(3.215.183.251) 您好!臺灣時間:2021/04/23 14:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:孫鈺軒
研究生(外文):Yu-Hsuan Sun
論文名稱:利用光子晶體設計邏輯閘及塞取濾波器
論文名稱(外文):The Designs of Logic Gates and Drop Filter Based on Photonic Crystals
指導教授:郭志文郭志文引用關係
指導教授(外文):Kuo Chih-Wen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:119
中文關鍵詞:擷取濾波器光子晶體分光器馬赫詹德干涉儀
外文關鍵詞:Beam splitterMach-Zehnder interferometerPhotonic crystalsDrop Filter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:75
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於光子晶體有能隙這個特性,許多這方面的研究被提出來。當波長在能隙範圍內,光將無法在晶體內做傳輸。所以,在晶體內放入一些缺陷,因為它破壞了原來的週期性排列,利用此方法可以使訊號沿著波導傳輸。而耦合腔波導是其中一種波導。因為光子靠著耦合且無輻射損耗在耦合腔波導內傳輸。因此,此種波導被廣泛地利用在多種元件上。
本論文我們一樣用耦合腔波導來設計元件。並討論了馬赫詹德干涉儀與分光器的一些特性。然後我們利用這些特性去設計兩個邏輯結構。其包含一個輸入訊號及兩個控制訊號端。而控制訊號端的狀態將可以控制在輸出端的電場大小。另外,我們提出一個四個通道的濾波器。此濾波器可以讓1310、1490及1550 nm等三個波長分別在不同波導管內做傳輸。因此,這個濾波器可應用在光纖到家(Fiber To The Home)中當作一個波長解多工器。最後,我們對環形波導結構的特性去做探討。藉由改變其中一個控制通道的相位,我們可以控制輸入訊號是由第一輸出端或是第二輸出端輸出。這樣我們可以利用此結構作為一個開關。
Due to the property of the photonic crystal, like bandgap, many researches on them are discussed. Photons with wavelength within the bandgap cannot propagate through the crystal. Then placing some defects in the crystal, because the periodic arrangement is destroyed, it is possible to build a waveguide to guide light along certain path. One kind is coupled cavity waveguide. The photons can propagate in a coupled-cavity waveguide by coupling without radiation losses. So it is widely used to implement a variety of optical devices.
In this thesis, we use coupled cavity waveguide to construct devices. And the characteristics of Mach-Zehnder interferometer and power splitter are discussed. Then we propose two logic gate structures with an input port and two control ports. The state of control port determines the electric field at the output port. Besides, the four-port channel drop filter is proposed. It will make the three wavelengths ─1310, 1490 and 1550 nm─ propagate in different waveguides. So it could be used as a wavelength demultiplexer for FTTH. Finally, the property of the PC-based rat-race circuit is investigated. By adjusting the phase of the control signal, we could decide the input signal to exit from output 1 or output 2. In this way, we could use it to function as a switch.
Acknowledgements i
Abstract iii
Contents v
Figures Caption vii
List of Tables xvi
List of Symbols xvii

Chapter 1: Introduction
1.1 Overview 1
1.2 Research Motivations 2
1.3 Organizations of the Thesis 3
Chapter 2: Basic Theory and Simulation Method
2.1 Introduction 6
2.2 Plane Wave Expansion Method (PWE) 6
2.3 Finite Difference Time Domain Method (FDTD) 11
Chapter 3: Mach-Zehnder Interferometer and Logic Gates Based on Coupled Cavity Waveguides
3.1 Introduction 21
3.2 Analysis 23
3.2.1 The Structures of PC Waveguide 23
3.2.2 The Transmission Characteristics of Coupled Cavity Waveguide 25
3.3 Power Splitter Based on Coupled Cavity Waveguides 26
3.4 Mach-Zehnder Interferometer employing Coupled Cavity Waveguides 28
3.5 Logic Gate Based on Mach-Zehnder Interferometer 29
3.6 Summary 32
Chapter 4: A Design of Four-Port Channel Drop Filters Based on 2D PCs
4.1 Introduction 56
4.2 Analysis 58
4.2.1 Coupled Mode Theory 58
4.3 Numerical Results 62
4.4 Summary 64
Chapter 5: Ideal 3-dB Splitter-Combiner and Switch in Photonic Crystals
5.1 Introduction 70
5.2 Analysis 71
5.3 Numerical Results 81
5.4 Summary 83
Chapter 6: Conclusions
6.1 Summary 91
6.2 Suggestions for Future Researches 92
References 92
[1]E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics Electronics,” Phys. Rev. Lett., Vol.58, pp.2059-2062, 1987.
