跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 11:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭倉誌
研究生(外文):Cang-zhi Guo
論文名稱:針對動態系統中含有非匹配干擾設計順滑模態適應控制器以達到漸進穩定
論文名稱(外文):Design of Adaptive Sliding Mode Controllers for System with Mismatched Uncertainty to Achieve Asymptotical Stability
指導教授:鄭志強鄭志強引用關係
指導教授(外文):Chih-Chiang Cheng
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:63
中文關鍵詞:漸進穩定適應順滑模態控制非匹配干擾
外文關鍵詞:asymptotical stabilityadaptive sliding mode controlmismatched perturbations
相關次數:
  • 被引用被引用:0
  • 點閱點閱:117
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文基於李亞普諾夫之穩定性定理(Lyapunov Theorem),針對具有匹配與非匹配擾動的多輸入多輸出動態系統中提出一個適應順滑模態控制器以解決系統校準的問題。為了抑制受控系統中的非匹配擾動,將調適機制應用於順滑面及控制器的設計中,使得在設計控制方法時,控制器將自動調適未知擾動上界,以致於部份擾動之上界資訊是不需要知道的。藉由此順滑面設計所得到的虛擬控制力,不僅可在系統進入順滑模態之後有效抑制非匹配擾動對受控系統之影響,進而達到漸進穩定性能之要求,而且由於控制器中導入調適機制,將使得系統狀態軌跡將在有限時間內進入順滑面。最後,本論文提供一個數值範例及實際裝置的範例以驗證所提出控制器的可行性。
Based on the Lyapunov stability theorem, an adaptive sliding mode control scheme is proposed in this thesis for a class of mismatched perturbed multi-input multi-output (MIMO) dynamic systems to solve regualtion problems. The sliding surface function is firstly designed by treating some state variables as a pseudo controllers through the usage of sliding function to stabilize the rest of state variables. In this thesis the number of these pseudo controllers is less than that of the state variables to be stabilized. The second step is to design the controllers so that the trajectories of the controlled systems are able to reach sliding surface in a finite time. Some adaptive mechanisms are embedded in the sliding surface function and sliding mode controllers, so that not only the mismatched perturbations can be suppressed during the sliding mode, but also the information of upper bounds of some perturbations are not required when designing the sliding surface function and controllers. Once the controlled system enters the sliding mode, the state trajectories can achieve asymptotical stability under certain conditions. A numerical example and a practical example are given to demonstrate the feasibility of the proposed design technique.
Abstract i
List of Figures iv
List of Notations v
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Brief Sketch of the Contents 3
Chapter 2 Design of Adaptive Sliding Mode Controllers 5
2.1 System Descriptions and Problem Formulations 5
2.2 Design of the Sliding Surface Function 9
2.3 Stability of the System in the Sliding Mode 11
2.4 Design of Adaptive Sliding Mode Controllers 18
2.5 Summary and Design Procedure 23
Chapter 3 Examples and Simulations 24
3.1 Numerical Example 24
3.2 Practical Example 27
Chapter 4 Conclusions 38
Appendix 39
References 48
[1] V. I. Utkin, “Variable structure systems with sliding modes”, IEEE Trans. Automat. Contr., Vol. 22, No. 1, pp. 212 - 222; 1977.
[2] W. J. Wang, G.H. Wu, and D. C. Yang, “Variable structure control design for uncertain discrete-time systems”, IEEE Trans. Automat. Contr., Vol. 39, No. 1, pp. 99 - 102; 1994.
[3] C. Edward, and S. K. Spurgeon “Sliding Mode Control: Theorem and Applications”, Padstow Taylor and Francis Ltd., 1998.
[4] J. J. Slotine, “Sliding controller design for non-linear systems,” Int. J. Contr., Vol. 40, pp. 421 - 434; 1984.
[5] R. A. DeCarlo, S. H. Zak and G. P. Mattews, “Variable structure control of nonlinear multivariable systems: a tutorial,” Proc. of IEEE, Vol. 76, No. 3, pp. 212 - 232; 1988.
[6] J. Y. Hung, W. Gao and J. C. Hung, “Variable structure control: a survey,” IEEE Trans. Industrial Electronic, Vol. 40, No. 1, pp. 2 - 22; 1993.
