(18.204.2.190) 您好!臺灣時間:2021/04/19 07:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李富田
研究生(外文):Fu-Tien Lee
論文名稱:應用基因演算法評估電源分佈網路之快速方法
論文名稱(外文):A Fast Method with the Genetic Algorithm to Evaluate Power Delivery Networks
指導教授:郭志文郭志文引用關係
指導教授(外文):Chih-Wen Kuo
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:88
中文關鍵詞:去耦合電容基因演算法導納矩陣法接地彈跳雜訊
外文關鍵詞:Decoupling CapacitorGenetic AlgorithmAdmittance Matrix MethodGround Bounce Noise
相關次數:
  • 被引用被引用:0
  • 點閱點閱:96
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在現今高速數位電路中,因數位邏輯的切換而產生的瞬間電流變化,會在電源平面間產生同步切換雜訊或接地彈跳雜訊。為了有效及準確的分析接地彈跳雜訊對電源供應系統的影響,電源層與接地層之間的阻抗是衡量電源供電系統特性的一個重要指標,在一定頻寬之內,電源阻抗必須小於目標阻抗。
而一般常見抑制SSN的作法,則是在電源與接地層之間添加去耦合電容提供低阻抗路徑而達到宣洩雜訊的效果,利用導納矩陣法可以快速且準確的分析去耦合電容在PCB上抑制接地彈跳雜訊的效果,節省了很多經驗嘗試法而耗費的時間。在考慮電容成本的情況之下,應用基因演算法求得以少量的去耦合電容抑制接地彈跳雜訊的最佳位置。
由於電容的寄生電感效應,使得去耦合電容在GHz以上便失去抑制效果,因此本人利用電磁能隙結構在高頻會產生截止帶,而阻止雜訊傳播的特性,結合去耦合電容並且應用基因演算法求得抑制接地彈跳雜訊的最佳位置。
In recent high-speed digital circuits, the simultaneous switching noise (SSN) or ground bounce noise (GBN) is induced due to the transient currents flowing between power and ground planes during the state transitions of the logic gates. In order to analyze the effect of GBN on power delivery systems effectively and accurately, the impedance of power/ground is an important index to evaluate power delivery systems. In the operating frequency bandwidth, the power impedance must be less than the target impedance.
The typical way to suppress the SSN is adding decoupling capacitors to create a low impedance path between power and ground planes. By using the admittance matrix method, we can evaluate the effect of decoupling capacitors mounted on PCB fast and accurately reducing the time needed from the empirical or try-and-error design cycle. In order to reduce the cost of decoupling capacitors, the genetic algorithm is employed to optimize the placement of decoupling capacitors to suppress the GBN.
The decoupling capacitor are not effective in the GHz frequency range due to their inherent lead inductance. The electromagnetic bandgap(EBG) structure can produce a stopband to prevent the noise from disperseing at higher frequency. Combining decoupling capacitors with EBG structure to find the optimum placement for suppression of the SSN by using the genetic algorithm.
目錄
圖表目錄
第一章 序論1
1.1 研究背景與方法1
1.2 論文大綱3
第二章 高速數位電路之接地彈跳雜訊4
2.1接地彈跳雜訊的成因4
2.2接地彈跳雜訊的現象與影響7
2.3 目標阻抗(Target impedance)8
2.4 去耦合電容抑制接地彈跳雜訊8
2.4.1 去耦合電容特性8
2.4.2 去耦合電容的寄生元件9
第三章 導納矩陣(Admittance matrix method,AMM)與基因演算法13
3.1 導納矩陣簡介13
3.1.1導納矩陣法流程16
3.2 導納矩陣法模擬測試17
3.3 基因演算法介紹21
3.3.1 基因演算法流程21
3.3.2 基因演算法之特性26
3.3.3 簡單演算實例27
第四章 封裝系統的電源供應平面29
4.1 電源供應平面29
4.2 去耦合電容抑制雜訊30
4.3 電容容值對抑制效果的影響34
4.4 電容寄生元件對抑制效果的影響39
4.4.1 寄生電阻對去耦合電容功用的影響39
4.4.2 寄生電感對去耦合電容功用的影響41
4.5 應用基因演算法最佳化電容位置44
4.5.1 應用基因演算法計算6顆0.1 去耦合電容最佳位置44
4.5.2 應用基因演算法計算12顆0.1 去耦合電容最佳位置49
4.5.3 應用基因演算法計算0.1 與0.01 去耦合電容最佳位置53
第五章 利用電磁能隙(EBG)結構抑制接地彈跳雜訊60
5.1 電磁能隙簡介60
5.2 電磁能隙抑制接地雜訊61
5.3 結合EBG結構應用基因演算法最佳化電容位置67
第六章 結論72
參考文獻73
[1] N. Na, M. Swaminathan, J. Libous, and D. O''Connor, “Modeling and simulation
of core switching noise on a package and board,” Elec. Comp. and Tech. Conf.,
2001, pp. 1095-1101.
