(3.237.97.64) 您好!臺灣時間:2021/03/05 03:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:游政龍
研究生(外文):Cheng-lung Yu
論文名稱:多感測器環境中利用線性矯正球面內插定位方法之比較
論文名稱(外文):Comparison of Linear-Correction Spherical-Interpolation Location Methods in Multi-Sensor Environments
指導教授:萬欽德
指導教授(外文):Chin-Der Wann
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:62
中文關鍵詞:抵達時間差幾何精度稀釋球面內插法三維多感測器線性矯正最小平方法
外文關鍵詞:GDOPmulti-sensorTDOA3-Dlinear-correction least-squaresspherical-interpolation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:107
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在室內環境中, 以多感測器定位系統來定位目標物的位置, 由於使用的是低功率、輕巧、便宜、且具低複雜度運算能力的感測器, 因此可於目標物位置之估測上降低成本,
然而在定位演算法與多感測器的架設位置上, 對整體室內空間之定位效能卻有很大的影響。本文針對訊號之抵達時間差TDOA(Time Difference of Arrival), 使用線性矯正球面內插定位法(Linear-Correction Spherical-Interpolation, LCSI) 來估測目標物的位置。此演算法主要是由線性矯正最小平方法(Linear-Correction Least-Squares, LCLS) 及具封閉解之球面內插法(Spherical-Interpolation, SI) 結合而成。SI演算法有別於一般疊代式之非線性極小值的求解過程, 然而在受到誤差及目標物與感測器位置幾何關係影響之情況下, 會具有不同的定位效能, 因此將SI 演算法取代LCLS 演算法中LS(Least-Squares) 部分而成為線性矯正球面內插定位法(LCSI), 即對SI 演算法進行線性矯正進而產生一個較好的估測效能, 如此不僅在實現步驟上較為簡便, 也可將SI 演算法在定位效能上做改善。此外,LCSI 演算法自身的限制亦為本文所探討的議題。TDOA定位系統中, 三維立體空間的幾何精度稀釋(Geometric Dilution of Precision, GDOP) 效應, 顯示誤差對於感測器陣列內外區域之定位效能的影響。本文最後利用程式模擬, 在假設的三維室內空間中, 設計可行的感測器陣列組合與目標物的移動高度, 依據電腦模擬出來之各種不同演算法的GDOP 值, 來證明LCSI
演算法不同於其他方法之優點。
In indoor environment, the multi-sensor system can be used as an efficient solution for target location process, in terms of lower estimation cost, due to the factor that sensors have the advantages of low power, simple, cheap, and low operation complexity. However, the location methods and the placements of designed multisensor have great impact on the location performance. Based on the time difference of arrival (TDOA), the present research utilizes linear-correction spherical-interpolation (LCSI) method to estimate the location of its targets. The method is a combination of the linear-correction least-squares
method and the spherical-interpolation method. Apart from the usual process of iterative, nonlinear minimization, and consequently, under the influence of noise interference and target-sensor geometry, the spherical-interpolation method will produce better results; therefore, SI method is used in place of the LS part of the LCLS method and named as the LCSI method. The objective is to correct the SI method to generate a better estimate performance. In addition to the performance issues, the limitation of the methods will also be examined. The geometric dilution of precision (GDOP) of the TDOA location method in the
3-D scenario is demonstrated with the effects on location performance of both inside and outside of the multi-sensor formation. Programmed 3-D scenario are used in the simulations, where cases with three
different multiple sensor formations and two different target heights are investigated. From the simulation results of various location methods, it can be seen
that LCSI has has its advantages over other methods in the wireless TDOA location.
目錄
1 緒論. . . . . . . . . . . . . . . . . . . . . . . . .1
1.1 研究背景. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 相關研究與研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 無線定位法則與定位誤差來源. . . . . . . . . . . . . . . . . . . . . . . . .4
2.1 無線定位系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.1 訊號抵達時間定位法. . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 訊號抵達時間差定位法. . . . . . . . . . . . . . . . . . . . . 6
2.2 無線通道特性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 抵達時間的量測誤差. . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 多重路徑傳播. . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 非視線傳播. . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 線性矯正球面內插定位法(Linear-Correction Spherical-Interpolation, LCSI) . . . . . . . . . . . . . . . . . . . . . . . . .11
3.1 TDOA系統中之定位演算法. . . . . . . . . . . . . . . . . . . . . . 11
3.1.1 球面內插法. . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 線性矯正最小平方法. . . . . . . . . . . . . . . . . . . . . . 14
3.1.3 球面交點法. . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 誤差標準. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 線性矯正球面內插法. . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 TDOA系統中的GDOP 理論值分佈. . . . . . . . . . . . . . . . . 27
3.4.1 二維平面空間定位分佈. . . . . . . . . . . . . . . . . . . . . 27
3.4.2 三維立體空間定位分佈. . . . . . . . . . . . . . . . . . . . . 28
4 室內定位模擬及分析. . . . . . . . . . . . . . . . . . . . . . . . .32
4.1 定位效能優劣的判斷依據. . . . . . . . . . . . . . . . . . . . . . . 32
4.2 三維立體空間的定位模擬. . . . . . . . . . . . . . . . . . . . . . . 32
4.2.1 定位模擬環境. . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.2 定位模擬結果. . . . . . . . . . . . . . . . . . . . . . . . . 37
5 結論與建議. . . . . . . . . . . . . . . . . . . . . . . . . 49
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . 50
[1] E. D. Kaplan, Understanding GPS: Principles and Applications. Artech House, March 1996.
[2] K. Pahlavan, X. Li, and J. P. Makela, “Indoor geolocation science and technology,” IEEE Communications Magazine, vol. 40, pp. 112 – 118, February 2002.
