跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 16:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林信修
研究生(外文):Hsin-hsiu Lin
論文名稱:採用垂直雙載子接面電晶體之可調對數濾波器
論文名稱(外文):A Tunable Log-Domain Filter Using Vertical Bipolar Junction Transistor
指導教授:高家雄
指導教授(外文):Chia-Hsiung Kao
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:57
中文關鍵詞:垂直寄生雙載子接面電晶體對數濾波器
外文關鍵詞:log-domain filterparasitic vertical bipolar junction transistor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:101
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
傳統上連續時間主動濾波器的設計,往往需要在低電壓與高動態範圍間有所取捨,解決這個問題的方法便是利用壓擴(Companding)這項技術。目前可以實現的方式大致可分成兩類,ㄧ者為利用BJT工作在飽和區的i-v指數關係,但為了降低成本,並且整合數位與類比電路,另一利用 CMOS製程來實現的被開發出來。本計劃將利用整合CMOS製程中寄生的垂直式BJT來設計一個全新的ㄧ階低通對數濾波器。與傳統對數濾波器相比,本電路擁較高的工作頻率。

在本研究計畫中我們先採用Hspice 來模擬對數濾波器的諸多特性,以確保該電路設計的準確性及作為設計佈局的參考。在完整的模擬與分析之後,將使用0.35um CMOS 製程製作晶片。
Traditionally, the design of continuous time active filters usually has a trade offbetween low-voltage and high dynamic range. One way to solve this problem is companding technology. There are two methods for companding filters. The first method utilizes the
exponential I-V characteristics of BJT in the saturation region. In order to reduce the cost andintegrate the analog and digital circuits, the other method was exploited using CMOS process. In this project, a new first-order low pass log-domain filter based on CMOS parasitic vertical BJTwill be proposed. This filter has higher frequency response than previous circuits.

We will first employ Hspice to simulate the log-domain filter to ensure the correctness of the circuit and make it a reliable reference with the circuit layout. After summarizing all the simulations and analyses, the chip will be fabricated with 0.35um CMOS technology.
Contents
Abstract
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 3
1.3 Overview of the Thesis 4
Chapter 2 Previous Log-domain Filters 5
2.1 Companding Techniques 5
2.2 Previous Log-domain Filters 7
2.2.1 Frame of Log-domain Circuit 7
2.2.2 Log-domain Circuits 11
Chapter 3 The Proposed Circuit 19
3.1 State-Space Analysis 19
3.1.1 Basic Equations 19
3.1.2 Derivation of First Order Filter 20
3.2 Bipolar Junction Transistors in Standard CMOS Process 23
3.2.1 The Vertical PNP Transistor 23
3.3 The Proposed Log-domain Filter 27
3.3.1 The Proposed Log Filter 27
3.3.2 Analysis of Sub Circuits 29
3.4 Transfer Function 32
Chapter 4 Simulation and Measurement 36
4.1 The Circuit Implement, Layout& Specifics 36
4.2 Simulation & Results 39
4.2.1 Testing method & Measurement circuit 39
4.2.2 Frequency Response 41
4.2.3 Tunable Range & Total Harmonic Distortion (THD) 44
4.2.4 Comparisons 46
Chapter 5 Conclusion 48
References 49

List of Figure
Fig. 1.1 Ratio of power dissipation and dynamic range in traditional and companding filter 2
Fig. 2.1 Output RMS signal and noise versus input RMS signal for signal process with (a) wide and (b) narrow usable dynamic range 6
Fig. 2.2 Signal domains in companding processing 6
Fig. 2.3 Companding Filter Function Block 7
Fig. 2.4 Adams’s Log Filter Circuit 8
Fig. 2.5 BJT Log-Domain Filter 11
Fig. 2.6 Second-order low pass filter schematic [5] 12
Fig. 2.7 CMOS Log Filter Structure 13
Fig. 2.8 Schematic of biquadratic low-pass log-domain filter [14] 14
Fig. 2.9 Block diagram [17] 16
Fig. 2.10 Log-domain 2nd-order Butterworth filter [17] 17
Fig. 3.1 The physical structure and circuit equivalent V Q is the vertical PNP L Q is the lateral PNP in N-well CMOS process 24
Fig. 3.2 Physical structure of Vertical Bipolar Junction in N-Well standard CMOS process24
Fig. 3.3 Top view of Vertical Bipolar Junction Layout in N-Well standard CMOS process 25
Fig. 3.4 The whole Log-Domain Filter 27
Fig. 3.5 Core of filter 29
Fig. 3.6 Output circuit 31
Fig. 4.1 The layout of the low pass Log-domain filter 36
Fig. 4.2 The whole chip of the filter 37
Fig. 4.3 The photograph of the chip 38
Fig. 4.4 Proposed the filter’s measurement circuit 39
Fig. 4.5 Frequency response under different conditions 41
Fig. 4.6(a) The Frequency response C=40pF the Idc =20μA and 60μA 42
Fig. 4.6(b) The Frequency response C=20pF the dc I =20μA and 60μA 43
Fig. 4.6(c) The Frequency response C=10pF the dc I =20μA and 60μA 43
Fig. 4.7 Frequency tuning range 44
Fig. 4.8 (a) THD C=20pF 45
Fig. 4.8 (b) THD C=10pF 45
List of Table
Table 3.1 List of the layout description 25
Table 4.1 Specifics of the first order Log-domain filter 37
Table 4.2 Comparison between simulation results and measurement results 46
Table 4.3 Comparison with other type log domain filter 47
[1] Brock Barton and Massoud Pedram, “Guest Editorial Special Issue on Low Power Electronics and Design” IEEE Trans. Very Large Scale Integration (VLSI) Syst., Dec.1997, Vol. 5, no. 4, pp.349-351.