[2] J. G. Yook, V. Chandramouli, L. P. B. Katehi, K. A. Sakallah, T. R. Arabi, and T.A. Schreyer, “Computation of switching noise in printed circuit boards,” IEEE
Trans. Comp., Packag., and Manufact., vol. 20, Mar. 1997, pp. 64-75.
[3] G. T. Lei, R. W. Techentin, and B. K. Gilbert, “High-frequency characterization
of power/ground-plane structures,” IEEE Trans. Microwave Theory Tech., vol. 47,May. 1999, pp. 562-569.
[4] S. Van den Berghe, F. Olyslager, D. De Zutter, J. De Moerloose, and W.
Temmerman, “Study of the ground bounce caused by power plane resonances,”
IEEE Trans. Electromagn. Compat., vol. 40, May 1998, pp.111-119.
[5] J. N. Hwang and T. L. Wu, “Coupling of the ground bounce noise to the signal
trace with via transition in partitioned power bus of PCB,” IEEE Int. Symp.
Electromagn. Compat., 2002, pp. 733 -736.
[6] J. Chen, T. H. Hubing, T. P. Van Doren, and R. E. DuBroff, “Power bus
isolation using power islands in printed circuit boards,” IEEE Trans. Electromag.
Compat., vol. 44, May 2002, pp. 373 -380.
[7] W. Cui, J. Fan, H. Shi, and J. L. Drewniak, “DC power bus noise isolation with
power islands,” IEEE Int. Symp. Electromag. Compat., 2001, pp.899-903.
[8] T. L. Wu, Y. H. Lin, J. N. Hwang, and J. J. Lin, “The effect of test system
impedance on measurements of ground bounce in printed circuit boards,”
IEEE Trans. Electromag. Compat. , vol. 43, Nov 2001, pp. 600 -607.
[9] Y. Xiaoning, M. Y. Koledintseva, L. Min, and J. L. Drewniak, “DC power-bus
design using FDTD modeling with dispersive media and surface mount technology components,” IEEE Trans. Electromag. Compat., vol. 43, Nov
2001, pp. 579 -587.
[10] T. Sudo, Y. Ko, S. Sakaguchi, T. Tokumaru, “Electromagnetic radiation and
simultaneous switching noise in a CMOS device packaging,” Electronic
Components and Technology Conference, pp. 781-785, 21-24 May 2000.
[11] 謝金明,高速數位電路設計暨雜訊防治技術,全華科技圖書股份有限公司,1997.
[12] J. Choi,S. Chun,N. Na and M. Swaminathan,and L. Smith,“A methodology for the placement and optimization of decoupling capacitors for Gigahertz systems, ” 13th Int. Conf. VLSI Design, pp. 156-161,2000.
[13] J. Zhao ,Mandhana, O.P.,“A fast performance evaluation of power delivery system input impedance of printed circuit boards with decoupling capacitors,” in: Electrical Performance of Electronic Packaging, Oct. 2004,pp.111-114.
[14] Johnson, J.M., Rahmat-Samii, Y. , “ Genetic algorithms in engineering electromagnetics,“ IEEE Antennas and Propagation Magazine , Volume: 39 Issue: 4 ,Aug 1997 , pp. 7 -21.
[15] Haupt, R.L., “An introduction to genetic algorithms for electromagnetics ,”
IEEE Antennas and Propagation Magazine , Volume: 37 Issue: 2 , Apr 1995 , pp.7 -15.
[16] 黃俊銘,數值方法-使用Matlab程式語言,第二版,全華科技圖書股份有限公司, 2004.
[17] M. Xu and T. H. Hubing, “Estimating the Power Bus Impedance of Printed
Circuit Boards with Embedded Capacitance,” IEEE Trans. Adv. Packag., vol. 25, pp. 424-432, Aug. 2002.
[18] J. Chen, M. Xu, T. H.Hubing, J. L. Drewniak, T. P. Van Doren, and R. E.
Dubroff, “Experimental evaluation of power bus decoupling on a 4-layer printed circuit board,” IEEE Int. Symp. Electromag. Compat., 2000, pp. 335-338.
[19] Jun Fan, Drewniak, J.L., Knighten, J.L., Smith, N.W., Orlandi, A., Van Doren,
T.P., Hubing, T.H., DuBroff, R.E., “Quantifying SMT decoupling capacitor
placement in dc power-bus design for multilayer PCBs,”IEEE Trans.