[7] M. Zhihong and X. H. Yu, “Terminal sliding mode control of MIMO linear systems,” IEEE Trans. Automat. Contr., Vol. 44, No. 11, pp. 1065 - 1070; 1997.
[8] Y. Wang, Y. Feng, X. Yu, and N. Zhang, “Terminal sliding mode control of MIMO linear systems with unmatched uncertainties,” Conference of the IEEE, Vol. 2, No. 11, pp. 1146 - 1151; 2003.
[9] C. H. Chou, C. C. Cheng, “Design of adaptive variable structure controllers for perturbed time-varying state delay systems,” J. Frankl. Inst.- Eng., Vol. 338, No. 1, pp. 35 - 46; 2001.
[10] C. H. Chou, C. C. Cheng, “A decentralized model reference adaptive variable structure controller for large-scale time-varying delay systems,” IEEE Trans. Automat. Contr., Vol. 48, No. 7, pp. 1213 - 1217; 2003.
[11] K. K. Shyu, W. J. Liu, and K. C. Hsu, “Design of large-scale time delayed system with dead-zone input via variable structure control,” Automatica., Vol. 41, No. 7, pp. 1239 - 1246; 2005.
[12] C. C. Cheng and S. H. Chien, “Adaptive sliding mode controller design based on T-S fuzzy system models,” Automatica, Vol. 42, No. 6, pp. 1005 - 1010; 2006.
[13] K. K. Shyu, T. W. Tsai, and C. K. Lai, “Sliding mode control for mismatched uncertain systems,” Electronics Letters, Vol. 34, No. 24; 1998.
[14] K. S. Kim, Y. Park, and S. H. Oh, “Designing robust sliding hyperplanes for parametric uncertain systems: a Riccati approach,” Automatica., Vol. 36,
No. 7, pp. 1041 - 1048; 2000.
[15] H. H. Choi, “On the existence of linear sliding surfaces for a class of uncertain dynamic systems with mismatched uncertainties,” Automatica,Vol. 35,
No. 10, pp. 1707 - 1715; 1999.
[16] M. L. Chan, C. W. Tao, and T. T. Lee, “Sliding mode controller for linear systems with mismatched time-varying uncertainties,” Journal of the Franklin Institute, Vol. 337, pp. 105 - 115; 2000.
[17] C. M. Kwan, “Sliding mode control of linear systems with mismatched uncertainties ,” Automatica, Vol. 31,, pp. 303 - 307; 1995.
[18] C. W. Tao, M. L. Chan, and T. T. Lee, “Adaptive fuzzy sliding mode controller for linear systems with mismatched time-varying uncertainties,” IEEE Trans. on Systems, Man, and Cybernetics - Part B: Cybernetics , Vol. 33, No. 2, pp. 283 - 294; 2003.
[19] A. C. Huang and Y. C. Chen, “Adaptive multiple-surface sliding control for non-autonomous systems with mismatched uncertainties,” Automatica, Vol. 40, No. 11, pp. 1939 - 1945; 2004.
[20] X. G. Yan, C. Edwards, and S. K. Spurgeon, “Decentralised robust sliding mode control for a class of nonlinear interconnected systems by static output feedback,” Automatica, Vol. 40, No. 4, pp. 613 - 620; 2004.
[21] T. P. Zhanga and S. S. Geb, “Adaptive neural control ofMIMOnonlinear state time-varying delay systems with unknown dead-zones and gain signs,”
Automatica, Vol. 43, No. 6, pp. 1021 - 1033; 2007.
[22] C. Lin, Q. G. Wang, and T. H. Lee, “Stabilization of uncertain fuzzy timedelay systems via variable structure control approach,” IEEE Trans. on fuzzy systems, Vol. 13, No. 6, pp. 787 - 798; 2005.
[23] Y.W. Tsai, K. K. Shyu, and K. C. Chang, “Decentralized variable structure control for mismatched uncertain large-scale systems: a new approach,” Systems and Control Letters, Vol. 43, pp. 117 - 125; 2001.
[24] W. J. Cao and J. X. Xu, “Nonlinear integral-type sliding surface for both matched and unmatched systems,” IEEE Trans. Automat. Contr., Vol. 49,
pp. 1355 - 1360; 2004.
