跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/05 05:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王荏浟
研究生(外文):Ren-You Wang
論文名稱:奈米點非揮發性記憶體之電性分析與物理機制探討
論文名稱(外文):Study on the Electrical Analysis and Physical Mechanism of Nanocrystal Nonvolatile Memory
指導教授:張鼎張潘正堂
指導教授(外文):Chang, Ting-ChangPan, Cheng-Tang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:95
語文別:英文
論文頁數:77
中文關鍵詞:奈米點非揮發性記憶體
外文關鍵詞:Nanocrystal Nonvolatile Memory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:147
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
傳統的浮停閘快閃記憶體是利用連續的多晶矽半導體薄膜作為載子儲存的單元,而在元件尺寸持續微縮下此結構將面臨一些瓶頸,為了克服瓶頸因而衍生出兩種非揮發性記憶體結構:一種是SONOS非揮發性記憶體,另一種是奈米點 (量子點)非揮發性記憶體。
在本論文中,主要探討奈米點記憶體元件的電性分析,以物理能帶圖解釋所分析得到的記憶體相關現象。研究之奈米點記憶體元件有矽奈米點非揮發性記憶體及矽化鎳奈米點非揮發性記憶體。矽奈米點記憶體分為兩種結構,標準矽奈米點記憶體(穿隧氧化層/奈米點/控制氧化層 為 二氧化矽/矽奈米點/二氧化矽)及氮化過的矽奈米點記憶體(二氧化矽/矽奈米點/氮化矽薄膜/二氧化矽)。鎳奈米點記憶體分為兩種結構,標準矽化鎳奈米點記憶體(二氧化矽/矽化鎳奈米點/二氧化矽)及高介電常數矽化鎳奈米點記憶體(二氧化矽/矽化鎳奈米點/二氧化鉿)。
氮化矽層與矽奈米點的介面處會提供額外的缺陷以儲存電荷,有助於記憶體特性;而高介電常數材料成為控制氧化層,在相同電壓操作下,可使穿隧氧化層獲得較大的電場,以利於電荷的儲存及抑制閘極漏電。
The conventional floating gate NVSM will suffer some limitations for continued scaling of the device structure. The floating gate is a continuous semiconductor thin film which charges are stored in and able to move around. With the scaling of tunneling oxide, the thickness is decreased gradually. Once the tunneling oxide has been created a leaky path, all the stored charges in the FG will be lost after numerous counts of write/erase operation. When the tunnel oxide is thinner, the phenomenon happens more easily but the speed of write/erase operation is quicker. Therefore, there is a tradeoff between speed and reliability.Therefore, two approaches, the silicon-oxide-nitride-oxide-silicon (SONOS) and the nanocrystal nonvolatile memory devices, have been investigated to overcome the limit of the conventional floating gate NVSM.
In this thesis, the nonvolatile nanocrystal memory structures were proposed for electrical analysis and physical mechanism studied. We proposed two nanocrystal memory, silicon nanocrystal memory and nickel-silicide nanocrystal memory. The silicon nanocrystal memories have standard sample and nitridation sample. The interface between the nitride and Si-dots can offer extra trap cites for electrons storage. And the nickel-silicide dots memory has standard sample and high-k sample. The HfO2 layer for control oxide can increase the electric field of the tunnel oxide to get better programming efficiency.
Abstract (Chinese) ……………………………………………………. i
Abstract (English) ……………………………………………………. ii
Acknowledgment (Chinese) …………………………………………. iv
Contents…………………………………………………………………v
Figure Captions……………………………………………………… viii

Chapter 1 Introduction………………………………………………….1
1.1 General Background…………………………………………... 1
1.2 Motivation……………………………………………………. 5
Figures……………………………………………………….. 6

