跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2024/12/06 15:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳俊豪
研究生(外文):Chun-hao Chen
論文名稱:部分退火冷軋鋁合金之拉伸性質研究
論文名稱(外文):Effects of partial annealing on the tensile deformation behavior of heavily cold-rolled aluminum
指導教授:高伯威
指導教授(外文):Po-wei Kao
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料科學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:140
中文關鍵詞:織構降伏下降鋁合金
外文關鍵詞:textureyield drop
相關次數:
  • 被引用被引用:3
  • 點閱點閱:281
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗使用的三種鋁材分別為連鑄鋁片(CC鋁材)、DC1300及4N純鋁,其中CC鋁材與DC1300有相似合金成份,但CC鋁材具有較高之合金元素固溶量,至於4N純鋁則是作為對照之基礎。經由適當的部分退火處理後在不同方向作拉伸試驗,發現有明顯的異向性存在。結果顯示提高退火溫度會降低抗拉強度但可增加材料的延展性,提高應變速率會提高強度亦可提升延展性。
比較CC、DC1300的拉伸實驗結果,顯示CC鋁材有較高強度及延展性。進一步利用TEM、EBSD分析微結構,發現兩種材料的晶粒形狀、晶粒尺寸、晶界分佈及高角邊界比例均相近,因此推論這些因素應不是影響兩者機械性質差異的主因,而是CC鋁材有較高合金固溶量所致。由EBSD分析所得到的Schmid factor為45°>0°>90°,可以解釋拉伸試驗所得降伏強度45°>0°>90°之異向性應是受織構影響。
利用EBSD分析DC1300拉伸試片的變形帶,結果顯示織構不是對稱的。45°方向拉伸試片的變形帶,主要是Copper texture中的兩個變量;而90°方向拉伸試片的變形帶,則是Brass texture中的兩個變量。
圖表目錄………………………………………………………………..Ⅲ
一、前言……………………………………………….......………....1
二、文獻回顧………………………………………………….......…3
2.1 冷軋的微觀組織………………………………………….…3
2.2 超細晶金屬之機械性質………………………………….....7
2.2.1 細晶鋁之降伏下降現象與路德式變形……………..7
2.2.2 超細晶金屬的延展性………………...………...……9
2.2.3 超細晶金屬的加工硬化行為……………………..…9
2.2.4 超細晶金屬的應變速率敏感值……………………11
2.2.5 超細晶金屬的晶界特性………………………...….11
2.3 電子背向繞射之介紹.………………………….….…........12
2.3.1 EBSD的優點………………………….................….12
2.3.2 EBSD的基本原理與系統裝設組成…….…….........13
2.3.3 與本論文有關的EBSD應用………………………..14
2.4 變形織構……….………………………………………......18
三、研究目的…………………………………………………….....19
四、實驗方法………………..………........................………….......20
4.1 實驗的材料介紹…………………..……………………….20
4.2 退火處理……....……………………………………….......20
4.3 拉伸試驗……....………………………………………...…21
4.4 EBSD試片製作…….……………………………………....21
4.5 TEM試片製作…….………………………………..….......22
4.6 利用TEM量測晶界差角………………………………….22
五、實驗結果………………………………......…………………...25
5.1 拉伸試驗……………………………....…………………...25
5.1.1 DC1300…………………………....………………...25
5.1.2 CC…………………………………...……………....26
5.1.3 4N純鋁……………………………………………...27
5.2 微結構……………………………………………………...29
5.2.1 微結構形態…………………………………………29
5.2.2 次晶粒尺寸…………………………………………31
5.2.3 織構組織……………………………………………32
5.2.4 晶界差角…..………………………………………36
5.3 Schmid factor……………………………….……...………37
5.4 拉伸試片之變形帶觀察……………………...……………39
5.5 拉伸變形後之TEM微結構觀察…………..………………40
5.6 拉伸變形後之EBSD觀察…………………….……………42
5.7 拉伸前後之方位分佈函數……………...………..………..46
六、討論……………………………………………..…….……..…47
6.1 加工硬化與降伏下降現象…………………………….…47
6.2 晶粒尺寸的影響…………...………………..…………..…49
6.3 晶界特性的影響………………………………….……..…49
6.4 Schmid factor與織構組織…………………………...….…50
七、結論………………………………………………....………….51
八、參考文獻……………………..……………………..………….53
1.B.Bay, N.Hansen and D.Kuhlmann-Wilsdorf, “Microstructural evolution in rolled aluminum”, Mater. Sci., A158, (1992), p.139.
2.D.A.Hughes and N.Hansen, “High Angle Boundaries Formed By Grain Subdivision Mechanisms”, Acta Mater. 45, (1997), p.3871.
3.R.E.Reed-Hill and R. Abbaschian, “Physical Metallurgy Principles”, PWS-Kent (1992),p.177.
