|
[1]Banzhaf, W., “The “Molecular” Traveling Salesman,” Biological Cybernetics, 64: 7–14, 1990. [2]Back, T., “The interaction of mutation rate, selection, and self-adaptation within a genetic algorithm,” In R. Miinner and B. Manderick, editors, Parallel Problem Solving 2, Amsterdam, Elsevier, 1992. [3]Burkoski, F. J., “Proximity and priority: applying a gene expression algorithm to the Traveling Salesperson Problem,” Parallel Computing, Vol. 30, pp. 803-816, May 2004. [4]Croes, G. A. “A Method for Solving Traveling Salesman Problems,” Operations Research, Vol. 6, No. 6, pp. 791-812, 1958. [5]David, E. G., “Genetic Algorithms in Search, Optimization, and Machine Learning,” Addison Wesley, pp. 1-88, 1989. [6]Englert, M., Röglin, H., and Vöcking, B., “Worst Case and Probabilistic Analysis of the 2-Opt Algorithm for the TSP,” In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, Philadelphia, PA, pp. 1295-1304, B. 2007. [7]Fogel, D. B.,“An Evolutionary Approach to the Traveling Salesman Problem,” Biological Cybernetics, 60: 139–144, 1988. [8]Fogel, D. B., “A Parallel Processing Approach to a Multiple Traveling Salesman Problem Using Evolutionary Programming,” In Canter, L. (ed.) Proceedings on the Fourth AnnualParallel Processing Symposium, pp. 318–326, Fullterton, CA, in 1990. [9]Fogel, D. B., “Applying Evolutionary Programming to Selected Traveling Salesman Problems,” Cybernetics and Systems, 24: 27–36, 1993. [10]Garey, M. R., Johnson, D. D., and Tarjan, R. E., “The Planar Hamiltonian Circuit Problem is NP-complete,” SIAM Journal of Computing, 5:704-714, 1976. [11]Grefenstette, J. J., “Incorporating Problem Specific Knowledge into Genetic Algorithms,” in Genetic Algorithms and Simulated Annealing, (L. Davi, ed), pp. 42-60, Morgan Kaufmann Publishers, 1987. [12]Holland, J. H., “Adaptation in Natural and Artificial Systems,” Ann Arbor, MI: Univ. Michigan Press, 1975. [13]Julstrom, B. A., “Coding TSP Tours as Permutations via an Insertion Heuristic,” SAC ’99, Proc. 1999 ACM Sym. Appl. Comp., ACM Press, pp. 297-301, 1999. [14]Jyh-Da Wei and Lee, D. T., “A New Approach to the Traveling Salesman Problem Using Genetic Algorithm with Priority Encoding,” In proc. 2004 IEEE Congress on Evolutionary Computation, pp. 1457-1464, 2004 [15]Kido T. “Hybrid Searches Using Genetic Algorithms,” In: Kitano H, editor, Genetic algorithm, Sangyo Tosho, pp. 61-88, 1993. [16]Katayama, K., Sakamoto, H., and Narihisa, H., “An Efficiency of Hybrid Mutation Genetic Algorithm for Traveling Salesman Problem,” Proc 2nd Australia-Japan Workshop on Stochastic Models in Engineering, Technique & Management, Gold Coast, Australia, pp. 294-301, 1996. [17]Katayama, K., Hirabayashi, H., and Narihisa, H., “Performance Analysis for Crossover Operators of Genetic Algorithm,” Systems and Computers in Japan, Vol. 30, No. 2, pp. 20-30, 1999. [18]Katayama, K. and Narihisa, H., ”An Efficient Hybrid Genetic Algorithm for the Traveling Salesman Problem,” Electronics and Communications in Japan, Part 3,Vol. 84, No. 2, pp. 76-83, 2001. [19]Lin, S. and Kernighan, B. W., “An Effective Heuristic Algorithm for the Traveling Salesman Problem”, Operations Research, Vol. 21, No. 2, pp. 498-516, 1973. [20]Larrañaga, P., Kuijpers, C.M.H., Murga, R.H., Inza, I., and Dizdarevic, S., “Genetic Algorithms for the Travelling Salesman Problem: A Review of Representations and Operators”, Artificial Intelligence Review 13: 129–170, 1999. [21]Michalewicz, Z., “Genetic Algorithms + Data Structures = Evolution Programs,” Berlin Heidelberg: Springer Verlag, 1992. [22]Reinelt, G., “The Traveling Salesman: Computational Solutions for TSP Applications,” , Vol. 840 of Lecture Notes in Computer Science, pp. 64-99, Springer-Verlag, 1994. [23]Reinelt G. http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB9- 5/index.html [24]Syswerda, G., “Schedule Optimization Using Genetic Algorithms,” In Davis, L. (ed.) Handbook of Genetic Algorithms, pp. 332–349, 1992, New York: Van Nostrand Reinhold.
|