(3.238.249.17) 您好!臺灣時間:2021/04/14 12:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃繹誠
研究生(外文):Yi-cheng Huang
論文名稱:微渠道中具表面粗糙物之被動式混合增強研究
論文名稱(外文):Passive Mixing Enhancements in Different Geometric Microchannels with Roughened Surfaces
指導教授:謝曉星
指導教授(外文):Shou-shing Hsieh
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:102
中文關鍵詞:被動式混合微混合器微質點影像測速儀電滲流微雷射誘發螢光技術
外文關鍵詞:MPIVmicro-mixerpassive mixingelectroosmotic flowμLIF
相關次數:
  • 被引用被引用:0
  • 點閱點閱:96
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗設計了不同幾何形狀的被動式微混合器,採用電滲驅動的方式推動流體 (0.027 ≤ Re ≤ 0.081),利用微質點影像測速儀 (MPIV) 量測微混合器內的速度場分布,並分析相關的物理現象,藉以判別與混合優劣的關係。以優碘與去離子水的混合實驗作為定性分析,並經由工具顯微鏡拍攝流場可視化;而藉由 rhodamine B與緩衝液混合實驗進行流場可視化與定性分析,以微雷射誘發螢光技術 (μLIF) 量測濃度場的分布情形,並分析混合效率的好壞。實驗結果顯示,Twr與Tcdr型的微混合器能產生混沌流,有效的提升混合品質。最後,將影響混合長度的相關參數,整理成一關係式 ,而此關聯式預測值與實驗值之誤差在10%以內。
Experiments were investigated on passive mixing enhancements in different geometric microchannels with roughened surfaces and flow was driven by electroosmotic flow (0.027 ≤ Re ≤ 0.081). Experiments were perform using micro particle image velocimetry (MPIV) technology for velocity measurements and relative analysis. Iodine and DI water mixing experiments were captured by common optical microscope for flow visualization, and rhodamine B and buffers mixing experiments were measured by micro laser-induced fluorescence (µLIF) technology for concentration field measurements and analysis. The experimental results showed that the Twr and Tcdr micromixers can generate chaotic flow and enhance the mixing performance in the short channel length. Finally, the mixing length was developed in terms of within accuracy between the experimental data and prediction data.
目 錄

頁次
目錄............................................................................................................ i
表目錄...................................................................................................... iv
圖目錄....................................................................................................... v
符號說明................................................................................................ viii
中文摘要................................................................................................... x
英文摘要.................................................................................................. xi


第一章 緒論......................................................................................... 1
1-1 前言.......................................................................................... 1
1-2 混合器種類.............................................................................. 2
1-3 被動式混合機制...................................................................... 3
1-4 布朗運動.................................................................................. 4
1-5 電滲現象.................................................................................. 5
1-6 實驗背景與目的...................................................................... 6
1-7 文獻回顧.................................................................................. 6

第二章 實驗設備系統....................................................................... 13
2-1 MPIV與μLIF系統................................................................ 13
2-2 實驗設備................................................................................ 14
2-3 製程設備................................................................................ 15
2-4 相關設備................................................................................ 16

第三章 實驗方法及步驟................................................................... 28
3-1 微混合器製程........................................................................ 28
3-1-1 微混合器製作.................................................................28
3-2 螢光質點、螢光染劑與緩衝液配製...................................... 30
3-3 光學顯微鏡量測系統建立與分析方法................................ 31
3-4 MPIV與μLIF量測系統建立與分析方法............................ 32

第四章 理論分析............................................................................... 44
4-1 Einstein-Smoluchowski 方程式............................................ 44
4-2 雷諾數.................................................................................... 44
4-3 培克數.................................................................................... 45
4-4 拉伸率.................................................................................... 45
4-5 混合效率................................................................................ 45
4-6 參數分析................................................................................ 46

第五章 誤差分析............................................................................... 48

第六章 結果與討論........................................................................... 52
6-1 優碘與去離子水的混合........................................................ 52
6-2 速度向量................................................................................ 52
6-3 側向速度分析........................................................................ 53
6-4 濃度場觀測與分析................................................................ 54
6-5 關係式建立............................................................................ 55

