跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/12 19:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:柯奕鳴
研究生(外文):Yi-Ming Ke
論文名稱:針對某類具有非匹配擾動大型系統之分散式適應順滑模態輸出追蹤控制器設計
論文名稱(外文):Design of Decentralized Adaptive Sliding Mode Output Tracking Controllers for a Class of Mismatched Perturbed Large-Scale Systems
指導教授:鄭志強鄭志強引用關係
指導教授(外文):Chih-Chiang Cheng
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:61
中文關鍵詞:非匹配輸出追蹤
外文關鍵詞:large-scaleadaptive sliding modemismatched
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文基於李亞普諾夫理論(Lyapunov Theorem),針對具有非匹配擾動大型分散式系統提出一個適應順滑模態控制器的設計方法。在設計順滑面時導入適應控制器,使得當子系統進入順滑模態時,經由控制器可使所有子系統穩定,並且達到輸出追蹤的目的。此外,可以藉由在控制器中設計的參數來調整輸出追蹤的準確性。由於控制器引入調適機制,控制器將自動調適未知擾動上界,所以擾動上界的資訊是不需要的。最後,本論文提供一個數值和一個實際裝置的範例以驗證控制器之可行性。
Based on the Lyapunov stability theorem, a methodology of designing a decentralized multi-surface adaptive sliding mode control scheme is proposed in this thesis for a class of large-scale nonlinear systems with mismatched perturbations and interconnections. By utilizing the sliding mode control technique, the designed decentralized robust controller with adaptive mechanisms embedded enable the output of each subsystem to track its own desired output signal, and stabilize the whole large-scale system as well as each subsystem at the same time. In addition, the accuracy of output tracking can be adjusted through the designed parameter embedded in the controller. The purpose of the adaptive mechanisms included in the controller is to adapt the unknown upper bounds of perturbations and interconnections. Finally, two illustrative examples are given to demonstrate the feasibility of the proposed methodology.
Contents
Abstract . . . . . . . . . . . . . . . .i
List of Figures . . . . . . . . . . . . iv
Chapter 1 Introduction . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . 1
1.2 Brief Sketch of the Contents . . . . . . . 3
Chapter 2 Control Design . . . . . . . . . . . 4
2.1 System Descriptions and Problem Formulations . . . . 4
2.2 Design of Adaptive Sliding Mode Controllers . . . . 6
2.3 Stability Analysis of the Proposed Control Scheme ... 8
2.4 Relaxation of the constraints of perturbations ..... 13
2.5 Summary of Design Procedure . . . . . . . . . . . . 25
Chapter 3 Examples and Simulations . . . . . . . . . .26
3.1 Example1 . . . . . . . . . . . . . . . . . . . . . 26
3.2 Example2 . . . . . . . . . . . . . . . . . . . . . 29
Chapter 4 Conclusions . . . . . . . . .50
References . . . . . . . . . . . . . . 51
Bibliography
[1] J. Y. Hung, W. Gao, and J. C. Hung, “Variable structure control: a survey,”IEEE Trans. Industrial Electronic, Vol. 40, No. 1, pp. 2-22, 1993.
[2] V. I. Utkin, “Variable structure systems with sliding modes,” IEEE Trans. Automat. Contr., Vol. 22, No. 2, pp. 212-222, 1977.
[3] R. A. DeCarlo, S. H. Zak, and G. P. Mattews, “Variable structure control of nonlinear multivariable systems: a tuorial,” Proc. of IEEE, Vol. 76, No. 3,pp. 212-232, 1988.
[4] M.-L. Chan, C. W. Tao, and T.-T. Lee, “Sliding mode controller for linear systems with mismatched time-varying uncertainties,” J. Franklin Institute., Vol.337, No. 2, pp.105-115, 2000.
[5] H. H. Choi, “An LMI-based switching surface design method for a class of mismatched uncertain systems,” IEEE Trans. Automat. Contr., Vol. 48, No. 9, pp. 1634-1638, 2003.