4.D.A.Hughes and N.Hansen, “Microstructure and strength of nickel at large strains”, Acta Mater. 48, (2000), p.2985.
5.A.Oscarsson, H.E.Ekstrom and W.B.Hutchinson, “Transition from discontinuous to continuous recrystallization in strip-cast aluminum alloys”, Recrystallization ’92 (ed. M. Fuentes and J. Gil Sevillano), Trans. Tech. Publications, (1992) pp.177-182.
6.Y.M.Wang and E.Ma, “Three strategies to achieve uniform tensile deformation in a nanostructured metal”, Acta Mater., 52 (2004) pp.1699-1709.
7.N.Tsuji, Y.Ito, Y.Saito and Y.Minamino, “Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing”, Scripta Mater., 47 (2002) pp.893-899.
8.D.J.Lloyd and L.R.Morris, “Luders band deformation in a fine grained aluminum alloy”, Acta Metall.,25 (1977) pp.857-861.
9.J.W.Wyrzykowski and M.W.Grabski, “Effect of annealing temperature on structure and properties of fine-grained aluminum”, Metal Sci., 17 (1983) pp. 445-450.
10.C.Y.Yu, P.W.Kao and C.P.Chang, “Transition of tensile deformation behaviors in ultrafine-grained aluminum”, Acta Mater., 53 (2005) pp.4019-4028.
11.W.B.Morrison and R.L.Miller, “The ductility of ultrafine-grain alloys”, ed Burke J.J., V. Weiss, (1970) pp.183-210.
12.D.J.Lloyd, “Deformation of fine-grained aluminum alloys”, Metal Sci., 14 (1980) pp.193-198
13.H.Westengen, “Tensile deformation of a fine-grained Al-alloy”, in ICSMA6, ed. by R. C. Gifkins, Pergamon Press, Oxford (1983) pp.461-466.
14.Y.T.Zhu and X Liao, “Nanostructured Metals: retaining ductility”, Nature materials, 3 (2004) pp.351-352.
15.M.A.Meyers and K.K.Chawla, “Mechanical metallurgy principles and applications”, Prentice-Hall, (1984) pp.585-586.
16.P.L.Sun, C.Y.Yu, P.W.Kao and C.P.Chang, “Influence of boundary characters on the tensile behavior of sub-micron-grained aluminum”, Scripta Mater., 52 (2005) pp.265-269.
17.P.C.Hung, P.L.Sun, C.Y.Yu, P.W.Kao and C.P.Chang, “Inhomogeneous tensile deformation in ultrafine-grained aluminum”, Scripta Mater., 53 (2005) pp. 647-652.
18.“Electron Backscattered Diffraction”, Oxford Instruments Analytical- technical briefing,(2004).
19.M. Hatherly and W. B. Hutchinson, “An Introduction to textures in metals”, The Institute of Metals, (1979) p.6.
20.“CHANNEL5 software Manual”, HKL Technology, (2003).
21.W.C.Robert, “Measurement and control of texture”, Materials Science and Technology, 15A, (1996) p.444.
22.F.J.Humphreys and M.Hatherly, “in Recrystallization and related annealing phenomena”, (1995) p.437.
23.F.J.Humphreys and M. Hatherly, “in Recrystallization and related annealing phenomena”, (1995) p.46.
24.J. Liu, J. G. Morris, “Macro-, micro- and mesotexture evolutions of continuous cast and direct chill cast AA 3105 aluminum alloy during cold rolling”, Mater Sci. Eng. A357 (2003) pp.277-296.
25.T. R. McNelley, E. W. Lee, and M. E. Mills, Metall. Trans. A, 17A, (1986) p.1035.
26.Zaefferer, “New developments of computer-aided crystallographic analysis in transmission electron microscopy”, J. Appl. Crystall. , 33 (2000) pp.10-25.
27.C. N. Reid, Deformation geometry for materials scientists, Pergamon Press, Oxford, (1973), pp.31-53.
28.V. Randlc, “The measurement of grain boundary geometry”, Institute of Physics, Bristal, (1993).
29.V. Randlc, “in Introduction to texture analysis”, (2000) pp.13-40.
30.蕭一清, “5083 鋁合金低溫超塑性研發與變形機構分析”, 國立中山大學材料科學研究所博士論文, (2001).
31.蘇聖紋, “超塑性鋁鎂合金之織構演變”, 國立中山大學材料科學研究所碩士論文, (1999).
32.孫佩鈴, “純鋁經大量塑性變形生成細經歷之研究”, 國立中山大學材料科學研究所碩士論文, (1999).
33.丁仕旋, “商用純鋁在50%軋延量下之溫加工變形組織”, 國立中山大學材料科學研究所碩士論文, (2003).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