|
[1] L. Tonks and I. Langmuir, “A general theory of the plasma of an Arc,” Phys. Rev., vol. 34, pp. 876-922, 1929. [2] D. Bohm, the Characteristics of Electrical Discharges in Magnetic Fields, A. Guthrie and R.K. Wakerling, Eds. New York and London:McGraw-Hill, 1949. [3] R.N. Franklin, “The plasma-sheath boundary region,” J. Phys. D:Appl. Phys., vol. 36, pp. 309-320, 2003. [4] R.N. Franklin, “Where is the ‘sheath edge’?,” J. Phys. D: Appl.Phys., vol. 37, pp. 1342-1345, 2004. [5] O. Buneman, “Dissipation of currents in ionized media,” Phys. Rev.,vol. 115, pp. 503-517, 1959. [6] J.M. Dawson, “One-dimensional plasma model,” Phys. Fluids, vol. 5,pp. 445-459, 1962. [7] S. Kondo and K. Nanbu, “PIC/MC analysis of three-dimensional DC magnetron discharge,” Rep. Inst. Fluid Sci., vol. 12, pp. 111-142, 2000. [8] F.F. Chen, Introduction to Plasma Physics and Controlled Fusion.New York and London: Plenum Press, second edition, 1983. [9] J.P. Verboncoeur, “Particle simulation of plasmas: review and advances,” Plasma Phys. Control. Fusion, vol. 47, pp. 231-260, 2005. [10] K. Nanbu, “Probability theory of electron-molecule, ion-molecule, molecule- molecule, and coulomb collisions for particle modeling of materials processing plasmas and gases,” IEEE Trans. Plasma Sci.,vol. 28, pp. 971-990, 2000. [11] R.W. Boswell and I.J. Morey, “Self-consistent simulation of a parallel-plate RF discharge,” App. Phys. Lett., vol. 52, pp. 21-23, 1988. [12] V. Vahedi and M. Surendra, “A Monte Carlo collision model for the particle- in-cell method: applications to argon and oxygen discharges,” Comput. Phys. Commun., vol. 87, pp. 179-198, 1995. [13] S.L. Lin and J.N. Bardsley, “Monte Carlo simulation of ion motion in drift tubes,” J. Chem. Phys., vol. 66, pp. 435-445, 1977. [14] J.P. Boeuf and E. Marode, “A Monte Carlo analysis of an electron swarm in a non-uniform field:the cathode region of a glow discharge in helium,” J. Phys. D: Appl. Phys., vol. 15, pp. 2169-2187, 1982. [15] M. Surendra, D.B. Graves, and I.J. orey, “Electron heating in low-pressure RF glow discharges,” Appl. phys. Lett., vol. 56, pp.1022-1024, 1990. [16] C.K. Birdsall, “Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with Neutral Atoms, PIC-MCC,” IEEE.Plasma Sci., vol. 19, pp. 65-85, 1991. [17] V. Vahedi, C.K. Birdsall, M.A. Lieberman, G. DiPeso, and T.D. Rognlien, “Capacitive RF discharges modeled by particle-in-cell Monte Carlo simulation. I: analysis of numerical techniques,” Plasma Source Sci. Technol., vol. 2, pp. 261-272, 1993. [18] T. Takizuka and H. Abe, “A binary collision model for plasma simulation with a particle code,” J. Comput. Phys., vol. 25, pp.205-219, 1977. [19] K. Nanbu, “Theory of cumulative small-angle collisions in plasmas,”Phys. Rev. E, vol. 55, pp. 4642-4652, 1997. [20] E. Kawamura and C.K. Birdsall, “Effect of Coulomb scattering on low-pressure high-density electronegative discharges,” Phys. Rev. E, vol. 71, 026403, 2005. [21] K. Nanbu, “Probability theory of electron-molecule, ion-molecule,molecule- molecule, and coulomb collisions for particle modeling of materials processing plasmas and gases,” IEEE Trans. Plasma Sci.,vol. 28, pp. 