|
Anpo, M., Shima, T., Kodama, S., Kubokawa, Y., 1987. Photocatalytic hydrogenation of CH3CCH with H2O on small-particle TiO2: size quantization effects and reaction intermediates. J. Phys. Chem. 91, 4305-4310. Al-Ekabi, H., Serpone, N., 1989. Kinetic studies in heterogeneous photocatalysis. 2. TiO2-mediated degradation of 4-chlorophenol alone and in a three-component mixture of 4-chlorophenol, 2,4-dichlorophenol, and 2,4,5-trichlorophenol in air-equilibrated aqueous media. Langmuir 5, 250-255. Anderson, M.A., Yamazaki-Nishida, S., Cervera-March, S., 1993. Photodegradation of trichloroethylene in the gas phase using TiO2 porous ceramic membrane. In: Ollis, D.F., Al-Ekabi, H. (Eds.). Photocatalytic Purification and Treatment of Water and Air. Elsevier, pp. 405-420. Andreozzi, R., Caprio, V., Insola, A., Marotta, R., 1999. Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today 53, 51-59. Anpo, M., 2000. Utilization of TiO2 photocatalysts in green chemistry. Pure Appl. Chem. 72, 1265-1270. Almquist, C.B., Biswas, P., 2002. Role of synthesis method and particle size of nanostructured TiO2 on its photoactivity. J. Catal. 212, 145-156. Andersson, M., Österlund, L., Ljungström, S., Palmqvist, A., 2002. