(34.237.124.210) 您好!臺灣時間:2021/02/25 19:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:余彥良
研究生(外文):Yan-Liang Yu
論文名稱:多種距離轉換的實現方法與比較
論文名稱(外文):Implementations of Different Distance transformation methods with their comparisons
指導教授:周本生
指導教授(外文):Ben-shung Chow
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:56
中文關鍵詞:距離轉換雜湊
外文關鍵詞:distance transformationhashing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:152
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在影像研究與電腦視覺的領域上,距離轉換是一項重要的技術,利用距離轉換的計算,影像的重要特性得以被萃取出來,如形狀因數(shape factor)、骨幹(skeleton)和中軸(medial axis)等應用上。
查表法是基於4N的架構去遞迴演算。因此這個方法非常的快而且跟最快的4N法很接近。在我們實驗中,我們去跟全部的方法作比較。查表法能成功是基於去檢查幾何上錯誤的點。這些錯誤候選點的排列是根據他們對於關係點的距離作排列。另一種演算法,用一個局部陣列去儲存在工作列上離前景點最近的Y座標。因此我們可以從檢查局部陣列中找到正確的特徵點去取代檢查全部的特徵點。我們去比較全部在沒有錯誤的距離轉換演算法中濤選候選人點所花費的時間。
Euclidean Distance transformation is a fundamental technique for the application fields of image understanding and computer vision. Some important characteristics in image analysis such as shape factor, skeleton and medial axis are based upon the distance transformation computation.
The lookup table algorithm is based upon the recursive computation structure of the 4N method. Therefore, this algorithm is very fast and is close to the 4N method, which performs as the fastest one among all the comparing algorithms in our experiments. The success of the lookup table algorithm is based upon a checking strategy by error geometry. The error candidates are arranged in order according to their distances to the reference point. In addition, a Local_Array is used to store the y coordinates of the closest foreground pixels above the processing line. Therefore we can find the correct feature point by checking the ordered candidates with the information provided from the Local_Array instead of comparisons among the candidates. In contrast, all the comparing eror-free Euclidean algorithms select their feature points from candidates by time consuming distance comparison.
第1章 引言 3
第2章 距離轉換之一般概念 5
2.1 距離轉換之定義 5
2.2 距離轉換之整體性運算與局部性運算 7
2.3 歐氏距離轉換之特殊性 8
第3章 查表法 11
3.1 應用雜湊(hashing)觀念之查表法 11
3.1.1 查表之概念 11
3.1.2 查表與雜湊法(hashing) 13
第4章 實驗與討論 25
4.1 n-鄰居距離轉換 25
4.1.1 四鄰居向量式距離轉換之誤差 27
4.2 Ingemar Ragnemalm 29
4.3 David W.Paglieroni 30
4.4 Heinz Breu、Joseph Gil、David Kirkpatrick and Michael Werman 33
4.5 Weiguang Guan and Songde Ma 35
4.6 遮罩方式 38
4.7 Tomio Hirata 38
4.7.1 硬體演算法用軟體模擬 38
4.7.2 軟體演算法 39
4.8 二分法 41
第5章 實驗結果 42
5.1 實驗說明 42
5.2 實驗數據與結果 42
5.3 效能比較 47
第6章 結論 50
參考文獻 51
[1]A.Rosenfeld and J.Pfaltz, "Sequential operation in digital picture processing," J. Assoc.Comput. Mach. 13, 1966, pp.471-494

[2]A.Rosenfeld and A.C.Kak, Digital Picture Processing, 2nd ed., Vol2, Chap.11,
Academic Press, New York, 1982.

[3]DW.Paglieroni, "Distance transforms: properties and machine vision applications," CVGIP, 1991

[4]DW.Paglieroni, GE.Ford and M.Tsujimoto, "The position-orientation masking approach to parametric search for template matching," IEEE Trans.PAMI, 1990

[5]Frank Yeong-Chyang Shih, "A mathematical morphology approach to euclidean distance transformation," IEEE Trans.on Image Processing, Vol.1, No.2, April, 1992

[6]G.Borgefors, "An improved version of the chamfer matching algorithm," in Proc.7th Int.Conf.on Pattern Recognit., Montreal, Canada, 1984, pp.1175-1177

[7] G.Borgefors, "Chamfering: A fast method for obtaining approximations of the Euclidean distance in N dimensions," in 3rd Scand.Conf.on Image Analysis, Copenhagen, Denmark, 1983, pp.250-255

[8]G.Borgefors, "Distance transformations in arbitrary dimensions,"Comput.Vision, Graphics Image Process.27, 1984, pp.321-345

[9]G.Borgefors, "Hierachical chamfer matching: a parametric edge matching algorithm," IEEE Trans. PAMI 10(6), 1988, pp.849-865

[10]DW.Paglieroni, "A unified distance transform algorithm and architecture," Machine Vision and Applications, 1992,pp.47-55

[11]James C.Mullikin, "The vector distance transform in two and three dimensions," CVGIP: Graphical Models and Image Processing, Vol.54, No.6, Nov, 1992, pp.526-535

[12]P.E.Danielsson, "Euclidean distance mapping," Comput.Graphics Image Process.14, 1980, 227-248

[13]P.E.Danielsson, "A new shape factor," Comput.Graphics Image Proc., 1978, pp.292-299

[14]H.C.Liu and MD.Srinath, "Partial sahpe classification ysing contour matching in distance transformation," IEEE Trans.Analysis and Machine Intelligence, Vol.12, No.11, Nov.1990, pp.1072-1079

[15]Q.Z.Ye, "The signed euclidean distance transform and its applications," in The Proceedings of the 9th International Conference on Pattern Recognition,Rome, Italy, Nov.1988, Vol.1, pp.495-499

[16]Ellis Horowitz and Sartaj Sahni , Fundamentals of Data Structures in Pascal, 3rd Ed. Computer Science Press, New York.

[17] Heinz Breu,Joseph Gil,David Kirkpatrick, " Linear Time Euclidean Transform
AlgorithmsIEEE , " Trans parrern and Machine Intelligence,Vol 17 No. 5,MAY 1995

[18]Ingemar Ragnemalm , "Neighborhoods for Distance Transformations Using
Ordered Propagation,"CVGIP:IMAGE UNDERSTANDING Vol.56,No.3
,November,pp.399-409

[19]Tomio Hirata ,"Aunified linear-time algorithm for computing distance maps, "
Information Processing Letters58(1996) 129-133

[20]Masafumi Miyazawa,Peifeng Zeng,Naoyuki Iso andTomio Hirata ,"A Systolic Algorithm for Euclidean Distance Transform,"IEEE Trans Pattern Analysis and Machine Intelligence,Vol 28 No.7,JULY 2006

[21]Weiguang Guan and Songde Ma ,"A List-Processing Approach to Compute Voronoi Diagrams and the Euclidean Distance Transform,"IEEE Trans parrern and Machine Intelligence,Vol 20 No. 7,JULY 1998

[22]D. W. Paglieroni, G. E.Ford, and M.Tsujimoto: The position orientation masking approach to parametric search for template matching. IEEE Trans. Pattern Anal. Machine Intell., 16, pp. 740-747, 1994.

[23] M. Kolountzakis and K. Kutulakos, “Fast Computation of Euclidean Distance Maps for Binary Images,” Information Processing Letters, vol. 43, pp. 181-184, 1992.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