第七章 結論與建議........................................................................... 72
7-1 結論........................................................................................ 72
7-2 建議與改進............................................................................ 73

參考文獻................................................................................................. 74
附錄A...................................................................................................... 80
1. D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid Prototyping of Microfluidic Systems in Poly(dimethysiloxane),” Anal. Chem., Vol. 70, 1998, pp. 4974-4984.
2. A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A. Stone, G. M. Whitesides, “Chaotic Mixer for Microchannels,” Science, Vol. 295, 2002, pp. 647-651.
3. T. J. Johnson, D. Ross, and L. E. Locascio, “Rapid Microfluidic Mixing,” Analytical Chemistry, Vol. 74, 2002, pp.45-51.
4. H. Wang, P. Ioventitti, E. Harvey, and S. Masood, “Passive Mixing in Microchannels by Applying Geometric Variations,” Proceedings of SPIE, Vol. 4982, 2003, pp.282-289.
5. N. T. Nguyen , and Z. Wu, “Micromixers - a Review,” Journal of Micromechanics and Microengineering, Vol. 15, 2005, pp.1-16.
6. J. S. H. Lee, Y. Hu, and D. Li, “Electrokinetic Concentration Gradient Generation Using a Converging–Diverging Mcrochannel,” Analytica Chimica Acta, Vol. 543, 2005, pp.99-108.
7. X. Fu, S. Liu, X. Ruan, and H. Yang , “Research on Staggered Oriented Ridges Static Micromixers,” Sensor and Actuators B, Vol. 114, 2006, pp.618-624.
8. M. Hoffmann, M. Schlüter, and N. Räbiger, “Experimental investigation of liquid-liquid mixing in T-shaped micro-mixers using μ-LIF and μ-PIV,” Chemical Engineering Science, Vol. 61, 2006, pp.2968-2976.
9. S. S. Hsieh, H. C. Lin, and C. Y. Lin, “Electroosmotic Flow Velocity Measurements in a Square Microchannel,” Colloid and Polymer Science, Vol. 284, 2006, pp.1275-1286.
10. C. K. Chen, C. C. Cho, “Electrokinetically-driven Flow Mixing in Microchannels with Wavy Surface,” Journal of Colloid Interface Science, 2007, doi:10.1016/j.jcis.2007.03.033.
11. S. T. Kline, and F. A. Mcclintock, “Describing Uncertainties in Single-Sample Experiments,” Mechanical Engineering, Vol. 75, 1953, pp. 3-8.
12. R. J. Moffat, “Contributions to the Theory of Single-Sample Uncertainty Analysis,” Journal of Fluids Engineering, Vol. 104, 1982, pp. 250-260.
13. K. Horicuchi, and P. Dutta, “Joule Heating Effects in Electroosmotically Driven Microchannel Flows,” Int. J. Heat Mass Transfer, Vol. 47, 2004, pp.3085-3095.
14. N. L. Jeon, S. K. W. Dertinger, D. T. Chiu, I. S. Choi, A. D. Stroock, and G. M. Whitesides, “Generation of Solution and Surface Gradients Using Microfluidic Systems,” Langmuir, Vol. 16, 2000, pp.8311-8316.
15. S. Arulanandam, and D. Li, “Liquid Transport in Rectangular Microchannels by Electroosmotic Pumping,” Colloids and Surfaces A, Vol. 161, 2000, pp.89-102.