[2]S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett., Vol.58, pp.2486-2489, 1987.
[3]J. D. Joannopoulos, R. D. Meade, and J. N. Winn, “Photonic Crystals: Molding the flow of light”, Princeton University Press, New York, 1995.
[4]S. Noda, A Chutinan, M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature, Vol.407, pp.608-610, 2000.
[5]C. Jin, S. Fan, S. Han, and D. Zhang, “Reflectionless multichannel wavelength demultiplexer in a transmission resonator configuration,” IEEE J. Quantum Electron., Vol.39, pp.160-165, 2003.
[6]M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H-Y. Ryu, ”Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express, Vol.12, pp.1551-1561, 2004.
[7]M. Bayindir and E. Ozbay, “Band-dropping via coupled photonic crystal waveguides,” Opt. Express, Vol.10, pp.1279-1284, 2002.
[8]A. Chutinan, M. Okano, and S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett., vol. 80, pp.1698-1700, 2002.
[9]A. Talneau, L. L. Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 μm,” Appl. Phys. Lett., Vol.80, pp.547-549, 2002.
[10]A. Yariv, Y. Xu, R. K. Lee, and A. scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett., Vol.24, pp.711-713, 1999.
[11]S. Olivier, C. Smith, M. Rattier, H. Benisty, and C. Weisbuch, T. Krauss, R. Houdré and U. Oesterlé, “Miniband transmission in a photonic crystal coupled-resonator optical waveguide,” Opt. Lett., Vol.26, pp.1019-1021, 2001.
[12]W. J. Kim, W. Kuang, and J. D. O’Brien, “Dispersion characteristics of photonic crystal coupled resonator optical waveguides,” Opt. Lett., Vol.11, pp.3431-3437, 2003.
[13]A. Martı´nez, A. Garcı´a, P. Sanchis, and J. Martı, “Group velocity and dispersion model of coupled-cavity waveguides in photonic crystals,” J. Opt. Soc. Am. A, Vol.20, pp.147-150, 2003.
[14]M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett., Vol.87, pp.253902-1-4, 2001.
[15]Z. Zhang and S. Satpathy, “Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell’s equations,” Phys. Rev. Lett., Vol.65, pp.2650-2653, 1990.
[16]K. M. Leung, and Y. F. Liu, “Photon band structures: The plane-wave method,” Phys. Rev. B, Vol.41, pp.10188-10190, 1990.
[17]K. M. Ho, C. T. Chan, and C. M. Soukouils, “Existence of a photonic gap in periodic dielectric structures,” Phy. Rev. Lett., Vol.65, pp.3152-3155, 1990.
[18]B. C. Gupta, C. H. Kuo, and Z. Ye, “Propagation inhibition and localization of electromagnetic waves in two-dimensional random dielectric systems,” Phys. Rev. E., Vol.69, pp.066615, 2004.
[19]P. M. Bell, J. B. Pendry, L. M. Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Comput. Phys. Commun., Vol.85, pp.306-322, 1995.
[20]G. S. Smith, M. P. Kesier, J. G. Maloney, and B. L. Shirely, “Antenna design with the use of photonic band-gap materials as all-dielectric planar reflectors,” Microwave Opt. Technol. Lett., Vol.11, pp.169-174, 1996.
[21]J. G. Maloney, M. P. Kesier, B. L. Shirely, and G. S. Smith, “A simple description for waveguiding in photonic bandgap materials,” Microwave Opt. Technol. Lett., Vol.14, pp.261-266, 1997.
