. Ristic, “Microstructural evolution and electric properties of mechanically activated BaTiO3 ceramics,” J. Eur. Ceram. Soc., 27, 575-579 (2007).
[24]R. S. Wagner, Acta Metall., 57 [8] (1960).
[25]D. R. Hamilton, R. G. Seidensticker, J. Appl., 31, 1165 (1960).
[26]T. Yamamoto and T. Sakuma,“Fabrication of Barium Titanate Single Crystals by Solid-State Grain Growth,” J. Am. Ceram. Soc., 77 [4] 1107-1109 (1994).
[27]D. F. K. Hennings, R. Janssen and P. J. L. Reynen, “Control of Liquid-Phase-Enhanced Discontinuous Grain Growth in Barium Titanate,” J. Am. Ceram. Soc., 70 [1] 23-27 (1987).
[28]O. Eibl, P. Pongratz and P. Skalicky, “Crystallography of (111) twins in BaTiO3, ” Phil. Mag. B, 57 [4] 521-534 (1998).
[29]O. Eibl, P. Pongratz and P. Skalicky, “Formation of (111) twins in BaTiO3 ceramics,” J. Am. Ceram. Soc., 70 [8] 195-197 (1987).
[30]S. K. Kwon, S. H. Hong, D. Y. Kim and N. M. Hwang,“Coarsening Behavior of Tricalcium Silicate (C3S) and Dicalcium Silicate (C2S) Grains Dispersed in a Clinker Melt,” J. Am. Ceram. Soc., 83 [5] 1247-1252 (2000).
[31]Y. J. Park, N. M. Hwang and D. N. Yoon, “Abnormal Growth ok Faceted (WC) Grains in a (Co) Liquid Matrix,” Metall. Trans. A, 27A 2809-2819 (1996).
[32]H. Y. Lee, J. S. Kim, N. M. Hwang and D. Y. Kim, “Effect of Sintering Temperature on the Secondary Abnormal Grain Growth of BaTiO3,” J. Eur. Ceram. Soc., 20 [6] 731-737 (2000).
[33]R. C. DeVrise, “Observation on Growth of the BaTiO3 crystals from KF solutions,” J. Am. Ceram. Soc., 42, 547-558 (1959).
[34]H. Schmelz, “Twinning in BaTiO3 ceramics, ”Ceram. Forum Int., Ber. Dtsch. Keram. Ges., 61, 199-204 (1984).
[35]H. Oppolzer, H. Schmelz, “Investigation of Twin Lamellae in BaTiO3 ceramics,” J. Am. Ceram. Soc., 66, 444-447 (1983).
[36]D. Elwell and H. J. Scheel, Crystal Growth from High-Temperature Solutions, Academic Press, London, pp. 190 (1975).
[37]J. C. Brice, The Growth of Crystals from Liquids, North-Holland Publishing Co., Amsterdam, 1973.
[38]J. W. Faust and H. F. John, “The Growth of Semiconductor Crystals from Solution Using the Twin-Plan Reentrant-Edge Mechanism,” J. Phys. Chem. Solids, 25, 1407-1415 (1964).
[39]B. K. Lee, S. Y. Chung and S. J. L. Kang, “Grain Boundary Faceting and Abnormal Grain Growth in BaTiO3,” Acta Mater., 48 [7] 1575-1580 (2000).
[40]M. G. Kang, D. Y. Kim, N. M. Hwang, “Temperature Dependence of the Coarsening Behavior of Barium Titanate Grains,” J. Am. Ceram. Soc., 83 [12] 3202-3204 (2000).
[41]W. Jo, D. Y. Kim and N. M. Hwang, “Effect of Interface Structure on the Microstructural Evolution of Ceramics,” J. Am. Ceram. Soc., 89 [8] 2369-2380 (2006).
[42]K. H. Felgner, T. Moller, H. T. Langhammer, H. P. Abicht,“Investigations on the liquid phase in Barium Titanate ceramics with silica additives,” J. Eur. Ceram. Soc., 21 1657-1660 (2000).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