(3.235.108.188) 您好!臺灣時間:2021/02/27 23:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳彥儒
研究生(外文):Ru-yan chen
論文名稱:一維透鏡塑膠光纖陣列製造
論文名稱(外文):Manufacturing Technique of 1D Lens Plastic Optical Fiber Array
指導教授:曾逸敦
指導教授(外文):Yih-tun tseng
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:72
中文關鍵詞:光纖陣列
外文關鍵詞:Fiber array
相關次數:
  • 被引用被引用:1
  • 點閱點閱:129
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文的研究在於利用電吸引法的製作一維透鏡光纖陣列,藉由電極加電壓後對透鏡的吸引而形成圓錐狀,但是因光纖併排而造成透鏡所受的電場強度不均勻而產生透鏡成形時的偏移現象,因此我們以縮短電極長度來平衡透鏡所受的電場強度,以修正透鏡成形時的偏移。另外利用縮小光纖之間的間距,再配合適當的電極長度,使透鏡在成形時不產生偏移,並製作出高耦光效率的一維透鏡光纖陣列。
關於上述方法,在論文中除了以電腦模擬確定其可行性外,更以實驗證實其正確性。
The research is focus on manufacturing one dimension lens plastic optical fiber array, carrying out by electrostatic force was applied to shape polymer liquid from hemisphere into paraboloid or near cone shape. In manufacturing process, the lens will be slanted by electrostatic force, so we shorten the electrode to solve the problem, and shorten the distance between fiber and fiber to manufacture the most small volume of the fiber array. To combine the two methods, we can manufacture the high coupling efficiency of the one dimension lens plastic optical fiber array.
Finally, the above improved strategies are verified by the simulation and experimental results.
中文摘要..................................................i
英文摘要.................................................ii
總目錄..................................................iii
圖目錄....................................................v
表目錄.................................................viii
第一章 緒論..............................................1
1.1 塑膠光纖介紹.......................................1
1.2 光纖陣列介紹.......................................4
1.3 研究動機...........................................8
1.4 研究目的...........................................9
第二章 微透鏡成形技術...................................10
2.1 雷射技術加工......................................10
2.2 LIGA技術加工......................................12
2.2.1 熔膠法.......................................12
2.2.2 滴定法.......................................13
2.3 電場技術加工......................................14
2.3.1 電濕潤法.....................................14
2.3.2 電吸引法.....................................16
第三章 研究方法.........................................19
3.1 透鏡光纖陣列成形與模擬............................19
3.1.1 電吸引法製作透鏡光纖陣列.....................19
3.1.2 透鏡光纖陣列電場模擬.........................27
3.2 透鏡成形偏移修正..................................32
3.3 光纖間距最小化....................................36
第四章 實驗與成果.......................................42
4.1 實驗配置..........................................42
4.2 最佳透鏡曲率實驗參數..............................46
4.3 點膠體積量測......................................47
4.4 實驗步驟與成果....................................49
第五章 結論與未來展望...................................59
5.1 結論..............................................59
5.2 未來工作..........................................59
參考文獻.................................................60
[1] L. Blyler, V. R. White, R. Ratagini, and M. Park, "Perfluorinated POF: out of the lab, into the real worl," POF-2003 proceedings, pp. 16, 2003.
[2] T. Ishigure, E. Nihei, and Y. Koike, "Graded-index polymer optical fiber for high-speed data communication," Applied optics, vol. 33, pp. 4261 - 4266, July 1994.
[3] T. Ishigure, M. Satoh, O. Takanashi, E. Nihei, T. Nyu, S. Yamazaki, and Y. Koike, "Formation of the refractive index profile in the graded index polymer optical fiber for gigabit data transmission," Journal of lightwave technology, vol. 15, pp. 2095 - 2100, November 1997.
[4] H.-M. Yang, S.-Y. Huang, C.-W. Lee, T.-S. Lay, and W.-H. Cheng, "High-coupling tapered hyperbolic fiber microlens and taper asymmetry effect," Journal of lightwave technology, vol. 22, pp. 1395 - 1401, May 2004.
[5] C. A. Edwards, H. M. Presby, and C. Dragone, " Ideal microlenses for laser to fiber coupling, " Journal of lightwave technology, vol. 11, pp. 252 - 257, February 1993.
