跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/26 04:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭峻廷
研究生(外文):Chun-ting Kuo
論文名稱:受外界機械應力下65nm金氧半場效電晶體於不同溫度下熱載子效應之電性分析
論文名稱(外文):Electrical Analysis of Hot Carrier Effect at Various Temperature of 65nm MOSFETs under External Mechanical Stress
指導教授:張鼎張
指導教授(外文):Ting-chang Chang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:物理學系研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:86
中文關鍵詞:應變矽熱載子效應電晶體
外文關鍵詞:strained-Sihot carrier effectMOSFETs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:99
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現今的半導體製程技術已正式跨進奈米領域,隨著尺寸不斷微縮,面積相同的晶片卻擁有更多的電晶體數量,進而提昇其工作頻率及性能。但微影技術已經接近瓶頸,所以我們必須另外尋找能夠提升電晶體效能的方法,應變矽就是目前的研究重心。在越來越短的通道下,元件的可靠性也更加重要。在這篇論文中,我們完整的討論受外界機械應力下65nm金氧半場效電晶體於不同溫度下熱載子效應之電性分析。為了讓通道產生應變,我們選擇利用外界機械應力來彎曲矽基板,此時通道將受到單軸張應力而產生應變。利用此方法,我們成功提高NMOS 的汲極電流與載子遷移率,但是熱載子效應卻更加嚴重。
除此之外,藉由外界機械應力來彎曲矽基板,我們可以了解應變矽熱載子效應的影響。隨著曲率越大,基板電流有明顯上升的趨勢,對此我們也提出一套解釋方法,來驗證我們實驗的結果。
元件對溫度的效應,汲極電流和在子遷移率都隨著溫度下降而上升。但是基板電流卻隨溫度上升而上升。
Semiconductor technology has already got into nanometer scale. As the dimension keeping scaling down, we can get more transistor in the same area, and furthermore the frequency and performance are also enhanced. But nowadays the development of the lithography technology has come to the neck, we must find another way to improve the performance of transistor. The reliability is more important in the shorter and shorter device channel. In this study, we fully discuss the electrical characteristics of the hot carrier effect at various temperature of 65nm MOSFETs under external mechanical stress.
In order to strain the channel, silicon substrate is bent by applying external mechanical stress, the lattice of channel will be strained after applying uniaxial tensile stress. Therefore, we successfully improve drain current and carrier mobility of NMOS, but the hot carrier effect is more serious.
In addition, we can understand the influence of hot carrier effect on strain silicon by bending silicon substrate with external mechanical stress. With the increase of curvature, substrate current goes up. We offer an explanation to verify this result.
The temperature effect is also measured. The drain current and mobility increased with the temperature decreasing, but the substrate current increased with temperature increasing.
Contents
Contents..................................................Ⅰ
Figure content .............................................IV
Abstract.. ..............................................VIII
Chapter One Introduction
1-1. The Foundation of Semiconductor Device.................1
1-2. Motivation .........................................3
1-3. Review of Papers ....................................5
1-4. Organization of this Thesis..........................6
Chapter Two Foundation of Theory
2-1. The influence of tensile stress on Silicon .............9
2-2. MOSFET................................13
Chapter Three Apparatus and Parameters
3-1. Steps of Experiments.................................16
3-1-1. Preparation before Experiments....................16
3-1-2. Polish the Sample...............................16
3-1-3. The Setting of the Measurement....................17
3-2. Parameters.........................................19
3-3. Apparatus of Experiment..............................21
3-3-1. Polishing Machine..............................21
3-3-2. Measurement Machine........................22
Chapter Four Results and Discussion
4-1. The Influence of Electrical Analysis by Bending Effect.......28
4-2. The Influence of Electrical Analysis by Bending Effect.......32
4-2-1 The discussion of the phenomenon...................35
4-3. The temperature effect.................................42
4-3. Hot carrier effect (low drain bias) ........................49
Chapter Five Conclusion and future work
5-1. Conclusion .......................................57
5-2. future work......................................62
References....................................64
[1] J. Welser, J. L. Hoyt, and J. F. Gibbons, “Electron
mobility enhancement in strained-Si N-type metal-oxide-semiconductors field-effect transistors”, IEEE Electron Device Lett., vol.15, pp.100-102, Feb.1994.