[3] K. Pahlavan, P. Krishnamurthy, and J. Beneat, “Wideband radio channel modeling for indoor geolocation applications,” IEEE Communications Magazine, vol. 36, pp. 60 – 65, April 1998.
[4] P. Krishnamurthy, Analysis and Modeling of the Wideband Radio Channel for Indoor Geolocation Applications. Ph.D. dissertation, Worcester Polytechnic
Inst., 1999.
[5] R. Fontana, “Advances in ultra wideband indoor geolocation systems,” 3rd IEEE Wksp. WLAN, Boston, MA, September 2001.
[6] P. M. Janiczek, Global Positioning System. Washington, DC: The Institute of Navigation, 1980.
[7] G. Carter, “Special issue on time delay estimation,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP–29, June 1981.
[8] B. Friedlander, “On the Cramer-Rao bound for time delay and Doppler estimation,” IEEE Transactions on Information Theory, vol. 30, pp. 575–
580, May 1984.
[9] J. P. Van Etten, “Navigation systems: Fundamentals of low and very low frequency hyperbolic techniques,” Electric. Commun., vol. 45, no. 3, pp. 192– 212, 1970.
[10] W. R. Hahn, “Optimum processing for passive sonar range and bearing estimation,” Journal of the Acoustical Society of America, vol. 58, no. 1, pp. 201–207, 1975.
[11] M. Wax and T. Kailath, “Optimum localization of multiple sources by passive arrays,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 31, pp. 1210–1217, October 1983.
[12] R. O. Schmidt, “A new approach to geometry of range difference location,” IEEE Transactions on Aerospace and Electronic Systems, vol. AES-8, pp. 821–835, November 1972.
[13] J. M. Delosme, M. Morf, and B. Friedlander, “A linear equation approach to locating sources from time-difference-of-arrival measurements,” in Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, 1980.
[14] J. Abel and J. Smith, “The spherical interpolation method for closed-form passive source localization using range difference measurements,” in Proc.
IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 12, pp. 471–474, April 1987.
[15] H. Schau and A. Robinson, “Passive source localization employing intersecting spherical surfaces from time-of-arrival differences,” IEEE Transactions
on Acoustics, Speech, and Signal Processing, vol. 35, pp. 1223–1225, August 1987.
[16] Y. Huang, J. Benesty, G. W. Elko, and R. M. Mersereau, “Real-time passive source localization: a practical linear-correction least-squares approach,”
IEEE Transactions on Speech and Audio Processing, vol. 9, pp. 943 – 956, November 2001.
[17] M. Kawabata, M. Aso, T. Saikawa, and T. Hattori, “Performance evaluation of TDOA system based on maximum likelihood location estimation in
cellular systems,” Electronics and Communications in Japan, vol. 88, no. 6, pp. 47–54, 2005.
[18] J. Smith and J. Abel, “Closed-form least-squares source location estimation from range-difference measurements,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 35, pp. 1661–1669, December 1987.
[19] J. Caffery Jr. and G. Stuber, “Subscriber location in CDMA cellular networks,” IEEE Transactions on Vehicular Technology, vol. 47, pp. 406–416, May 1998.
[20] M. A. Spirito and A. G. Mattioli, “On the hyperbolic positioning of GSM mobile stations,” in Proceedings of the IEEE International Symposium on Signals, Systems, and Electronics, pp. 173–177, 1998.
[21] J. J. Caffery, Wireless Location in CDMA Cellular Radio Systems. Kluwer Academic, 2000.
[22] W. H. Foy, “Position-location solutions by Taylor-series estimation,” IEEE Trans. on Aero. and Elec. Sys., vol. AES-12, no. 2, pp. 187–193, 1976.
[23] B. T. Fang, “Simple solutions for hyperbolic and related position fixes,” IEEE Transactions on Aerospace and Electronic Systems, vol. 26, pp. 748–
753, September 1990.
[24] Y. T. Chan and K. C. Ho, “A simple and efficient estimator for hyperbolic location,” IEEE Transactions on Signal Processing, vol. 42, pp. 1905–1915, August 1994.
[25] M. P. Wylie and J. Holtzman, “The non-line of sight problem in mobile location estimation,” in Proceedings of the IEEE International Conference
on Universal Personal Communications, vol. 2, pp. 827–831, 1996.
[26] M. Silvetoinen and T. Rantalainen, “Mobile station emergency locationing in GSM,” in Proceedings of the IEEE International Conference on Personal Wireless Communications, pp. 232–238, 1996.
[27] J. Foerster, “Channel modeling sub-committee report final,” IEEE 802.15-02/490rl, February 2003.
[28] R. Schmidt, “Least squares range difference location,” IEEE Transactions on Aerospace and Electronic Systems, vol. 32, pp. 234–242, January 1996.
[29] W.-C. Ou, “Performance analysis of closed-form least-squares tdoa location methods in multi-sensor environments,” Master’s thesis, National Sun Yat-
Sen University, July 2006.
[30] N. Levanon, “Lowest GDOP in 2-D scenarios,” Proc. Inst. Elect. Eng., Radar, Sonar Navigation, vol. 147, no. 3, pp. 149–155, 2000.
[31] H. B. Lee, “A novel procedure for assessing the accuracy of hyperbolic multilateration systems,” IEEE Transactions on Aerospace and Electronic Systems, vol. 11, pp. 2–15, 1975.
[32] D. J. Torrieri, “Statistical theory of passive location systems,” IEEE Transactions on Aerospace and Electronic Systems, vol. 20, pp. 183–198, March
1984.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