16. S. Wiggiun and J. M. Ottino, “Foundations of Chaotic Mixing,” Philosophical Transaction, Royal Society, London, Vol. 362, 2004, pp. 937-970.
17. H. Wang, P. Iovenitti, E. Harvey, and S. Masood,” Optimizing Layout of Obstacles for Enhanced Mixing in Microchannels,” Smart Materials and Structure, Vol. 11, 2002, pp.662-667.
18. Y. Sato, G. Irisawa, M. Ishizuka, K. Hishida, and M. Maeda, “Visualization of Convective Mixing in Microchannel by Fluorescence Imaging,” Measurement Science Technology, Vol. 14, 2003, pp. 114-121.
19. R. H. Liu, M. A. Streamler, K. V. Sharp, M. G. Olsen, J. G. Santiago, R. J. Adrian, H. Aref, and D. J. Beebe, “Passive Mixing in a Three-Dimensional Serpentine Microchannel,” Journal of MicroElectroMechanical Systems, Vol. 9, 2000, pp. 190-197.
20. J. Park, S. M. Shin, K. Y. Huh, and I. S. Kang,“Application of Electrokinetic Instability for Enhanced Mixing in Various Micro - T-channel Geometries,” Physics of Fluids, Vol. 17, 2005, pp.1-4.
21. Y. Z. Liu, B. J. Kim, and H. J. Sung,“ Two-fluid Mixing in a Microchannel,” Heat and Fluid Flow, Vol. 25, 2004, pp.986-995.
22. S. H. Wong, M. C. L. Ward, and C. W. Wharton,“Micro T-mixer as a Rapid Mixing Micromixer,” Sensors and Actuators B, Vol.100, pp.359-379.
23. I. D. Yang, Y. F. Chen, H. T. Hsu, F. G. Tseng, and C. C. Chieng, “Passive Mixing and the Flow Characteristic of a H-Type Microchannel,”7th International conference on Miniaturized Chemical and Biochemical Analysis Systems, 2003, pp.1009-1012.
24. M. H. Oddy, J. G. Santiago, and J. C. mikkelsen,“Electrokinetic Instability Micromixing,” Anal. Chem., Vol. 73, 2001, pp.5822-5832.
25. B. He, B. J. Burke, X. Zhanf, R, Zhang, and F. E. Regnier, “A Picoliter-Volume Mixer for Microfluidic Analytical Systems,” Anal. Chem., Vol. 73, 2001, pp.1942-1947.
26. S. H. Wong, P. Bryant, M. Ward, and C. Wharton, “Investigation of Mixing in a Cross-Shaped Micromixer with Static Mixing Elements for Reaction Kinetics Studies,” Sensors and Actuators B, Vol. 95, 2003, pp.414-424.
27. J. K. Chen ,and R. J. Yang, “Electroosmotic Flow Mixing in Zigzag Microchannels,” Electrophoresis, Vol.28, 2007, pp.975-983.
28. L. H. Lu, K. S. Ryu, and C. Liu, “A Magnetic Microstirrer and Array for Microfluidic Mixing,” Journal of Microelectromechanical systems, Vol.11, 2002, pp.462-469.
29. A. E. Kamholz and P. Yager, “Theoretical Analysis of Molecular Diffusion in Pressure-driven Laminar Flow in Microfluidic Channels,” Biophysical Journal, Vol.80, 2001, pp.155-160.
30. D. Gobby, P.Angeli, and A. Gavriilidis, “Mixing Characteristics of T-type Microfluidic Mixers,” Journal of Micromechanics and Microengineering, Vol.11, 2001, pp.126-132.
31. Y. K. Lee, J. Deval, P. Tabling, and C. M. Ho, “Chaotic Mixing in Electrokinetically and Pressure Driven Micro Flows,” The 14th IEEE Workshop on MEMS Interlaken, Switzerland, 2001.