971-990, 2000. [22] V. Vahedi and G. Di Peso, “Simultaneous potential and circuit solution for two-dimensional bounded plasma simulation codes,” J. Comput. Phys., vol. 131, pp. 149-163, 1997. [23] J.D. Blahovec, Jr., L.A. Bowers, J.W. Luginsland, G.E. Sasser, and J.J. Watrous, “3D ICEPIC simulations of the relativistic klystron oscillator,” IEEE Trans. Plasma Sci., vol. 28, pp. 821-829, 2000. [24] P.C. Liewer and V.K. Decyk, “A general concurrent algorithm for plasma particle-in-cell codes,” J. Comput. Phys., vol. 85, pp. 302-322, 1989. [25] B. Di Martino, S. Briguglio, G. Vlad, and P. Sguazzero, “Parallel PIC plasma simulation through particle decomposition techniques,”Parallel Comput., vol. 27, pp. 295-314, 2001. [26] R.J. Procassini, C.K. Birdsall, and E.C. Morse, “A fully, self-consistent particle simulation model of the collisionless plasma-sheath region,” Phys. Fluids B, vol. 2, pp. 3191-3205, 1990. [27] G.A. Emmert, R.M. Wieland, A.T. Mense, and J.N. Davidson, “Electric sheath and presheath in a collisionless, finite ion temperature plasma,” Phys. Fluids, vol. 23, pp. 803-812, 1980. [28] R.C. Bissell and P.C. Johnson, “The solution of the plasma equation in plane parallel geometry with a Maxwellian source,” Phys. Fluids,vol. 30, pp. 779-786, 1987. [29] J.T. Scheuer and G.A. Emmert, “Sheath and presheath in a collisionless plasma with a Maxwellian source,” Phys. Fluids, vol. 31,pp. 3645-3648, 1988. [30] B. Briehl and H.M. Urbassek, “Note on boundary conditions in plasma sheath simulations using the particle-in-cell algorithm,” IEEE Trans. Plasma Sci., vol. 29, pp. 809-814, 2001. [31] M.A. Lieberman and A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing. New York: Wiley, 1994. [32] R.T. Farouki, M. Dalvie, and L.F. Pavarino, “Boundary-condition refinement of the Child-Langmuir law for collisionless DC plasma sheaths,” J. Appl. Phys, vol. 68, pp. 6106-6116, 1990. [33] C.K. Birdsall and A.B. Langdon, Plasma Physics via Computer Simulation. New York: McGraw-Hill, 1985. [34] R.W. Hockney and J.W. Eastwood, Computer Simulation Using Particles. New York: McGraw-Hill, 1981. [35] C.K. Birdsall and J.M. Dawson, “Plasma physics,” Computers and their Role in the Physical Sciences, S. Fernbach and A. Taub, Eds.New York: Academic, 1970, pp. 247-310. [36] J. Denavit and W.L. Kruer, “How to get started in particle simulation,” Comments Plasma Phys. Contr. Fusion, vol. 6, pp. 35-44,1980. [37] J.M. Dawson, “Particle simulation of plasmas,” Rev. Mod. Phys., vol.55, pp. 403-447, 1983. [38] C.K. Birdsall, “Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with Neutral Atoms, PIC-MCC,” IEEE.Plasma Sci., vol. 19, pp. 65-85, 1991. [39] J.P. Verboncoeur, A.B. Langdon, and N.T. Gladd, “An object-oriented electromagnetic PIC code,” Comput. Phys. Commun., vol. 87, pp.199-211, 1995. [40] 錢振型 主編,固體電子學中的等離子體技術,電子工業出版社,1987。 [41] 邵福球 編著,等離子體粒子模擬,科學出版社,2002。 [42] K.S. Yee, ”Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas and Propagation, vol. 14, pp.302-307, 1966. [43] G. Mur, ”Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equation,”IEEE Trans. Electromagnetic Compatibility, vol. 23, pp. 377-382,1981.
|