跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/15 22:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周宏益
研究生(外文):Hung-yi Chou
論文名稱:新型塑膠透鏡光纖成型技術
指導教授:曾逸敦
指導教授(外文):Yih-Tun Tseng
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:63
中文關鍵詞:塑膠光纖透鏡
外文關鍵詞:plasticlensfiber
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中描述一種新型的塑膠透鏡光纖成型技術,其優點是製造快速、可一次大量製作,並且增加耦合率。此塑膠透鏡光纖的製作方式是先利用文獻所使用的點膠方式在平頭光纖頭端點膠,膠體會因為表面張力自然形成球面透鏡,之後再利用高電壓產生靜電吸引的方式將球面透鏡拉伸成錐狀後固化而成錐狀透鏡。利用點膠的方式製作透鏡有一些限制,包括點膠量控制、固化收縮率及透鏡形狀等。因此在本論文中,將改善點膠製作透鏡的限制,使點膠製作透鏡的方式能製作更高耦合率透鏡。
A novel method to form plastic lensed fiber that could be used to manufacture in bulk quickly and raise the coupling efficiency is proposed. The way to form plastic lensed fiber is droping the mucilage on the fiber endface which is described in the reference, then the mucilage will be formed ball lens with surface tension. Next step is to force the ball lens to hyperbola shape with electric force.
The method contains some restrictions including controlling the volume of the drop, the shrinking rate after curing, and the shape of the fabricated lens. The way improving the restriction of fabrication to achieve high coupling efficiency is described in this paper.
目錄
謝誌.....................................................1
目錄.....................................................2
圖目錄.................................................5
表目錄.................................................8
緒論.....................................................9
摘要...................................................12
第一章 介紹 .............................14
1-1光纖介紹.....................................14
1-2透鏡光纖結構..............................16
1-3研究動機......................................18
1-4研究目的......................................19
第二章 文獻回顧.......................20
2-1張力成型製作微透鏡...................21
2-1-1LIGA製程製作微透鏡...........21
2-1-2微粒滴法製作微透鏡............21
2-1-3電濕潤法製作微透鏡............22
2-2非張力成型製作微透鏡................23
2-2-1雷射加工法製作微透鏡........23
2-2-3電吸引法製作微透鏡.............24
2-3外加鏡組式耦光技術....................26
2-3-1單鏡片光纖耦光技術.............26
2-3-2鏡片組光纖耦光技術.............26
2-4透鏡光纖式耦光技術.....................27
2-4-1研磨法製作透鏡光纖..............27
2-4-2熔燒法製作透鏡光纖..............28
2-4-3點膠法製作透鏡光纖..............28
第三章 研究方法與分析..............31
3-1研究架構..........................................31
3-2透鏡材料分析.................................32
3-3光學分析..........................................37
3-3-1目標透鏡外形分析....................37
3-3-2ZEMAX光學模擬.......................42
3-4點膠體積分析..................................44
3-5電場與透鏡外形分析......................46
第四章 實驗與結果.......................49
4-1實驗架構..........................................49
4-2實驗流程..........................................50
4-2-1收縮率量測..................................50
4-2-2電場與透鏡外形關係...................51
4-2-3透鏡光纖耦光性能量測...............54
第五章 結論與未來發展...............58
5-1結論...................................................58
5-2未來發展方向...................................58
Reference..............................................59
[1] H. S. Lee, S. K. Lee, T. H. Kwon, and S. S. Lee, "Microlenses array fabrication by hot embossing process " Optical MEMs,Conference Digest. 2002 IEEE/LEOS International Conference on, pp. 73~74, 2002.
[2] S. K. Lee, K. C. Lee, and S. S. Lee, "Microlens Fabrication by the Modified LIGA Process," Micro Electro Mechanical Systems, The Fifteenth IEEE International Conference on, pp. 520~523, 2002.
[3] H. Choo, R. S. Muller, B. Sensor, and A. Center, "Optical properties of microlenses fabricated by using hydrophobic effects and polymer-jet-printing technology," Optical MEMS, IEEE/LEOS International Conference on, pp. 169~170, 2003.
[4] E. H. Park, M. J. Kim, and Y. S. Kwon, "New Fabrication Technology of Convex and Concave Microlens Using UV Curing Method," Lasers and Electro-Optics Society 1999 12th Annual Meeting., vol. 2, pp. 639~640, 1999.
[5] J. H. Chen, C. A. Chen, and W. H. Hsieh, "Electrowetting Technique for Lens Fabrication," Mechatronics, ICM ''05. IEEE International Conference on, pp. 768~770, 2005.
[6] W. H. Hsieh and J. H. Chen, "Lens Profile Control by Electrowetting Fabrication Technique," Photonics Technology Letters, IEEE, vol. 17, pp. 606~608, 2005.
[7] Y. C. Lee, C. Y. Wu, L. S. Jang, and Y. C. Hsu, "Fabrication and characterization of 3D Aspheric Microlenses With Arbitrary Surface Profiles Based On a Novel Excimer Laser Contour Scanning Method," Solid-State Sensors, Actuators and Microsystems,Digest of Technical Papers. TRANSDUCERS ''05. The 13th International Conference on, vol. 2, pp. 1375~1379, 2005.
[8] K. Naessens, P. V. Daele, and R. Baets, "Excimer Laser Ablation Based Microlens Fabrication in Polymer Materials," Lasers and Electro-Optics Society,LEOS 2002. The 15th Annual Meeting of the IEEE, vol. 2, pp. 655~656, 2002.