Chapter 2 Basic Mechanisms of Nonvolatile Memories……………… 7
2.1 Introduction……………………………………………………. 7
2.2 Program/Erase Mechanisms……………………………………... 9
2.2.1 Fowler-Nordheim Tunneling Injection………………………... 11
2.2.2 Direct Tunneling Injection……………………………...….….. 12
2.2.3 Frenkel-Poole Tunneling Injection…………………………….. 13
2.3 Reliability of Nonvolatile Memories…………………………………. 13
2.3.1 Retention…………………………………………….… 13
2.3.2 Endurance……………………………………………... 14
2.4 Basic Physical Characteristic of Nanocrystals Memory………………14
2.4.1 Quantum Confinement Effect…………………………………. 14
2.4.2 Coulomb Blockade Effect……………………………...…15
Figures……………………………...……………………….. 16

Chapter 3 Characteristics of Silicon Nanocrystals Nonvolatile Memories with Different structures…………………… 22
3.1 Introduction…………………………………………………………… 22
3.2 Experimental Details………………………………………………….. 23
3.3 Results and Discussions………………………………………………. 23
3.3.1 C-V and I-V Characteristics…………………………………… 23
3.3.2 Program/Erase Characteristics………………………………… 26
3.3.3 Retention Characteristics…………………………………….... 28
3.4 Summary…………………………………………………………….... 28
Figures……………………………………………………..……..….... 29

Chapter 4 Characteristics of Nickel-Silicide Nanocrystals Nonvolatile Memories with Different structures…………………… 42
4.1 Introduction……………………………………………………..…...... 42
4.2 Experimental Details……………………………………..…................ 43
4.3 Results and Discussions……………………………………..…........... 45
4.3.1 C-V and I-V Characteristics for the standard and high-k memory devices…………………………………………..….................. 45
4.3.2 The difference between C-V and pulse (P/E) operation............. 46
4.4 Summary……………………..….......................................................... 47
Figures……………………..……………………………………......... 48

Chapter 5 Non-ideal memory appearances................................................. 55
5.1 Introduction........................................................................................... 55
5.2 Experimental Details............................................................................. 55
5.3 Results and Discussions........................................................................ 56
5.4 Summary............................................................................................... 57
Figures.................................................................................................. 57


Chapter 6 Conclusion……………………..….....................................................60
6.1 Conclusion……………………..…....................................................... 60