[2] E. Vittoz, .Low power low-voltage limitations and prospects in analog design, inR. J. v. d. Plassche, W. M. C. Sansen, and J. H. Huijsing, eds. Analog Circuit Design, Low-Power, Low-Voltage, Integrated Filters and Smart-Power, Kluwer, Boston, 1995.

[3] Y. Tsividis,”Externally linear time invariant systems and their applications to companding signal processors” IEEE TCAS-II, vol. 44, no. 2, pp. 65-85, Feb. 1997.

[4] R. W. Adams, “Filtering in the log-domain”, in 63rd AES Conf., New York, 1979, preprint 1470.

[5] D. R. Frey, “Log-domain filtering: an approach to current-mode filtering”, IEE Proc. G, vol. 140, pp. 406-416, 1993.

[6] D. R. Frey, “Exponential state space filters: A generic current mode design strategy”,IEEE Trans. Circuits Syst. I, vol. 43, pp. 34-42, Jan. 1996.

[7] E. M. Drakakis, A. J. Payne,and C.Toumazou, “Log-domain state-space: a systematic transistor-level approach for log-domain filtering”, IEEE Trans. Circuits Syst. II, vol.46, pp. 290-305, Mar. 1999.

[8] E. M. Drakakis, A. J. Payne,and C.Toumazou, “Log-domain filtering and Bernoulli cell”, IEEE Trans. Circuits Syst. I, vol. 46, no. 5, pp. 559-571, May 1999.

[9] Ezz I. El-Masry and Jie Wu “CMOS Micropower Universal Log-Domain Biquad “IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 46, NO. 3, MARCH 1999

[10] N. Krishnapural, Y. Tsividis “A Micropower Log-Domain Filter Using Enhanced Lateral PNPs in a 0.25 um CMOS Process” 2001 Symposium on VLSl Circuits Digest of Technical Papers pp.179~182 50

[11]Y.P.Tsividis,V.Gopinathan,andL.Toth, “Companding in signal processing,”Electronics Letters, Aug. 1990, Vol. 26, pp.1331 - 1332.

[12] N. S. Nise, Control Systems Engineering. Reading, MA: Addison-Wesley, 1995.

[13] C. Toumazou, J. Ngarmnil, and T.S.Lande, .Micropower log-domain filter for electroniccochlea, Electronics Letters, vol. 30, pp. 1839-1841, 27 Oct. 1994.

[14] C. Toumazou, J. Ngarmnil, A micropower analogue filter The Institution of Electrical Engineers.1994

[15] Geoffrey D. Duerden'', Gordon W. Roberts'', and M. Jamal Deen'' THE DEVELOPMENT OF BIPOLAR LOG DOMAIN FILTERS IN A STANDARD CMOS PROCESS IEEE 2001

[16] E. A. Vittoz, .MOS transistors operated in the lateral bipolar mode and their applications to bipolar technology, IEEE Journal of Solid State Circuits, vol. 18, no. 3, pp.273-279, Jun. 1983.

[17] N. Krishnapural, Y. Tsividis “A Micropower Log-Domain Filter Using Enhanced Lateral PNPs in a 0.25 um CMOS Process” 2001 Symposium on VLSl Circuits Digest of Technical Papers pp.179~182

[18] M. Punzenberger and C. Enz, “A 1.2-V low power BiCMOS class AB log-domain filter”,IEEE Journal of Solid State Circuits, vol. 32, pp. 1968-1978, Dec. 1997.

[19] Y. P. Tsividis and R.W. Ulmer, “A CMOS voltage reference”, IEEE Journal of Solid State Circuits, vol. 13, no. 6, pp. 774-778, Dec. 1978.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top