[22]C. Kittel, “Introduction to Solid State Physics,” Wiley, 1996.
[23]K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas and Propagat., Vol.14, pp.802-807, 1966.
[24]M.S. Min, and C.H.Teng, “The Instability of the Yee Scheme for the “Magic Time Step”,”, J. computational Phys. Vol.166, pp.418-422, 2001.
[25]S. Lan, S. Nishikawa, H. Ishikawa, and O. Wada, “Design of impurity band-based photonic crystal waveguides and delay lines for ultrashort optical pulses,” J. Appl. Phys., Vol.90, pp.4321-4327, 2001.
[26]A. Martinez, F. Cuesta, A. Griol, D. Mira, and J. Garcia, “Photonic-crystal 180° power splitter based on coupled-cavity waveguides,” Appl. Phys. Lett., Vol.83, pp.3033-3035, 2003.
[27]A. Martinez, A. Griol, P. Sanchis, and J. Marti, “Mach–Zehnder interferometer employing coupled-resonator optical waveguides,” Opt. Lett., Vol.28, pp.405-407, 2003.
[28]T. P. White, C. Martijn de Sterke, R. C. McPhedran, and T. Huang, “Recirculation-enhanced switching in photonic crystal Mach-Zehnder interferometers,” Opt. Express, Vol.12, pp.3035-3045, 2004.
[29]A. Martinez, J. Marti, J. Bravo-Abad, and J. Sanchez-Degesa, ”Wavelength Demultiplexing Structure Based on Coupled-Cavity Waveguides in Photonic Crystals,” Fiber and Integrated Optics, Vol.22, pp.151-160, 2003.
[30] M. Bayindir, B. Temelkuran, and E. Ozbay, ”Tight-binding description of the coupled defect modes in three-dimensional photonic crystals,” Phys. Rev. Lett., Vol.84, pp.2140–2143, 2000.
[31]D. Leuenberger, R. Ferrini, and R. Houdre, “Ab initio tight-binding approach to photonic-crystal based coupled cavity waveguide,” J. Appl. Phys., Vol.95, pp.806-809, 2004.
[32]K. Guven, and E. Ozbay, “Coupling and phase analysis of cavity structures in two-dimensional photonic crystals,” Phys. Rev. B, Vol.71, pp.085108-1-7, 2005.
[33]E. Ozbay, M. Bayindir, I. Bulu, and E. Cubukcu, “Investigation of Localized Coupled-Cavity Modes in Two-Dimensional Photonic Bandgap Structures,” IEEE J. Quantum Electron., Vol.38, pp.837-843, 2002.
[34]Stefano Boscolo, Michele Midrio, and Carlo G. Someda, “Coupling and Decoupling of Electromagnetic Waves in Parallel 2-D Photonic Crystal Waveguides,” IEEE J. Quantum Electron., Vol.38, pp.47-53, 2002.
[35]T. B. Yu1,2, M. H. Wang, X. Q. Jiang, Q. H. Liao, and J. Y. Yang, “Ultracompact and wideband power splitter based on triple photonic crystal waveguides directional coupler,” J. Opt. A: Pure Appl. Opt., Vol.7, pp.37-42, 2007.
[36] S. Y. Lin, E. Chow, J. Bur, S. G. Johnson, and J. D. Joannopoulos, “Low-loss, wide-angle Y splitter at _1.6-μm wavelengths built with a two-dimensional photonic crystal,” Opt. Lett., Vol.27, pp.1400-1402, 2002.
[37]M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett., Vol.77, pp.3902-3904, 2000.
[38]S. Boscolo, M. Midrio, and T. F. Krauss, “Y junctions in photonic crystal channel waveguides high transmission and impedance matching,” Opt. Lett., Vol.27, pp.1001-1003, 2002.
[39]Y. Tanaka, Y. Sugimoto, N. Ikeda, H. Nakamura, K. Kanamoto, K. Asakawa, and K. Inoue, “Design, fabrication, and characterization of a two-dimensional photonic-crystal symmetric Mach-Zehnder interferometer for optical integrated circuits,” Appl. Phys. Lett., Vol.86, pp.141104-1-3, 2005.