[2] A. Lochtefeld and D. A. Antoniadis, “Investigation the relationship between electron mobility and velocity in deeply scaled NMOS via mechanical stress”, IEEE Electron Device Lett., vol.22, pp.591-593, Aug.2001.
[3] D. K. Nayak and S. K. Chun, “Low-field hole mobility of strained-Si on (100) Si1-xGex substrate”, Appl. Lett., vol.64, pp.2514-2516, 1994.
[4] S. Takagi, J. L. Hoyt, J. J. Welser, and J. F. Gibbons, ”Comparative study, of phononlimited mobility of two-dimensional electrons in strained and unstrained-Si metal-oxide-semiconductor field-effect transistors”, J. Appl, Phys., vol.80, pp. 1567-1577, 1996.
[5] E. A. Fitzgerald, “Dislocations in strained-layer
epitaxy : Theory, experiments, and applications”, Mater. Sci. Rep., vol.7, pp.88-142, 1991.
[6] E. A. Fitzgerald, Y. H. Xie, D. Monroe, G. P. Watson, J. M. Kuo, and P. J. Silverman, “Defect control in relaxed, graded GeSi/Si”, Mater. Sci. Forum, vol.143-147, pp.471-481, 1994.
[7] E. A. Fitzgerald, Y.-H. Xie, D. Monroe, P. J. Silverman, J. M. Kuo, A. R. Kortan, F. A. Thiel, and B. E. Weir, “Relaxed GexSi1-x structures for Ⅲ-Ⅴ integration with Si and high mobility two dimensional electron gases in Si”, J. Vac. Sci. Technol. B, Microelectron. Process. Phenom., vol.10, pp.1807-1819, 1992.
[8] M. L. Lee and E. A. Fitzgerald, “Hole mobility enhancement in nanometer-scale strained-silicon heterostructures grown on Ge-rich relaxed Si1-xGex “, J. Appl. Phys., vol.94, pp.2590-2596, 2003.
[9] K. Rim et al., “Strained-Si NMOSFETs for high-performance CMOS technology”, in Symp. VLSI Tech. Dig., pp.59-60, 2001.
[10] K. Rim et al., “Characteristics and device design of sub-100-nm strained-Si N- and PMOSFETs”, in Symp. VLSI Tech. Dig., pp.98-99, 2002.
[11] K. Rim et al., “Fabrication and mobility characteristics of ultra-thin strained-Si directly on insulator(SSDOI) MOSFETs”, in IEDM Tech. Dig., pp.49-52, 2003.
[12] K. Rim, J. Welser, J. L. Hoyt, and J. F. Gibbons, “Enhanced hole mobilities in surface-channel strained-Si pMOSFETs”, in IEDM Tech. Dig., pp.517-520, 1995.
[13] C. K. Maiti, L. K. Bera, S. S. Dey, D. K. Nayak, and N. B. Chakrabarti, “Hole mobility enhancement in strained-Si pMOSFETs under high vertical field”, Solid State Electron., vol.41, pp.1863-1869, 1997.
[14] J. L. Hoyt, H. M. Nayfeh, S. Eguchi, I. Aberg, G. Xia, T. Drake, E. A. Fitzgerald, and D. A. Antoniadis, “strained silicon MOSFET technology”, in IEDM Tech. Dig., pp.23-26, 2002.
[15] M. L. Lee, C. W. Leitz, C. Zhiyuan, A. J. Pitera, G. Taraschi, D. A. Antoniadis, and E. A. Fitzgerald, “Strained Ge channel p-type MOSFETs fabricated on Si1-xGex/Si virtual substrate. Materials issues in novel Si-base technology”, in Proc. MRS Symp., vol.686, pp.39-43, 2002.
[16] S. Ito et al., “Mechanical stress effect of etch-stop nitride and its impact on deep submicrometer transistor design”, in IEDM Tech. Dig., pp.247-250, 2000.
