(3.215.180.226) 您好!臺灣時間:2021/03/06 13:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:潘仁雅
研究生(外文):Jen-Ya Pan
論文名稱:單錨式箱網結構改善及錨碇纜繩老化風險分析研究
論文名稱(外文):Study on structural improvement and mooring line fatigue risk analysis for a single point mooring system
指導教授:黃材成黃材成引用關係
指導教授(外文):Chai-Cheng Huang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋環境及工程學系研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:116
中文關鍵詞:特多龍錨碇纜繩尼龍單錨式箱網風險分析使用年限框架
外文關鍵詞:mooring linesingle point mooring systemnylonPETfatigue riskreplacing periodframe
相關次數:
  • 被引用被引用:9
  • 點閱點閱:187
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究主要的研究對象為單錨式箱網,因其具有下列特質:(1)對生態環境友善(eco-friendly),(2)成本低,(3)施工便利,及(4)搬運方便等優點。單錨式箱網亦為國外積極發展之箱網形式,主要有以色列及加拿大兩國,兩者皆在箱網畜養系統前方加設框架,目的是希望藉由框架之支撐提升網袋容積率。本研究之重點即引入以色列式箱網,跟國內現階段研究之傳統單錨式箱網做比較。研究方法為透過質量集結點法建立箱網數值模式,再經由4階的Runge-Kutta法求解箱網運動方程式。其次探討錨碇纜繩之破斷風險,以小琉球50年迴歸期颱風風浪對纜繩造成之張力,經安全係數之考量後,以此作為選定纜繩直徑大小之依據。再經由beta分佈曲線求得歷年颱風之有義波高機率密度函數及纜繩張力機率密度函數,最後由廠商提供之纜繩出廠強度資料,可得纜繩破斷強度機率密度函數,再求兩者間之交織面積,即可得錨碇纜繩之破斷風險。
結果顯示,當風浪條件大到如小琉球漁港50年迴歸期颱風風浪時,前方設置有框架之單口箱網可維持之網袋容積率由原本的30%提升至64%,為無框架時的兩倍之多,改善效果相當好。框架纜繩(frame rope)長度也會影響網袋容積率大小,結果顯示隨著框架纜繩長度的增加,所能維持之網袋容積率也隨著增加。並假設每年有4次颱風侵襲小琉球箱網養殖海域,且每次颱風之侵襲強度均相同(週期7.4秒,波高3.7米,流速2節),研究結果顯示:尼龍繩可使用年限為7年(所需纜繩直徑為55mm),此時破斷風險約為0.49;特多龍繩可使用年限為13.4年(所需纜繩直徑為50mm),此時破斷風險約為0.48∼0.49。承上所述,兩者優劣立判,因此建議海上纜繩以採用特多龍繩為主。
The purpose of this report is not only to improve the cage volume deformation problem during typhoon attack but also to perform the risk analysis for a single-point-mooring (SPM) net cage system when employed in the open sea. This SPM cage system has advantages over the traditional multi-mooring lines cage system, especially when the water depth is deeper than 50m, which may prohibit divers from checking the security of anchors as well as installing the mooring system at a precise position due to the difficulty in deploying anchors in the deep and restless ocean. But the SPM cage system has no such deploying problems, and yet offers some benefits such as: (1) having environmental eco-friendly feature, the uneaten feeds could spread in a vast area and thus reduce the intensity of pollution, (2) employing only one mooring line means saving a lot of construction cost, (3) a precise location is not required and thus relatively easier to be installed at any sites, and (4) easier to connect or remove cages from the mooring system. So far the SPM cage systems have become one of the most potential cage systems in the world. For example, Israel and Canada have individually developed their own SPM cage systems. This study also follows this trend and focuses on developing a new system which is suitable to Taiwan marine environment.
The numerical model for cage motion equations are solved based on the lumped mass method which produces the maximum mooring line strength and the minimum of the volume deformation. As for the risk analysis for mooring line consists of two procedures: at first to form a loading probability density function, which is based on the recent data records forming significant wave probability density function and its corresponding mooring tension probability density function of rope through beta distribution technique; secondly to form a strength capacity probability density function, which is given by a rope manufacture company. Finally, the breaking risk of mooring lines is obtained by calculating the intersection area of loading and strength capacity probability density functions.
The results show that the cage with a portal frame has good performance in general, especially when the sea states are rigorous. In other words, the frame-cage could maintain about 2 times net volume compared with the cage without a frame. However, the advantage of frame-cage is not obvious when the sea states are mild. Besides, the distance of frame ropes to the cage will also affect the net volume deformation, the trend shows that the net volume deformation increases with the decreasing of the distance of frame ropes. Finally assuming there are four typhoons per year attacking on the net cage system, the recommended replacing period of nylon mooring line (diameter 55 mm)is about 7 years, while for PET mooring line (diameter 50 mm)is about 13.4 years. The failure risk probability of nylon and PET mooring lines at the recommended replacing years are about 0.49 and 0.48~0.49 respectively. Therefore, we strongly recommend marine farmers to use PET ropes instead of nylon and have to replace those ropes before the failure occurs.
