跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/08 18:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭岳霖
研究生(外文):Yueh-lin Kuo
論文名稱:PIC方法模擬電磁場中的電漿與工件表面之輸送現象
論文名稱(外文):Using PIC Method To Predict Transport Processes Near A Surface In Contact With Plasma In Electromagnetic Field
指導教授:魏蓬生
指導教授(外文):Peng-Sheng Wei
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:67
中文關鍵詞:電漿粒子網格蒙地卡羅法馬克斯威爾方程式時域有限差分法
外文關鍵詞:PICPlasmaMonte Carlo Collision MethodFinite Difference Time DomainMaxwell’s Equation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:223
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用PIC (Particle in cell)方法模擬在低壓、高氣體密度和低電離率下,氬氣的電漿行為。粒子碰撞行為-包括電子與中性粒子間彈性、非彈性及電離碰撞,離子與中性原子間彈性及電荷交換碰撞,還有電子與離子間的庫倫碰撞。設定的模型條件為:(1) 在兩個極板之間給一穩定電壓值;(2)考慮磁場所帶來的效應,求解泊松方程式(Poisson’s Equation)和馬克斯威爾方程式(Maxwell’s Equation);(3) 不考慮二次電子散射(secondary electron emission);(4) 中性粒子為均勻分布,並滿足麥斯威爾(Maxwellian)速度分布,不個別追蹤中性粒子的位置及速度;(5) 不考慮電子與離子的複合碰撞。本研究採用數值模擬的方法觀察鞘層(Sheath)的生長情形。結果將顯示粒子碰撞對於整個電漿行為以及鞘層的影響。理論之比較將進一步了解電漿在鞘層的運動與熱傳遞現象。
This study uses the PIC (Particle-in-cell) method to simulate unsteady three-dimensional dynamics of particles in argon plasma under low pressure, high density, and weak ionization between two planar electrodes subject to a sudden biased voltage. Plasma has been widely used in materials processing, film manufacturing, nuclear fusion, lamps, etc. Properties of plasmas are also becoming important area for research. This work includes elastic collisions between electrons and neutrals, ions and neutrals, and inelastic collisions resulting in ionization from impacting neutrals by electrons, and charge exchange between ions and neutrals, and Coulomb collisions between electrons and ions. The model ignores secondary electron emission, recombination between ions and electrons, and assumes uniform distribution of the neutrals having velocity of Maxwellian distribution. The computed results show the effects of elastic and inelastic collisions on the characteristics of plasma and sheath (space charge region) in front of the workpiece surface. Unsteady mass, momentum and energy transport from the bulk plasma through sheath to the workpiece is confirmatively and exploratorily studied after successful comparison between PIC prediction and experimental data has been made.
摘要............................................................. I
英文摘要......................................................II
謝誌.............................................................III
目錄............................................................ IV
圖目錄......................................................... VI
符號說明..................................................... VII
第一章 緒論..................................................1
1.1 研究背景與目的....................................1
1.2 粒子網格(PIC)方法簡介......................3
1.3 本論文研究內容簡介............................8
1.4 本論文大綱............................................9
第二章 理論分析與方法.............................10
2.1 物理模型與基本假設............................10
2.2 碰撞理論簡介........................................11
2.2.1 蒙地卡羅法處理碰撞的問題.............12
2.2.2 庫倫碰撞.............................................21
2.3 外加電場................................................26
2.3.1 泊松方程式邊界條件.........................26
2.3.2 泊松方程式.........................................27
2.3.3 電場.....................................................30
2.4 粒子自洽電磁場.....................................31
2.4.1 電磁場的時域有限差分法..................32
2.4.2 電磁場的邊界條件..............................37
2.4.3 Courant 穩定準則...............................41
2.5 粒子受力運動情況..................................42
第三章 研究結果與討論................................44
第四章 結論與未來方向.................................51
附錄A 模擬系統參數.......................................52
參考文獻..........................................................54
[1] L. Tonks and I. Langmuir, “A general theory of the plasma of an Arc,” Phys. Rev., vol. 34, pp. 876-922, 1929.