[17] A. Shimizuet al., “Local mechanical-stress control(LMC): A new technique for CMOS-performance enhancement”, in IEDM Tech. Dig., pp.433-436, 2001.
[18] A. Steegen et al., “Silicide induced pattern design and orientation dependent transconductance in MOS transistors”, in IEDM tech. Dig., pp.497-500, 1999.
[19] S. Pidin, T. Mori, R. Nakamura, T. Saiki, R. Tanabe,S. Satoh, M. Kasw, K. Hashimoto, and T. Sugii, “MOSFET current drive optimization using silicon nitride capping layer for 65-nm technology node”, in Symp. VLSI Tech. Dig., pp.54-55, 2004.
[20] C. S. Smith, “Piezoresistance effect in germanium and silicon”, Phys. Rev., vol.94, pp.42-49, 1954.
[21] B. Kloeck and N. F. de Rooij, “Mechanical Sensors”, in Semiconductor Sensors, S. M. Sze,Ed. New York:Wiley, 1994.
[22] S. E. Thompson et al., “A logic nanotechnology featuring strained silicon”, IEEE Electron Device Lett., vol.25, pp.191-193, Mar.2004.
[23] G. Scott, J. Lutze, M. Robin, F. Nouri, and M. Manley, “NMOS drive current reduction cause by layout and trench isolation stress”, in IEDM tech. Dig., pp.827-830, 1999.
[24] Y. G. Wang, D. B. Scott, J. Wu, J. L. Waller, J. Hu, K. Liu, and V. Ukraintsev, “Effect of uniaxial mechanical stress on drive current of 0.13μm MOSFETs”, in IEEE Transactions on Electron Device, vol.50, pp.529-531, Feb.2003.
[25] S. Maikap et al., “Mechanically strained strained-Si NMOSFETs”, in IEEE Electron Device Lett., vol.25, pp.40-42, Jan.2004.
[26] C. Gallon et al., “Electrical analysis of external mechanical stress effects in short channel MOSFETs on (001) silicon”, in Solid-State Electronics, pp.561-566, 2004.
[27] Wei Zhao et al., “Partially depleted SOI MOSFETs under uniaxial tensile strain”, in IEEE Transactions on Electron Device, vol.51, pp.317-323, Mar.2004.
[28] Shin-ichi et al., “Sub-band structure engineering for advanced CMOS channels”, in Solid-State Electronics, pp.284-69, 2005.
[29] Takagi S, Koga J, Toriumi A. Tech Dig IEDM 1997:219.
[30] Takagi S, Hoyt JL, Welser JJ, Gibbons JF. J Appl Phys 1996;80:1567.
[31] Nakatsuji H, Kamakura Y, Taniguchi K. IEDM Tech Dig 2002:727.
[32] Fischetti MV, Ren Z, Solomon PM, Yang M, Rim K. J Appl Phys 2003;94:1079.
[33] E. H. Nicollian, A. Goetzberger, and C. N. Berglund, “Avalanche injection currents and charging phenomena in thermal SiOX:” Appl. Pkys. Lett., vol. 15, no. 6, p. 174, 1969.
[34] E. H. Nicollian and C. N. Berglund, “Avalanche injection of electrons into insulating Si02 using MOS structures,”J. Appl. Phys., vol. 41, no. 7, p. 3052, 1970.
[35] G. Hu and W. C. Johnson, “Relationship between trapped holes and interface states in MOS capacitors,” Appl. Phys. Lett., vol. 36, no. 7, p. 590, 1980.
[36] M. Shatzkes and M. Av-Ron, “Impact ionization and positive charge in thin Si02 films,” J. Appl. Phys., vol. 47, no. 7, p. 3 192,1976.
[37] D. J. DiMaria, Z. A. Weinberg, and J. M. Aitken, “Location of positive charges in Si02 films on Si generated by vuv photons, X-rays, and high-field stressing,” J. Appl. Phys., vol. 48, no, 3, p. 898, 1977.
[38] R. J. Powell, “Hole photocurrents and electron tunnel injection induced by trapped holes in Si02 films,” J. Appl. Phys., vol. 46, no. 10, p. 4557, 1975.