Electromag. Compat., vol. 43, Nov 2001, pp. 588 –599.
[20] Gisin, F.; Pantic-Tanner, Z., “Edge emissions from a PC board structure, ” in
Proc. of IEEE Int. Symp. on EMC, 2001, pp. 1333-1334.
[21] 鍾明峰,“以傳輸線模型分析高速數位電路構裝之電源完整性,”中山大學碩士論文,2006.
[22] Karaki SH, Kayssi AI, Abdouni B, Raad,“Capacitor placement using genetic algorithms to reduce switching noise,” in: Proceedings of the 14th international
conference on microelectronics, Beirut, Lebanon, December 2002, pp 242–246
[23] Sungtek Kahng, “GA-optimized decoupling capacitors damping the
rectangular power-bus'' cavity-mode resonances,”IEEE Microwave and Wireless Components Letters,vol.16.NO.6,June 2006,pp.375-377.
[24] 吳永順,“最佳化的去耦合電容以抑制多層印刷電路板電源接地雜訊之研究,”聖約翰技術學院碩士論文,2004.
[25] T. K. Wang, C. C. Wang, S. T. Chen, Y. H. Lin, and T. L. Wu, “A new frequency selective surface power plane with broad band rejection for simultaneous switching noise on high-speed printed circuit boards,” IEEE
EMC Symposium, Aug. 2005,pp.917-920.
[26] J. N. Hwang, T. L. Wu, “ The bridging effect of the isolation moat on the EMI caused by ground bounce noise between power/ground planes of PCB,”
Electromagnetic Compatibility, 2001. EMC. 2001 IEEE International Symposium on , Volume: 1, pp. 471-474 , 13-17 Aug. 2001.
[27] T. L. Wu, Y. H. Lin and S. T. Chen, “A Novel Power Planes With Low
Radiation and Broadband Suppression of Ground Bounce Noise Using Photonic
Bandgap Structures,” IEEE Microwave and Wireless Components Letters, vol. 14,pp. 337-339, July 2004.
[28] R. Coccioli, F. R. Yang, K. P. Ma and T. Itoh, “Aperture-coupled patch antenna on UC-PBG substrate,” IEEE Trans. Microwave Theory & Tech., vol. 47, pp.2123-2130, Nov. 1999.
[29] N. Shino and Z. Popovic´, “Radiation from ground-plane photonic bandgap
microstrip waveguide,” IEEE MTT-S Int. Microwave Symp. Dig., June 2002, pp.1079–1082.
[30] 周鵬程,遺傳演算法原理與應用-活用Matlab,第二版,全華科技圖書股份有限公司,2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 陳昭儀(2003.06)。創意人物研究之回顧與探析。資優教育季刊,87, 27-40。
2. 陳昭儀(2003)。傑出科學家及藝術家之比對研究。國立政治大學「教育與心理研究」,26,199-225。
3. 陳木金(1999.12)。國民小學教師創造性人格特質與美育教學之關係研究。藝術學報,65,161-170。
4. 張美玉(2001)。從多元智能的觀點談歷程檔案評量在教育上的應用。教育研究資訊,9(1),32-54。
5. 張世彗 (2002)。創造力評量的合意技巧。創造思考教育,第十二期,15-27。
6. 孫志誠、嚴貞 (2003)。創造力評量的內涵與方法初探。設計研究,3, p.184-193。
7. 胡永崇(2003)。特殊教育學生評量的倫理原則。特教園丁,18(4)p.11-16。
8. 洪福財(1997)。幼稚園教學的因應與變革─從多元智力論談起。國民教育,38 (1),68-72。
9. 洪文東(2002)。創造型兒童思考特性與科學創造力的關連性。屏東師院學報,第16期,355-394。
10. 林業盈 (2003)。評量兒童創造力方法之研究--以看圖說故事為例。創造思考教育,第十三期, 26-40。
11. 周肇昇 (2004)。創造力測驗與投射測驗結合之初探。師說,178期,45。
12. 李賢哲(2001.03)。以動手作(DIY)工藝的興趣培養中小學童具科學創造力之人格特質。科學教育月刊,243,2-7。
13. 吳靜吉、陳甫彥、郭俊賢、林偉文、劉士豪、陳玉樺 (1999)。新編創造思考測驗研究。學生輔導, 62期。
14. 吳靜吉(2002)。華人學生創造力的發掘與培育。應用心理研究,15, 17-42。
15. 吳靜吉(1989)。適當的創造動機。創造思考教育,創刊號, 13-14。
 
系統版面圖檔 系統版面圖檔