References
Chapter 1
[1.1] Min She, Thesis, Semiconductor Flash Memory Scaling (2003)
[1.2] D. Kahng and S. M. Sze, Bell Syst. Tech, J., 46, 1288 (1967)
[1.3] J. D. Blauwe, IEEE Transaction on Nanotechnology, 1, 72 (2002)
[1.4] S. Tiwari, F. Rana, K. Chan, H. Hanafi, C. Wei, and D. Buchanan, IEEE Int. Electron Devices Meeting Tech. Dig., 521 (1995)
[1.5] J. J. Welser, S. Tiwari, S. Rishton, K. Y. Lee, and Y. Lee, IEEE Electron Device Lett., 18, 278 (1997).
[1.6] Y. C. King, T. J. King, and C. Hu, IEEE Int. Electron Devices Meeting Tech. Dig., 115 (1998)
[1.7] M. H. White, Y. Yang, A. Purwar, and M. L. French, IEEE Int’l Nonvolatile Memory Technology Conference, 52 (1996)
[1.8] M.H. White, D. A. Adams, and J. Bu, IEEE circuits & devices, 16, 22 (2000)
[1.9] H. E. Maes, J. Witters, and G. Groeseneken, Proc. 17 European Solid State Devices Res. Conf. Bologna 1987, 157 (1988)
[1.10] Barbara De Salvo, Cosimo Gerardi, Rob van Schaijk, IEEE TRANS. ON DEVISE AND MATERIALS RELIABILITY, 4, 3 (2004)
[1.11] Y. C. King, T. J. King, and C. Hu, IEEE Int. Electron Devices Meeting Tech. Dig., 115 (1998)
Chapter 2
[2.1], Nonvolatile Semiconductor Memory Technology : A Comperhensive Guide to Understanding and Using NVSM Device, Willian D. Brown, Joe B. Brewer, Ed. New York : IEEE Press, ch.1, 5 (1998)
[2.2] S.M. Sze, J. Appl. Phys., vol. 38, 2951 (1967)
[2.3] J. Yeargain and K. Kuo, IEEE IEDM Tech. Dig., 24 (1982)
[2.4] B. Rossler and R. Muller, IEEE Trans. Elect. Dev., ED-24, 806 (1977)
[2.5] D. Guterman, I. Rimawi, T. Chiu, R. Halvorson and D. McElroy, IEEE Trans. Elect. Dev., ED-26, 576 (1979)
[2.6] M. Lenzlinger and E. H. Snow, J. Appl. Phys., vol. 40, 278 (1969)
[2.7] S.-H. Lo, D.A. Buchanan, Y. Taur and W. Wang, IEEE Electron Device Letters, vol. 18, 5, 209 (1997)
[2.8] Y. Yang, A. Purwar and M. H. White, Solid-State Electronics, 43, 2025 (1999).
[2.9] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, Proceedings of The IEEE, 85, 1248 (1997)
[2.10] J. De Blauwe, M. Ostraat, M. Green, G. Weber, T. Sorsch, A. Kerber, F. Klemens, R. Cirelli, E. Ferry, J. L. Grazul, F. Baumann, Y. Kim, W. Mansfield, J. Bude, J. T. C. Lee, S. J. Hillenius, R. C. Flagan, and H. A. Atwater, “A novel, aerosol-nanocrystal floating-gate device for nonvolatile memory applications”, in IEEE Int. Electron Devices Meeting (IEDM) Tech. Dig., 2000, pp. 683–686.
[2.11] H. I. Hanafi, S. Tiwari, and I. Khan, “Fast and long retention-time nanocrystal memory”, IEEE Trans. Electron Devices, vol. 43, pp. 1553–1558, Sept. 1996.
[2.12] Y.-C. King, T.-J. King, and C. Hu, “Charge-trap memory device fabricated by oxidation of Si1-x Ge ,” IEEE Trans. Electron Devices, vol. 48, pp. 696–700, Apr. 2001.
[2.13] Y. M. Niquet, G. Allan, C. Delerue and M. Lannoo, Applied Physics Letters., 77, 1182 (2000)
[2.14] Likharev KK. “Riding the crest of a new wave in memory NOVORAM”, IEEE Circuits & Devices Magazine, vol.16, no.4, pp.16-21, 2000.
Chapter 3
[3.1] S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe and K. Chan, Appl. Phys. Lett. 68, 1377 (1996)
[3.2] S. Tiwari, F. Rana, K. Chan, L. Shi and H. Hanafi, Appl. Phys. Lett. 69, 1232 (1996)
[3.3] Shaoyun Huang and Shunri Oda, Appl. Phys. Lett. 87, 173107 (2005)
[3.4] Shaoyun Huang, Kenta Arai, Kouichi Usami and Shunri Oda, IEEE Transaction on Nanotechnology, 3, 1 (2004)
Chapter 4
[4.1] Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, IEEE Tran. Electron Devices, 49, 1606 (2002)
[4.2] Shaoyun Huang, Souri Banerjee, and Shunri Oda, “C-V and G-V Measurements Showing Single Electron Trapping in Nanocrystalline Silicon Dot Embedded in MOS Memory Structure”, 686 ,p8.8.1 , Mat. Res. Soc. Symp. Proc. (2002)
[4.3] J. J. Lee, X. Wang, W. Bai, N. Lu, J. Liu, and D. L. Kwong, “Theoretical and Experimental Investigation of Si Nanocrystal Memory Device with HfO2 High-k Tunneling Dielectric”, p33-34, Symposium on VLSl Technology Digest of Technical Papers (2003)
[4.4] G. J. Huang and L. J. Chen, J. Appt. Phys. 74 (2), 15 July 1993
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top