32. J. M. Rousseaux, L. Falk, H. Muhr, and E. Plasari, “Micromixing Efficiency of a Novel Sliding-surface Mixing device,”AIChE Journal, Vol.45, 1999, pp.2203-2213.
33. J. Evans, D. Liepmann, and A. P. Pisano, “Planar Laminar Mixer,” IEEE, 1997,pp.96-107.
34. J. M. Ottino, “Mixing, Chaotic advection, and Turbulence,” Annu. Rev. Fluid Mech., Vol.22, 1990, pp.207-253.
35. J. M. Ottino, and S. Wiggins, “Introduction Mixing in Microfluidics,” Th Royal Society, Vol.362, 2004, pp.923-935.
36. C. Simonnet, and A. Groisman,“Chaotic Mixing in a Steady Flow in a Microchannel,” The American Physical Society, Vol. 94, 2005, pp.1-4.
37. R. J. Yang, C. H. Wu, T. I. Tseng, S. B. Huang, and G. B. Lee, “Enhancement of Electrokinetically-driven Flow Mixing in Microchannel with Added Side Channels,” Japanese Journal of Applied Physics, Vol.44, 2005, pp. 7634-7642.
38. V. Hessel, H. Löwe, and F. Schönfeld, “Micromixers - A Review on Passive and Active Mixing Principles,” Chemical Engineering Science, Vol.60, 2005, pp.2479-2501.
39. S. Hardt, K. S. Drese, V. Hessel, and Schönfeld, “Passive micromixers for applications in the microreactor and μTAS field,” Microfluid Nanofluid, Vol.1, pp.108-118.
40. Y. Ito, and S. Komori, “A Vibration Technique for Promoting Liquid Mixing and Reaction in a Microchannel,” American Institute of Chemical Engineers, Vol.52, 2006, pp.3011-3017.
41. D. Sinton, and D. Li, “Electroosmotic Velocity Profiles in Microchannels,” Colloids and Surfaces A, vol.222, 2003, pp. 273-283.
42. A. O. Moctar, N. Aubry, and J. Batton, “Electro-hydrodynamic Micro-fluidic Mixer,” Lab on a Chip, Vol.3, 2003, pp.273-280.
43. K. S. Ryu, K. Shaikh, E. Goluch, Z. Fan, and C. Liu, “Micro Magnetic Stir-bar Mixer Integrated with Parylene Microfluidic Channels,” Lab on a Chip, Vol.4, 2004, pp.608-613.
44. I. Glasgow, J. Batton, and N.
Aubry, “Electroosmotic Mixing in Microchannels, ”Lab on a Chip, Vol.4, 2004 , pp.558-562.
45. 李育嘉, “漫談布朗運動, ” 成功大學應數系,2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 張世沛(1999)。不同的練習方法對五專男生羽球發短球動作技能學習效果之比較研究。中臺學報,12,209-227。
2. 梁嘉音、卓俊伶、簡曜輝(1998)。距離對籃球投籃動作型式的影響:個案研究。體育學報,25,199-208。
3. 陳俊汕(2000)。從運動技能學習的觀點談體育教學。臺灣體育,109,49-54。
4. 陳玉芬、卓俊伶(1998)。特定範圍結果獲知對高爾夫球推桿動作之空間準確性與錯誤偵察的影響。體育學報,25,249-258。
5. 紀世清(2002)。編製國小學生羽球運動技術常模參照測驗。體育學報,32,265-277。
6. 林貴福(1986)。羽球運動技能評量方法簡介。中華體育,3 ,59-64。
7. 林韓司(2003a)。結果獲知(KR)與表現獲知(KP)的對話—外在回饋在國內研究之相關文獻回顧與展望。東師體育,10,43-56。
8. 石昌益(1998)。不同動作觀察對羽球高手擊長球技能學習效果之探討。國立體育學院論叢,8,2,203-221。
9. 王儀旭、周建智、邱仕友(2004)。探討不同體育教學回饋策略模式介入對投擲學習效果的影響。復興崗學報,81,273-302。
10. 張惠如、林清和(1994)。回饋與心智練習對飛鏢投擲表現的影響。體育學報,17,411-426。
11. 張春秀(1996)。體育課程之價值取向理論探討。中華體育,10(1),15-22。
12. 張建、張霖家、林培元、張芳文(1998)。視覺意像練習對高爾夫球果嶺推桿動作學習及保留效果影響之分析研究。藝術學報,62,221-241。
13. 程乃器、呂德慶、劉安球(2001)。獲知結果對羽球發短球動作學習之研究。高應科大體育,1,48-58。
14. 楊梓楣、卓俊伶(1998)。5-12歲女童接球動作發展的年齡差距。體育學報,26,81-88。
15. 劉亞文(1997)。示範指導對學習協調性技能-桌球發球之研究。體育學報,22,387-397。
 
系統版面圖檔 系統版面圖檔