摘要...i
Abstract...ii
表目錄...viii
圖目錄...ix
第一章 緒論...1
1-1 前言...1
1-2 文獻回顧...2
1-3 研究目的...4
1-4 本文組織...5
第二章 箱網相關材質老化及風險分析...7
2-1 纜繩材質特性及比較...8
2-1-1 纖維種類...8
2-1-2 纖維型式...8
2-1-3 纖維編織方式...8
2-1-3-1 撚和線(twist line or laid line) ...9
2-1-3-2 編織線(braided line or cross line)...9
2-1-4 箱網養殖中纜繩分類及特性...9
2-1-4-1 常用纜繩之類別及特性...9
2-1-4-2 尼龍繩與特多龍繩材質及強度比較...12
2-2 材質老化原因探討...13
2-2-1 波浪造成的週期性受力(cyclic fatigue)...14
2-2-2 海流產生的潛變作用力(creep rupture)...17
2-2-3 其他老化原因...18
2-2-3-1 海水中之金屬鹽離子對材質的影響...19
2-2-3-2 異物入侵...19
2-2-3-3 異物摩擦...19
2-2-3-4 滯後現象產生的熱能(hysteresis heating)...20
2-3 以現場案例說明纜繩設計理念及使用年限...20
2-4 風險分析...25
第三章 數值模擬基本理論...28
3-1 箱網結構簡介...28
3-1-1 錨碇系統...30
3-1-2 浮框系統...31
3-1-3 網袋系統...31
3-1-4 配重系統...32
3-1-5 框架系統...32
3-2 波流場之基本假設...33
3-3 箱網結構受力分析...36
3-3-1 流阻力及慣性力...36
3-3-2 重力...38
3-3-3 浮力...38
3-3-4 張力...38
第四章 數值模式...39
4-1 質量集結點法概述...39
4-2 Runge-Kutta法概述...40
4-3 構件受力情況...41
4-3-1 纜繩...41
4-3-2 浮框...45
4-3-3 網袋...49
4-3-4 底框...53
4-3-5 框架...54
4-3-6 外加項(中間浮子) ...54
4-4 質量集結點的運動方程式...56
4-5 浮框之運動分析...58
4-5-1 浮框之運動方程式...58
4-5-2 浮框之力平衡方程式...60
4-5-3 旋轉體座標轉換...62
4-5-3-1布萊恩角度(Bryant angles)...62
4-6 框架之運動分析...65
4-7 網袋容積率計算方法...65
4-8 計算機程式流程圖...67
第五章 數值模擬結果...70
5-1 網袋容積率及錨碇纜繩張力比較...70
5-1-1 與傳統單錨式箱網比較...70
5-1-2 框架纜繩長度之影響...72
5-2 使用年限及風險分析...73
5-2-1 使用年限評估...73
5-2-1-1 錨碇纜繩使用年限案例說明...76
5-2-2 錨碇纜繩風險分析...79
5-2-2-1 nylon主纜繩破斷風險探討...82
5-2-2-2 PET主纜繩破斷風險探討...84
第六章 結論與建議...87
參考文獻...90
附錄...92
附錄A...92
附錄B...93
附錄C...95
附錄D...100
附錄E...101
[1] 李光蔭﹙1935﹚「球 面 三 角 術 」,台灣商務印書館,第6-7頁。
[2] 陳陽益、莊文傑﹙1990)「波流交會作用理論之初步探討」,第十二屆海洋工程研討會論文集,第248-265頁。
[3] 董大國﹙1999﹚「海上箱網養殖工程風險分析」,國立中山大學海洋環境及工程學系碩士班碩士論文。
[4] 張耀民﹙2000﹚「可沈式箱網養殖工程之研究」,國立中山大學海洋環境及工程學系碩士班碩士論文。
[5] 唐宏結(2001)「箱網容積變形改善研究」,國立中山大學海洋環境及工程學系碩士班碩士論文。
[6] 黃材成、唐宏結﹙2002)「可沈式海上箱網養殖系統研究(II)」,第二十四屆海洋工程研討會論文集,第751-758頁。
[7] 黃材成、唐宏結﹙2003)「海上養殖箱網錨碇措施研究」,第二十五屆海洋工程研討會論文集,第429-435頁。
[8] 黃材成、唐宏結﹙2004)「搬運式箱網研發」,第二十六屆海洋工程研討會論文集,第524-531頁。
[9] Ang, A.H-S., Tang, W.H., 1975. Probability Concepts in Engineering Planning and Design: VolumeⅠ Basic Principles, pp 129-133.
[10] Blevins, R.D., 1984. Applied Fluid Dynamics Handbook. Van Nostrand Reinhold Company, pp 334.
[11] Brebbia, C.A., Walker, S., 1979. Dynamic Analysis of Offshore Structures. Newnes-Butterworths, London, pp 109-143.
[12] Coastal Engineering Research Center. 1984. Shore Protection Manual: VolumeⅠ. U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, Mississippi. pp 3-77 ~ 3-88.
[13] D’Souza, A.F., Garg, V.K., 1984. Advanced Dynamics Modeling and Analysis. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, pp 78-114, 152-155.
[14] Kenney, M. C., Mandell, J. F., McGarry, F. J., 1985. The effects of sea water and concentrated salt solutions on the fatigue of nylon 6,6 fibres. Journal of Material Science 20, 2060-2070.
[15] Loland, G., 1991. Current force on and flow through fish farms. Division of Marine Hydrodynamics, Norwegian Institute of Technology, Trondheim, Norway, 86-95.
[16] Mandell, J.F., 1987. Modeling of marine rope fatigue behavior. Textile Research Journal 57, 318-330.
[17] McKenna, H.A., Hearle, J.W.S., O''Hear, N., 2005. Handbook of Fiber Rope Technology. Woodhead publishing limited, Cambridge, England.
[18] Webster, R.L., 1976. An application of the finite element method to the determination of nonlinear static and dynamic responses of underwater cable structures. General Electric Technical Information Series Report R76EMH2, Syracuse, New York.
[19] Wittenbug, J., 1977. Dynamics of Systems of Rigid Bodies. B. G. Teubner Stuttgart, pp 19-31.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