跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/11 06:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林翰毅
研究生(外文):Han-i Lin
論文名稱:混合型TOA/AOA之非視線傳播鑑別與無線定位演算法
論文名稱(外文):Hybrid TOA/AOA Non-Line-of-Sight Identification and Wireless Location
指導教授:萬欽德
指導教授(外文):Chin-Der Wann
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:70
中文關鍵詞:訊號抵達角度訊號抵達時間非視線傳播無線定位
外文關鍵詞:AOANLOSTOAwireless location
相關次數:
  • 被引用被引用:0
  • 點閱點閱:404
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著無線通訊技術及其服務需求功能的迅速發展, 使得無線行動定位技術廣泛受到重視。而無線定位系統中, 無可避免訊號受非視線(Non-Line-of-Sight, NLOS) 傳播影響, 導致定位精確度嚴重降低。因此本篇論文提出混合型TOA/AOA(Time of Arrival/ Angle of Arrival) 之非視線傳播鑑別與無線定位演算法,解決NLOS 造成的定位誤差。此演算法主要功能為判別多少個量測訊號為直視傳播(Line-of-Sight, LOS)並同時鑑別出, 其鑑別原理為透過多個基地台所量測的訊號抵達時間(TOA) 與訊號抵達角度(AOA) 參數之蒐集, 利用殘餘資訊的概念去判別量測值中是否含有NLOS誤差, 再針對被鑑別出之直視傳播量測值做位置估測, 有效去除NLOS 誤差, 提升定位精確度。
從電腦模擬結果顯示, 單純TOA 量測資訊之定位系統架構僅能鑑別到LOS 基地台最少有三個的情形, 並且在LOS 基地台個數大於三時有高鑑別率, 但在LOS 基地台個數為三時, 鑑別能力明顯下降, 導致定位誤差變大; 而使用TOA 與AOA 量測資訊結合時, 由於AOA 定位法僅需兩個量測值即能定位的特性, 使得此演算法能鑑別到LOS 基地台最少兩個的情形, 並即使在LOS 基地台為兩個時, 仍保有高的NLOS鑑別能力, 使其定位效能顯著提升。
With the rapid development of wireless networking technology and the great growth of service demand, accurate wireless location estimation has gained considerable attention. Most wireless location system may suffer from non-line-of-sight (NLOS) propagation error, which leads to a severe degradation of position accuracy. In this thesis, we propose a hybrid TOA/AOA (time of arrival/ angle of arrival) non-line-of-sight identification and wireless location technology to cope with NLOS condition. This algorithm can simultaneously determine the number of line-of-sight (LOS) base stations (BSs) and identify them. The identification part is to collect all TOA and AOA parameters from all BSs and to use residual information to detetmine whether the NLOS error is present in measurements. The localization method only processes the LOS measurements to avoid the NLOS error and increases position accurary.
The simulation results show that the location system with TOA measurements can identify three or more LOS-BSs. The system has a high identification accuracy when the number of LOS-BSs is more than three. When the number of LOS-BSs is three, the degraded identification capability leads to larger position errors. When the AOA information is available in the positioning system, the TOA is combined with AOA because the property of the AOA localization method which needs only two measurements to locate the MS makes the location system capable of identifying two LOS-BSs. When the number of LOS-BSs is two, the combination of TOA and AOA measurements maintains a higher NLOS identification accuracy and make its location performance remarkably promoted.
1 緒論1
1.1 研究背景. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 論文結構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 無線定位法與定位誤差來源4
2.1 無線定位原理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.1 訊號抵達時間定位法. . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 訊號抵達角度定位法. . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 混合型定位法. . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 影響定位準確性因素來源. . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 多重路徑傳播效應. . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 非視線傳播(NLOS) 效應. . . . . . . . . . . . . . . . . . . 10
3 鑑別NLOS 誤差之定位系統12
3.1 鑑別NLOS 誤差之定位系統架構. . . . . . . . . . . . . . . . . . . 12
3.1.1 TOA鑑別NLOS 誤差之定位系統功能流程. . . . . . . . . . 12
3.1.2 改良型TOA 鑑別NLOS 誤差之定位系統功能流程. . . . . 14
3.1.3 混合型TOA/AOA 鑑別NLOS 誤差之定位系統功能流程. . 15
3.2 訊號參數模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.1 時間之參數模型. . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 角度之參數模型. . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 最大概似定位演算法. . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 非視線基地台判別演算法. . . . . . . . . . . . . . . . . . . . . . . 19
3.4.1 TOA判別非視線基地台演算法. . . . . . . . . . . . . . . . . 19
3.4.2 改良型TOA 判別非視線基地台演算法. . . . . . . . . . . . 25
3.4.3 混合型TOA/AOA 判別非視線基地台演算法. . . . . . . . . 26
3.4.4 LOS基地台最佳選取演算法. . . . . . . . . . . . . . . . . . 31
4 電腦模擬與分析33
4.1 各種不同非視線基地台個數下之定位誤差模擬. . . . . . . . . . . . . 33
4.1.1 不同時間量測誤差之影響. . . . . . . . . . . . . . . . . . . 34
4.1.2 不同角度量測誤差之影響. . . . . . . . . . . . . . . . . . . 41
4.1.3 不同角度偏移之影響. . . . . . . . . . . . . . . . . . . . . . 43
4.1.4 不同空間大小之影響. . . . . . . . . . . . . . . . . . . . . . 46
4.1.5 不同行動台位置之影響. . . . . . . . . . . . . . . . . . . . . 50
4.1.6 不同基地台間不同的時間量測誤差之影響. . . . . . . . . . . 52
4.2 非視線基地台鑑別準確度之模擬. . . . . . . . . . . . . . . . . . . . 55
4.3 模擬結果探討與總結. . . . . . . . . . . . . . . . . . . . . . . . . . 57
5 結論與建議58
參考文獻58
[1] J. Reed, K. Krizman, B. Woerner, and T. Rappaport, “An overview of the challenges and progress in meeting the e-911 requirement for location service,” Communications Magazine, IEEE, vol. 36, no. 4, pp. 30–37, 1998.