[39] T. H. Ning and H. N. Yu, “Optically induced injection of hot electrons into Si02,” J. Appl. Phys., vol. 45, no. 12, p. 5373, 1974.
[40] M. H. Woods and R. Williams, “Hole traps in silicon dioxide,” J. Appl. Phys., vol. 47, no. 3, p. 1082, 1976.
[41] D. R. Young, E. A. Irene, D. J. DiMaria and R. F. DeKeersmaecer, “Electron Trapping in SiO2 at 295 and 77°K,” J. Appl. Phy,;., vol. 50, no. 10, p. 6366, 1979.
[42] J. F. Verwey, “Hole currents in thermally grown SiO2,” J. Appl. Phys., vol. 43, no. 5, p. 2273, 1972.
[43] J. F. Verwey, “Nonavalanche injection of hot carriers into SiO2 ,” J. Appl. Phys.,vol.44, no.6, p. 2681, 1973.
[44] KWOK K.NG and GEOFFREY W. TAYLOR “Effects of Hot-Carrier Trapping in n- and p-Channel MOSFET’s” IEEE TRANSACTIONS ON ECLECTRON DEVICES, VOL.ED-30, NO.8, AUGUST 1983
[45] J. E. Lilienield, U.S. Patent 1,745,175, 1930.
[46] O. Heil, British Patent 439,457, 1935.
[47] W. Shockley and G. L. Pearson, “Modulation of conductance of thin films of semiconductors by surface changes”, Phys. Rev, 74, 232, 1948.
[48] D. Kahng and M. M. Atalla, “Silicon-silicon dioxide field induce surface devices”, IRE Solid-State Device Res. Conf., Carnegie Institute of Technology, Pittsburgh, Pa.,1960. D. Kahng, “A historical perspective on the development of MOS transistors and related device”, IEEE Tran. Electron Device, ED-23, 655, 1976.
[49] H. K. J. Ihantola, “Design Theory of a surface field-effect transistor”, Stanford Electron. Lab. Tech. Rep. NO. 1661-1, 1961.
[50] H. K. J. Ihantola and J. L. Moll, “Design Theory of a surface field-effect transistor”, Solid State Electron., 7, 426, 1964.
[51] C. T. Sah, “Characteristics of metal-oxide-semiconductor transistor”, IEEE Tran. Electron Device, ED-11, 324, 1964.
[52] S. R. Hotstein and F. P. Heiman, “The silicon insulated-gate field-effect transistor”, Proc. IEEE, 51, 1190, 1963.
[53] J. T. Wallmark and H. Johnson. Field Effect Transistors, Physics, Technology, and Applications, Prentice-Hall. Englewood Clffs, N. J., 1966.
[54] P. Richman, MOSFET`s and Integrated Circuits, Wiley, New York, 1973.
[55] J. R. Brews, “Physics of the MOS transistor”, in D. Kahng, Ed., Applied Solid State, Suppl. 2A. Academic, New York, 1981.
[56] L. L. Chang and H. N. Yu, “The germanium insulate-gate field-effect transistor(FET)”, Prob. IEEE, 53, 316,1965.
[57] C. W. Wilmsen and S. Szpak, “MOS processing for Ⅲ-Ⅴ compound semiconductors : overview and bibliography”, Thin Solid Film, 46, 17, 1977.
[58] “Looking ahead to the Year 2000. Technology”, Electronics, 53.(9)530, 1980.
[59] G. Moore, “VLSI : some fundamental challenges”, IEEE Spectrum, 16(4)30, 1980.
[60] Toshifumi Irisawa, Toshinori Numata, Naoharu Sugiyama and Shin-ichi Takagi, “On the origin of increase in substrate current and impact ionization efficiency in strained-Si n- and p-MOSFETs”, IEEE TRANSACTIONS ON ECLECTRON DEVICES, VOL.52, NO.5, May 2005
[61] R.C.Alig, S.Bloom and C.W.Struck, “Scattering by ionization and phini emission in semiconductor”, physical review B, vol.22, num.12, December 1980
[61] 施敏原著,黃調元譯, ”半導體元件物理與製作技術第二版”,國立交通大學出版社,民國九十二年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