[40]Y.. Sugimoto, H. Nakamura, Y. Tanaka, N. Ikeda, K. Asakawa, and K. Inoue, “High-precision optical interference in Mach-Zehnder-type photonic crystal waveguide,” Opt. Express, Vol.13, pp.96-105, 2004.
[41]H. Nakamura, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y.Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanabe, K. Inoue, H. Ishikawa, and K. Asakawa, “Ultra-fast photonic crystal/quantum dot alloptical switch for future photonic networks,” Opt. Express, Vol.12, pp.6606-6614, 2004.
[42]A. Shinya, S. Mitsugi, E. Kuramochi, and M. Notomi, “Ultrasmall multi-port channel drop filter in two dimensional photonic crystal on silicon-on-isulator substrate,” Opt. Express, Vol.14, pp.12394-12400, 2006.
[43]T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpøth, P. I. Borel, and M. Kristensen, “Wavelength-Division Demultiplexing Using Photonic crystal waveguides,” IEEE Photonic Technol. Lett., Vol.18, pp.226-228, 2006.
[44]M. Y. Tekeste, and J. M. Yarrison-Rice, “High efficiency photonic crystal based wavelength demultiplexer,” Opt. Express, Vol.14, pp.7931-7942, 2006.
[45]L. Dobrzynski, B. Djafari-Rouhani, A. Akjouj, J. O. Vasseur, and J. Zemmouri, “Resonant tunneling between two continua,” Phys. Rev. B, Vol.60, pp.10628-10631, 1999.
[46]Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E, Vol.62, pp.7389-7404, 2000.
[47]R. Stoffer, H. J. W. M. Hoekstra, R. M. Deridder, E . Vangroese, and F. P. H. V anbeckum, ” Numerical studies of 2D photonic crystals Waveguides, coupling between waveguides and filters,” Opt. Quantum Electron., Vol.32, pp.947-961, 2000.
[48]K. Nara, J. Hasegawa and T. Tsuda, “PLC-MZI-type 3-Wavelength Wideband WDM Filter Array for FTTH Video Distribution Services,” Furukawa Review, No.28, 2005.
[49]H. Ren, C. Jiang, W. Hu, M. Gao, and J. Wang, “Photonic crystal channel drop filter with a wavelength-selective reflection micro-cavity,” Opt. Express., Vol.14, pp.2446-2458, 2006.
[50]H. Ren, C. Jiang, W. Hu, M. Gao, and J. Wang, “Design and analysis of two-dimensional photonic crystals channel filter,” Opt. Commun., Vol.266, pp.342-348, 2006.
[51]S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop filters in photonic crystals,” Opt. Express, Vol.3, pp.4-11, 1998
[52]S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Channel Drop Tunneling through Localized States,” Phys. Rev. Lett., Vol.80, pp.960-963, 1998.
[53]C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of Modes Analysis of Resonant Channel Add–Drop Filters,” IEEE J. Quantum Electron., Vol.35, pp.1332-1331, 1999.
[54]C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Theoretical analysis of channel drop tunneling processes,” Phys. Rev. B, Vol.59, pp.15882-15892, 1999.
[55]Y. Akahane, T. Asano, H. Takano, B. S. Song, Y. Takana, and S. Noda1, “Two-dimensional photonic-crystal-slab channel drop filter with flat-top response,” Opt. Express, Vol.13, pp.2512-2530, 2005.
[56]S. Kim, I. Park, and H. Lim, “Proposal for ideal 3-dB splitters–combiners in photonic crystals,” Opt. Lett., Vol.30, pp.257-259, 2005.
[57]C. E. Saavedra, and Y. Zheng, “Ring-Hybrid Microwave Voltage-Variable Attenuator Using HFET Transistors,” IEEE Trans. Micro. Theory Tech., Vol.53, pp.2430-2434, 2005.
[58]S. Fan, S. G. Johnson, and J. D. Joannopoulos “Waveguide branches in photonic crystals,” J. Opt. Soc. Am.B, Vol.18, pp.162-165, 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