[2] D. Bohm, the Characteristics of Electrical Discharges in Magnetic Fields, A. Guthrie and R.K. Wakerling, Eds. New York and London:McGraw-Hill, 1949.
[3] R.N. Franklin, “The plasma-sheath boundary region,” J. Phys. D:Appl. Phys., vol. 36, pp. 309-320, 2003.
[4] R.N. Franklin, “Where is the ‘sheath edge’?,” J. Phys. D: Appl.Phys., vol. 37, pp. 1342-1345, 2004.
[5] O. Buneman, “Dissipation of currents in ionized media,” Phys. Rev.,vol. 115, pp. 503-517, 1959.
[6] J.M. Dawson, “One-dimensional plasma model,” Phys. Fluids, vol. 5,pp. 445-459, 1962.
[7] S. Kondo and K. Nanbu, “PIC/MC analysis of three-dimensional DC magnetron discharge,” Rep. Inst. Fluid Sci., vol. 12, pp. 111-142, 2000.
[8] F.F. Chen, Introduction to Plasma Physics and Controlled Fusion.New York and London: Plenum Press, second edition, 1983.
[9] J.P. Verboncoeur, “Particle simulation of plasmas: review and advances,” Plasma Phys. Control. Fusion, vol. 47, pp. 231-260, 2005.
[10] K. Nanbu, “Probability theory of electron-molecule, ion-molecule, molecule- molecule, and coulomb collisions for particle modeling of
materials processing plasmas and gases,” IEEE Trans. Plasma Sci.,vol. 28, pp. 971-990, 2000.
[11] R.W. Boswell and I.J. Morey, “Self-consistent simulation of a parallel-plate RF discharge,” App. Phys. Lett., vol. 52, pp. 21-23, 1988.
[12] V. Vahedi and M. Surendra, “A Monte Carlo collision model for the particle- in-cell method: applications to argon and oxygen discharges,” Comput. Phys. Commun., vol. 87, pp. 179-198, 1995.
[13] S.L. Lin and J.N. Bardsley, “Monte Carlo simulation of ion motion in drift tubes,” J. Chem. Phys., vol. 66, pp. 435-445, 1977.
[14] J.P. Boeuf and E. Marode, “A Monte Carlo analysis of an electron swarm in a non-uniform field:the cathode region of a glow discharge in helium,” J. Phys. D: Appl. Phys., vol. 15, pp. 2169-2187, 1982.
[15] M. Surendra, D.B. Graves, and I.J. orey, “Electron heating in low-pressure RF glow discharges,” Appl. phys. Lett., vol. 56, pp.1022-1024, 1990.
[16] C.K. Birdsall, “Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with Neutral Atoms, PIC-MCC,” IEEE.Plasma Sci., vol. 19, pp. 65-85, 1991.
[17] V. Vahedi, C.K. Birdsall, M.A. Lieberman, G. DiPeso, and T.D. Rognlien, “Capacitive RF discharges modeled by particle-in-cell Monte Carlo simulation. I: analysis of numerical techniques,” Plasma Source Sci. Technol., vol. 2, pp. 261-272, 1993.
[18] T. Takizuka and H. Abe, “A binary collision model for plasma simulation with a particle code,” J. Comput. Phys., vol. 25, pp.205-219, 1977.
[19] K. Nanbu, “Theory of cumulative small-angle collisions in plasmas,”Phys. Rev. E, vol. 55, pp. 4642-4652, 1997.
[20] E. Kawamura and C.K. Birdsall, “Effect of Coulomb scattering on low-pressure high-density electronegative discharges,” Phys. Rev. E,
vol. 71, 026403, 2005.
[21] K. Nanbu, “Probability theory of electron-molecule, ion-molecule,molecule- molecule, and coulomb collisions for particle modeling of materials processing plasmas and gases,” IEEE Trans. Plasma Sci.,vol. 28, pp. 971-990, 2000.
