( 您好!臺灣時間:2021/04/19 20:24
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Chien-wen Chen
論文名稱(外文):Flip Chip Bond Process with Copper Bump Substrate
外文關鍵詞:FCBGADelaminationBumpCold JointSubstrate
  • 被引用被引用:5
  • 點閱點閱:436
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
90nm wafer process has been released in production, but the bump pitch released in production is 180um. The major problem is the yield of solder paste printing process below 180um will be less than 80%. It means the cost will be very high. Thus it is difficult to make 150um bump pitch by using printing process in production.
Substrate C4 pad will be bumped by pre-solder, and it will be jointed with wafer bump after re-flow process. The printing process is the most popular process in C4 pad pre-solder due to low cost and high throughput. But the challenge of 150um and even more of the wafer bump pitch shrinkage are the inevitable trend. So, a lot of substrate manufacturers are trying to develop the new process for C4 pro-solder pitch less than 100um.
As soon as the C4 pad pre-solder pitch has been shrunk, the solder volume will be shrunk as well. It means the bump structure will be getting weak, and it may not pass the reliability tests. Thus, to evaluate the workability of bump structure is our purpose.
First, the simulation software is used to compare the fatigue lives of two structures by using solder bump and copper bump substrates during thermal cycling test, and then to proceed the whole FCBGA process and reliability tests.
The result of evaluation confirm the workability of FCBGA product using copper bump substrate, and it can be used with the same parameter and machine in solder bump substrate.

Keyword:FCBGA, Substrate, Bump, Cold Joint, Delamination
誌謝 I
目錄 II
表目錄 III
圖目錄 IV
摘要 VI
Abstract VII
第一章 序論 1
1.1前言 1
1.2文獻回顧 2
1.3覆晶封裝產品使用的基板 5
1.3.1基層式2+2+2六層板的結構 5
1.3.2基板金屬凸塊印刷及電鍍製程的比較 5
1.3.3印刷製程與電鍍製程金屬凸塊之比較 8
1.4覆晶封裝製程之簡介 9
1.4.1製程流程 9
1.4.2上晶粒製程 10
1.4.3高溫熔接製程 10
1.5可靠度測試 11
第二章 數值分析模擬 14
2.1數值分析 14
2.2分析結果 15
2.2.1變形量 15
2.2.2金屬凸塊潛在破壞性之分析 15
第三章 實驗工作 18
3.1實驗規劃 18
3.2測試樣品介紹 18
3.3實驗流程 19
3.3.1銅金屬凸塊基層式2+2+2六層板 19
3.3.2覆晶封裝產品製程 20
3.3.3可靠度測試 23
第四章 實驗結果 25
4.1銅金屬凸塊基層式2+2+2六層板測試結果 25
4.2上晶粒製程測試結果 26
4.3可靠度測試結果 26
第五章 討論 28
第六章 結論 32
參考文獻 70
1.E.H. Wong, Awdrey C. Chng, Fatigue Life Estimation of a Stretched-Solder-Column Ultra-Fin-Pitch Wafer level Package using the Mrice-Micro Modelling Approach, May 2004
2.M. Klein, E. Busse, K. Kaschlun, H. Oppermann, Investigation of Cu Stud Bumping for Single Flip-Chip Assembly, April 2004
3.Su Chien-Chih, A structure of chip package with copper bumps and manufacture thereof, No. 92114521, June 2004.
4.A. Schubert, R. Dudek, E. Auerswald, A. Gollhardt, B. Michel and H. Reical (2003). Fatigue life models for SnAgCu and SnPb solder joints evaluated by experiments and simulation. In proc. Of 53rd Electronic Component and Technology Conference, pp.603-610.
5.R. Darveaux (2000). Effect of Simulation Methodology on Solder Joint Crack Growth Correlation. Proc. Of ECTC 2000.
6.Goldmann, L. S., and P. A. Totta, “Area Array Solder Interconnections for VLSI,” Solid State Technol., 91-97, June 1983.