[9] C. W. Chen and F. G. Tseng, "Tunable Micro-Aspherical Lens Manipulated by 2D Electrostatic Forces," Solid-State Sensors, Actuators and Microsystems,Digest of Technical Papers. TRANSDUCERS ''05. The 13th International Conference on, vol. 1, pp. 376~379, 2005.
[10] J. Zeng, D. Sobek, and T. Korsmeyer, "Electro-Hydrodynamic Modeling of Electrospray Ionization:CAD for μFluidic Device-Mass Spectrometer Interface," TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems, 12th International Conference on, 2003, vol. 2, pp. 1275~1278, 2003.
[11] K. Kato, I. Nishi, K. Yoshino, and H. Hanafusa, "Optical Coupling Characteristics of Laser Diodes to Thermally Diffused Expanded Core Fiber Coupling Using a Aspheric Lens," Photonics Technology Letters, IEEE, vol. 3, pp. 469~470, 1991.
[12] Z. L. Liau, J. N. Walpole, J. C. Livas, E. S. Kintzer, D. E. M. L. J. Missaggia, and W. F. Dinatale, "Fabrication of Two-Sided Anamorphic Microlenses and Direct Coupling of Tapered High-Power Diode Laser to Single-Mode Fiber," Photonics Technology Letters, IEEE, vol. 7, pp. 1315~1317, 1995.
[13] M. Sumida and K. Takemoto, "Lens Coupling of Laser Diodes to Single-Mode Fibers," Journal of Lightwave Technology, vol. 2, pp. 305~311, 1984.
[14] M. He, J. Bu, B. H. Ong, and X. Yuan, "Two-Microlens Coupling Scheme With Revolved Hyperboloid Sol-Gel Microlens Arrays for High-Power-Efficiency Optical Coupling," Journal of Lightwave Technology, vol. 24, 2006.
[15] K. Kawano, O. Mitomi, and M. Saruwatari, "Laser Diode Module for Single-Mode Fiber Based on New Confocal Combination Lens Method," Journal of Lightwave Technology, vol. 4, pp. 1407~1413, 1986.
[16] K. Kawano, M. Saruwatari, and O. Mitimi, "A New Confocal Combination Lens Method for a Laser-Diode Module Using a Single-Mode Fiber," Journal of Lightwave Technology, vol. 3, pp. 739~745, 1985.
[17] H. Yoda, T. Sakurai, A. Ogura, and K. Shiraishi, "A wedge-shaped GIF for coupling between an SMF and a high-power LD having ultra-high aspect ratio," Proc. 27th Eur. Conf. on Opt. Comm. (ECOC''01 - Amsterdam), vol. 3, pp. 418 - 419, Oct. 2001.
[18] H. Yoda, T. Endo, and K. Shiraishi, "Cascaded GI-fiber chips with a wedge-shaped end for the coupling between an SMF and a high-power LD with large astigmatism," JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 20, pp. 1545 - 1548, Aug. 2002.
[19] G.-D. Khoe and H. G. Kock, "Laser-to-monomode-fiber coupling and encapsulation in a modified TO-5 package," JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 32, pp. 2707 - 2712, Dec 1985.
[20] K. Shiraishi, H. Ohnuki, N. Hiraguri, K. Matsumura, I. Ohishi, H. Morichi, and H. Kazami, "A lensed-fiber coupling scheme utilizing a graded-index fiber and a hemispherically ended coreless fiber tip," JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 15, pp. 356 - 363, Feb. 1997.
[21] W. T. Chen and L. A. Wang, "Laser-to-fiber coupling scheme by utilizing a lensed fiber integrated with a long-period fiber grating," IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 12, pp. 501 - 503, May 2000.
[22] J. Yamada, Y. Murakami, J. Sakai, and T. Kimura, "Characteristics of a hemispherical microlens for coupling between a semiconductor laser and single-mode fiber," IEEE JOURNAL OF QUANTUM ELECTRONICS, vol. 16, pp. 1067 - 1072, Oct 1980.
[23]J. Kim, M. Han, S. Chang, J. W. Lee, and K. Oh, "Achievement of large spot size and long collimation length using UV curable self-assembled polymer lens on a beam expanding core-less silica fiber," IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 16, pp. 2499 - 2501, Nov. 2004.
[24]K.-W. Jo, M.-S. Kim, J. H. Lee, E.-K. Kim, and K.-H. Park, "Optical characteristics of a self-aligned microlens fabricated on the sidewall of a 45spl deg-angled optical fiber," IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 16, pp. 138 - 140, Jan. 2004.
[25]K.-R. Kim, S. Chang, and K. Oh, "Refractive microlens on fiber using UV-curable fluorinated acrylate polymer by surface-tension," IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 15, pp. 1100 - 1102, Aug. 2003.
[26]K. R. Kim, K. Oh, and S. Chang, "Refractive microlens on fiber using UV-curable fluorinated acrylate polymer by surface-tension induced self-assembly," Optical Society Of America, pp. 2, June 2003.
[27]C.-C. Yang, T.-C. Peng, Y.-H. Huang, M.-C. Wu, C.-L. Ho, and W.-J. Ho, "A simple and low-cost fabrication of polymeric vertical microlens using dip method," IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 17, pp. 603 - 605, Mar 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top