[22] V. Vahedi and G. Di Peso, “Simultaneous potential and circuit solution for two-dimensional bounded plasma simulation codes,” J.
Comput. Phys., vol. 131, pp. 149-163, 1997.
[23] J.D. Blahovec, Jr., L.A. Bowers, J.W. Luginsland, G.E. Sasser, and J.J. Watrous, “3D ICEPIC simulations of the relativistic klystron oscillator,” IEEE Trans. Plasma Sci., vol. 28, pp. 821-829, 2000.
[24] P.C. Liewer and V.K. Decyk, “A general concurrent algorithm for plasma particle-in-cell codes,” J. Comput. Phys., vol. 85, pp. 302-322,
1989.
[25] B. Di Martino, S. Briguglio, G. Vlad, and P. Sguazzero, “Parallel PIC plasma simulation through particle decomposition techniques,”Parallel Comput., vol. 27, pp. 295-314, 2001.
[26] R.J. Procassini, C.K. Birdsall, and E.C. Morse, “A fully, self-consistent particle simulation model of the collisionless plasma-sheath region,” Phys. Fluids B, vol. 2, pp. 3191-3205, 1990.
[27] G.A. Emmert, R.M. Wieland, A.T. Mense, and J.N. Davidson, “Electric sheath and presheath in a collisionless, finite ion temperature plasma,” Phys. Fluids, vol. 23, pp. 803-812, 1980.
[28] R.C. Bissell and P.C. Johnson, “The solution of the plasma equation in plane parallel geometry with a Maxwellian source,” Phys. Fluids,vol. 30, pp. 779-786, 1987.
[29] J.T. Scheuer and G.A. Emmert, “Sheath and presheath in a collisionless plasma with a Maxwellian source,” Phys. Fluids, vol. 31,pp. 3645-3648, 1988.
[30] B. Briehl and H.M. Urbassek, “Note on boundary conditions in plasma sheath simulations using the particle-in-cell algorithm,” IEEE Trans. Plasma Sci., vol. 29, pp. 809-814, 2001.
[31] M.A. Lieberman and A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing. New York: Wiley, 1994.
[32] R.T. Farouki, M. Dalvie, and L.F. Pavarino, “Boundary-condition refinement of the Child-Langmuir law for collisionless DC plasma sheaths,” J. Appl. Phys, vol. 68, pp. 6106-6116, 1990.
[33] C.K. Birdsall and A.B. Langdon, Plasma Physics via Computer Simulation. New York: McGraw-Hill, 1985.
[34] R.W. Hockney and J.W. Eastwood, Computer Simulation Using Particles. New York: McGraw-Hill, 1981.
[35] C.K. Birdsall and J.M. Dawson, “Plasma physics,” Computers and their Role in the Physical Sciences, S. Fernbach and A. Taub, Eds.New York: Academic, 1970, pp. 247-310.
[36] J. Denavit and W.L. Kruer, “How to get started in particle simulation,” Comments Plasma Phys. Contr. Fusion, vol. 6, pp. 35-44,1980.
[37] J.M. Dawson, “Particle simulation of plasmas,” Rev. Mod. Phys., vol.55, pp. 403-447, 1983.
[38] C.K. Birdsall, “Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with Neutral Atoms, PIC-MCC,” IEEE.Plasma Sci., vol. 19, pp. 65-85, 1991.
[39] J.P. Verboncoeur, A.B. Langdon, and N.T. Gladd, “An object-oriented electromagnetic PIC code,” Comput. Phys. Commun., vol. 87, pp.199-211, 1995.
[40] 錢振型 主編,固體電子學中的等離子體技術,電子工業出版社,1987。
[41] 邵福球 編著,等離子體粒子模擬,科學出版社,2002。
[42] K.S. Yee, ”Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans.
Antennas and Propagation, vol. 14, pp.302-307, 1966.
[43] G. Mur, ”Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equation,”IEEE Trans. Electromagnetic Compatibility, vol. 23, pp. 377-382,1981.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top