[25] H. H. Choi, “LMI-Based sliding surface design for integral sliding mode control of mismatched uncertain systems,” IEEE Trans. Automat. Contr., Vol. 52, No. 4, pp. 736 - 742; 2007.
[26] H. H. Choi, “An LMI-Based switching surface design method for a class of mismatched uncertain systems,” IEEE Trans. Automat. Contr., Vol. 49,
No. 6, pp. 1634 - 1638; 2003.
[27] H. H. Choi, “LMI-Based sliding-mode observer design method,” IEE Proc., Control Theory Appl., Vol. 152, No. 1, pp. 113 - 115; 2005.
[28] C. W. Tao, J. S. Taur, and M. L. Chan, “Adaptive fuzzy terminal sliding mode controller for linear systems with mismatched time-vary uncertainties,”
IEEE Trans. on Systems, Man, and Cybernetics - Part B: Cybernetics , Vol. 34, No. 1, pp. 255 - 262; 2004.
[29] Y. Chang, C. C. Cheng, “Design of adaptive sliding surfaces for systems with mismatched perturbations to achieve asymptotical stability,” IEE
Proc., Control Theory Appl., Vol. 1, No. 1, pp. 417 - 421; 2007.
[30] Y. Chang and C. C. Cheng, “Adaptive sliding mode control for plant with mismatched perturbations to achieve asymptotical stability,” International Journal of Robust and Nonlinear Control. , Vol. 17, pp. 880 - 896; 2007.
[31] B. Yao and M. Tomizuka, “Adaptive robust control of MIMO nonlinear systems in semi-strict feedback forms,” Automatica., Vol. 37, pp. 1305 -1321; 2001.
[32] C.W. Tao, M. L. Chan, andW. Y.Wang, “Robust control of the mismatched systems with the fuzzy integral sliding controller,” IEEE International Conference on Systems, Man and Cybernetics, Vol. 4, pp. 3657 - 3662; 2003.
[33] Y. Xia and Y. Jia, “Robust sliding mode control for uncertain time-delay systems: An LMI Approach,” IEEE Trans. Automat. Contr., Vol. 48, No. 6, pp. 1086 - 1092; 2003.
[34] A. C. Huang and Y. C. Chen, “Adaptive slding Control for single link flexible joint robot with mismatched uncertainties,” IEEE Trans. Automat.
Contr., Vol. 12, No. 5, pp. 770 - 775; 2004.
[35] C. W. Tao, W. Y. Wang, and M. L. Chan, “Design of sliding mode controllers for bilinear systems with time varying uncertainties,” IEEE Trans. on Systems, Man, and Cybernetics - Part B: Cybernetics. , Vol. 34, No. 1, pp. 639 - 645; 2004.
[36] H. H. Choi, “Variable structure output feedback control design for a class of uncertain dynamic systems,” Automatica., Vol. 38, No. 2, pp. 335 -341; 2003.
[37] K. K. Shyu, Y. W. Tsai and C. K. Lai, “A dynamic output feedback controllers for mismatched uncertain variable structure systems,” Automatica., Vol. 37, No. 5, pp. 775 - 779; 2001.
[38] M. K. Song, J. B. Park, and Y. H. Joo, “Switching surface design for mismatched uncertain systems with time delay: An LMI approach,” International Joint Conference, pp. 842 - 846; 2006.
[39] S. Sastry and M. Bodson, “Adaptive Control: Stability, Convergence and Robustness,” New Jersey: Prentice-Hall, Inc., 1989.
[40] S. M. Naik, P. R. Kumar, and B. E. Ydstie “Robust continuous- time adaptive control by parameter projection,” IEEE Trans. Automat. Contr., Vol. 37, No.2, pp. 182 - 197; 1992.
[41] H. K. Khalil, “Nonlinear systems Third edition,” Prentice Hall, New Jersey, 1996.
[42] G. Tao, “Adaptive control design and analysis,” JohnWiley and New Jersey, 2003.
[43] C. T. Chen, “Linear System Theory and Design Third edition,” New York: Oxford University Press, Inc., 1999.
[44] S. M. Naik, P. R. Kumar, and B. E. Ydstie “Output regulation of linear systems with continuous feedback,” Automatica., Vol. 49, No.11, pp. 1941 -1953; 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