[2] Y. Zhao, “Mobile phone location determination and its impact on intelligent transportation systems,” IEEE Transactions on Intelligent Transportation Systems, vol. 1, no. 1, pp. 55–64, 2000.
[3] S. Al-Jazzar, J. Caffery, Jr., and H.-R. You, “A scattering model based approach to NLOS mitigation in TOA location systems,” IEEE Vehicular Technology Conference, vol. 2, pp. 861–865, May 2002.
[4] S. Al-Jazzar and J. Caffery, Jr., “ML and Bayesian TOA location estimators for NLOS environments,” IEEE Vehicular Technology Conference, vol. 2, pp. 1178 – 1181, Sept. 2002.
[5] P.-C. Chen, “A non-line-of-sight error mitigation algorithm in location estimation,” Wireless Communications and Networking Conference, vol. 1,
pp. 316–320, Sept. 1999.
[6] S. Venkatraman, J. Caffery, Jr., and H.-R. You, “A novel ToA location algorithm using LoS range estimation for NLoS environments,” IEEE Transactions on Vehicular Technology, vol. 53, no. 5, pp. 1515–1524, 2004.
[7] L. Cong and W. Zhuang, “Non-line-of-sight error mitigation in TDOA mobile location,” GLOBECOM ’01 IEEE Conference on Global Telecommunications, vol. 1, pp. 680–684, 2001.
[8] Y.-T. Chan, W.-Y. Tsui, H.-C. So, and P.-C. Ching, “Time-of-arrival based localization under NLOS conditions,” IEEE Transactions on Vehicular Technology, vol. 55, no. 1, pp. 17–24, 2006.
[9] J. Caffery, Jr. and G. Stuber, “Subscriber location in cdma cellular networks,” IEEE Transactions on Vehicular Technology, vol. 47, no. 2, pp. 406–416, 1998.
[10] G. Kbar and W. Mansoor, “Mobile station location based on hybrid of signal strength and time of arrival,” in International Conference on Mobile Business, pp. 585–591, July 2005.
[11] M. McGuire, K. Plataniotis, and A. Venetsanopoulos, “Data fusion of power and time measurements for mobile terminal location,” IEEE Transactions on Mobile Computing, vol. 4, pp. 142–153, March-April 2005.
[12] S. Venkatraman and J. Caffery, Jr., “Hybrid TOA/AOA techniques for mobile location in non-line-of-sight environments,” in IEEE Wireless Communications and Networking Conference, vol. 1, pp. 274–278, March 2004.
[13] N. Thomas, D. Cruickshank, and D. Laurenson, “Performance of a TDOA-AOA hybrid mobile location system,” in Second International Conference on 3G Mobile Communication Technologies, pp. 216–220, March 2001.
[14] L. Cong and W. Zhuang, “Hybrid TDOA/AOA mobile user location for wideband CDMA cellular systems,” IEEE Transactions on Wireless Communications, vol. 1, pp. 439–447, July 2002.
[15] M. Changlin, R. Klukas, and G. Lachapelle, “An enhanced two-step least squared approach for TDOA/AOA wireless location,” in IEEE International Conference on Communications, vol. 2, pp. 987–991, May 2003.
[16] C.-D. Wann and S.-H. Hsu, “Estimation and analysis of signal arrival time for UWB systems,” in IEEE 60th Vehicular Technology Conference, vol. 5, pp. 3560–3564, Sept. 2004.
[17] M. Silventoinen and T. Rantalainen, “Mobile station emergency locating in GSM,” in IEEE International Conference on Personal Wireless Communications, pp. 232–238, Feb. 1996.
[18] M. Wylie and J. Holtzman, “The non-line of sight problem in mobile location estimation,” in IEEE International Conference on Universal Personal Communications, vol. 2, pp. 827–831, Sep.-Oct. 1996.
[19] L. Xiong, “A selective model to suppress NLOS signals in angle-of-arrival (AOA) location estimation,” Personal, Indoor and Mobile Radio Communications, vol. 1, pp. 461–465, Sept. 1998.
[20] S.M. Kay, Fundamentals of statistical signal processing: Estimation Theorey, vol. 1. Prentic Hall, 1993.
[21] R. J. Schilling and S. L. Harris, Applied Numerical Methods for Engineers Using Matlab and C. Brooks/Cole, 2000.
[22] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” Science, vol. 220, pp. 671–680, May 1983.
[23] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the nelder-Mead Simplex Method in low dimensions,” SIAM Journal of Optimization, vol. 9, no. 1, pp. 112–147, 1998.
[24] S. M. Kay, Fundamentals of statistical signal processing: Detection Theorey, vol. 2. Prentic Hall, 1998.
[25] S. Bartelmaos, K. Abed-Meraim, R. Leyman, and E. Nationale, “General selection criteria to mitigate the impact of NLoS errors in RTT measurements
for mobile positioning,” IEEE International Conference on Communications, June 2007.
[26] Y. Zhao, “Standardization of mobile phone positioning for 3G systems,” IEEE Communications Magazine, vol. 40, no. 7, pp. 108–116, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top