[6] S. Y. Wang, C. S. Huang, H. Y. Chou, T. Y. Lee, and R. S. Chang, "Improvement on the surface roughness of micro lens array in the excimer laser machining process," Micro system technology association, 2000.
[7] K. Zimmer, D. Hirsch, and F. Bigl, "Excimer laser machining for the fabrication of analogous microstructures," Appl. Surf., vol. 96, pp. 425 - 429, 1996.
[8] K. Naessens, H. Ottevaere, R. Baets, P. V. Daele, and H. Thienont, "Direct writing of microlenses in polycarbonate with excimer laser ablation," Appl. Opt., vol. 42, pp. 6349 - 6359, 2003.
[9] K. Naessens, H. Ottevaere, P. V. Daele, and R. Baets, "Flexible fabricaion of microlenses in polymer layers with excimer laser ablation," Appl. Surf., vol. 208, pp. 159 - 164, 2003.
[10] A. Sayah, V. K. Parashar, and M. A. M. Gijs, "Micro-replication of optical lenses in glass using a novel Sol Gel technology," IEEE Micro electro mechanical systems conference, pp. 516 - 519, 2001.
[11] P. Ayras, J. T. Rantala, S. Honkanen, S. B. Mendes, and N. Peyghambarian, "Diffraction gratings in sol-gel films by direct
contact printing using a UV-mercury lamp," Opt.Commun, 1999.
[12] J. E. Chisham, M. P. Andrews, C. Y. Li, S. I. Najafi, and A. M. Tabrizi, "Gratings fabrication by ultraviolet light imprinting and embossing in a sol-gel silica glass," Proc. SPIE, 1996.
[13] H. Choo and R. S. Muller, "Optical properties of microlenses fabricated using hydrophobic effects and polymer-jet-printing echnology," IEEE/LEOS International Conference on Optical MEMS, pp. 169 - 170, 2003.
[14] K. R. Kim, S. Chang, and K. Oh, "Refractive microlens on fiber using UV-curable fluorinated acrylate polymer by surface-tension," IEEE photonics technology letters, vol. 15, pp. 1100 - 1102, August 2003.
[15] K. S. Lee and F. S. Barnes, "Microlenses on the end of single-mode optical fibers for laser applications," Applied optics, vol. 24, pp. 3134 - 3139, October 1985.
[16] W. H. Hsieh and J. H. Chen, "Lens-profile control by electrowetting fabrication technique," IEEE Photonics technology letters, vol. 17, pp. 606 - 608, March 2005.
[17] J. H. Chen, C. A. Chen, and W. H. Hsieh, "Electrowetting technique for lens fabrication," IEEE International conference on mechatronics, pp. 768 - 770, July 2005.
[18] P. Paik, V. K. Pamula, M. G. Pollack, and R. B. Fair, "Electrowetting-based droplet mixers for microfluidic systems," Lab Chip, vol. 3, pp. 28 - 33, 2003.
[19] R. A. Hayes and B. J. Feenstra, "Video-speed electronic paper based on electrowetting," Nature, vol. 425, pp. 383 - 385, 2003.
[20] C. W. Chen and F. G. Tseng, "Tunable micro-aspherical lens manipulated by 2D electrostatic forces," IEEE International conference on solid-statesensors, actuators and microsystems, pp. 376 - 379, 2005.
[21] O. Sandre, L. G. Talini, A. Ajdari, J. Prost, and P. Siberzan, "Moving droplets on asymmetrically structured surfaces," The american physical society, vol. 60, pp. 2964 - 2972, 1999.
[22] G. Taylor, "Disintegration of water drops in an electric field," in Proc. Royal Society of London, vol. A208, pp. 383 - 397, 1964.
[23] D. R. J. White and M. Mardiguian, "Electromagnetic shielding," A handbook series on electronmagnetic interference and compatibility, vol. 3, 1988.
[24] D. K. Cheng, "Field and wave electromagnetic," Reading, Mass addison wesley, pp. 198 - 219, 1989.
[25] C. R. Paul, "Introduction to electromagnetic compatibility," Wiley series in microwave and optical engineering pp. 632 - 648, 1992.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