7.Miller, L. F., “Controlled Collapse Reflow Chip Jointing,” IBM J. Research Devel., 13:239-250, May 1969.
8.Goldman, L. S., R. J. Herdizk, N. G. Koopman, and V. C. Marcotte, “Lead Indium for Controlled Collapse Chip Jointing,” Proceedings of 27th Electronic Components Conference, p. 25, May 1977.
9.Goldman, L. S., “Geometric Optimization of Controlled Collapse Interconnections,” IBM J. Research Devel., 251-269, May 1969.
10.Mori, M., Y. Kizaki, M. Saito, and A. Hongu, “A Fine Pitch COG Technique for a TFT-LCD Panel Using and Indium Alloy,” IEEE Trans. Components Hybird Manufact. Technol., 16(8);852-857, Dec.1993.
11.Schmid, P., and H. Melchior, “Coplanar Flip-Chip Mounting Techniques for Picosecond Devices, “Rev. Sci. Instrum., 55(11):1854,1984.
12.Estes, R. H., “Fabrication and Assembly Processes for Solderless Flip Chip Assemblies,” Proceedings of ISHM, pp. 332-335,1992.
13.Eldring, J., E. Zakel, and H. Reichl, “Flip Chip Attach of Silicon and GaAs Fine Pitch Devices as Well as Inner Lead TAB Attach Using Ball-Bump Technology,” Hybird Circuits, 34:20-24, May 1994.
14.Scharr, T.A., R. T. Lee, W. H. Lytel, R. Subrahmanyan, and R.K. Sharma, “Gold Wire Bump Process Development for Flip-Chip Application,” Proceedings of 8th Electronic Materials and Processing Conference, ASM, Rao, S. T., ed., pp. 97-102,1994.
15.Chang, D. D., P. A. Crawford, J. A. Fulton, R. McBried, M. B. Schmidt, R.E. Sinitski, and C.P. Wong, “An Overview and Evaluation of Anisotropically Conductive Adhesive Films for Fine Pitch Electronic Assembly,” Proceedings of 43rd IEEE Electronic Components and Technology Conference, pp. 320-326,1993.
16.Sugiyama, K., and Y. Atsumi, “Conductive Connecting Structure,” U.S.Patenc 4,996,460, Casio Computer, March 1991.
17.Chung, K., R. Fleishman, D. Bendorovich, M. Yan, and N.Mescia, “Z-Axis Conductive Adhesives for Fine-Pitch Interconnection,” Proceedings of IEPS, pp. 678-689, 1992.
18.Warrior, M., “Reliability Improvements in Solder Bump Processing for Flip-Chips,” Proceedings of 40th Electronic Components and Technology Conference, Las Vegas, Nev., pp. 460-469, 1990.
19.Chmiel, G., J. Wolf, and H. Reichl, “Lead/Tim Bumping for Flip Chip Applications,” Proceedings of ISHM, pp. 336-341, 1992.
20.Yu, K. K., and F. Tung, “Solder Bump Formation by Electroplating for Flip-Chip Applications,” Proceedings of IEMT, pp. 277-279, 1993.
21.Lytel, W.H., T. Lee, and B. Hileman, “Application of a CFD Tool in Designing of Fountain Plating Cell for Uniform Plating of Semiconductor Wafers,” Proceedings of Interpack Conference, 1994.
22.Ogashiwa, T., H. Akimoto, H. Shigyo, Y. Murakami, A. Inoue, and T. Masumoto, “ Direct Solder Bump Formation of Al Pad and Its High Reliability,” Jpn. J. Appl. Phys., part 1,31(3):761-767, March 1992.
23.Scharr, T. A., R. K. Sharma, R. T. Lee, and W. H. Lytle, “Wire Bumping Technology for Gold and Solder Wire Bumping on IC Devices,” Proceedings of 9th European Hybird Microelectronics Conference, Nice, pp. 351-357, May 1993.
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