[6] J. Hu, J. Chu, and H. Su, “SMVSC for a class of time-delay uncertain systems with mismatching uncertainties,” IEE proc.-Control Theory Appl., Vol. 147, No. 6, pp. 687-693, 2000.
[7] C. W. Tao, J. S. Taur, and M.-L. Chan, “Adaptive Fuzzy Terminal Sliding Mode Controller for Linear Systems With Mismatched Time-Varying Uncertainties,” IEEE Transactions on Systems, Man, and, Cybernetics-Part B, Vol.34, No. 1, 2004.
[8] K. K. Shyu, Y. W. Tsai, and C. K. Lai, “A dynamic output feedback controllers for mismatched uncertain variable structure systems,” Automatica, Vol. 37, No. 5, pp. 775-779, 2001.
[9] C.-F. Cheng, “Design of robust observation schemes for uncertain large scale systems”, IEE Proc.-Control Theoty Appl., Vol. 144, No. 5, pp. 369- 374, 1997.
[10] K. K. Shyu, W. J. Liu, and K. C. Hsu, “Decentralized variable structure control of uncertain large-scale systems containing a dead-zone,” IEE Proc. Control Theory Appl., Vol. 150, No. 5, pp. 467-475, 2003.
[11] Kumpati S. Narendra and Nicholas O. Oleng’, “Exact Output Tracking in Decentralized Adaptive Control Systems,” IEEE Trans. Automat. Contr., Vol. 47, No. 2, pp. 390-394, Feb. 2002.
[12] Y.W. Tsai, K. K. Shyu, and K. C. Chang, “Decentralized variable structure control for mismatched uncertain large-scale systems: a new approach,” System & control letters, Vol. 43, No. 2, pp. 117-125, 2001.
[13] S. Shigemaru and H. Wu, “A Decentralized Model Following Controllers for a Class of Large-Scale Interconnected Dynamical Systems with Uncertainties,” Electrical Engineering in Japan. , Vol. 142, No. 2, pp. 48-58, 2003.
[14] A. C. Huang and Y. C. Chen, “Adaptive multiple-surface sliding control for non-autonomous systems with mismatched uncertainties,” Automatica, Vol. 40, No. 11, pp. 1939-1945, 2004.
[15] A. C. Huang and Y. S. Kuo, “Sliding control of non-linear systems containing time-varying uncertainties with unknown bounds,” International Journal of Control, Vol. 74, No. 3, pp. 252-264, 2001.
[16] C. H. Chou and C. C. Cheng, “A decentralized model reference adaptive variable structure controller for large-scale time-varying delay systems,” IEEE Transactions on Automatic Control, Vol. 48, No. 7, pp. 1123-1127, 2003.
[17] Yan, X. G., Edwards, C., and Spurgeon, S. K., “Decentralised robust sliding mode control for a class of nonlinear interconnected systems by static output feedback,” Automatica, Vol. 40, No. 4, pp. 613-620, 2004.
[18] Yan, X. G., Spurgeon, S. K., and Edwards, C., “Decentralised sliding mode control for nonminimum phase interconnected systems based on a reducedorder compensator,” Automatica, Vol. 42, No. 10, pp. 1821-1828, 2006.
[19] L. shi and S. K. Singh, “Decentralized Adaptive Controller Design of Large-Scale Systems with Higher Order Interconnections,” IEEE Trans. Automat. Contr., Vol. 37, No. 8, pp.1106-1118, Aug. 1992.
[20] H. K. Khalil, Nonlinear Systems, Third edition, New Jersey: Prentice-Hall, Inc., 2000.
[21] J.-J. E. Slotine, W. Li, Applied Nonlinear Control, New Jersey: Prentice- Hall, Inc., 1991.
[22] Tao, G., Adaptive control design and analysis , New Jersey, John Wiley & Sons, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top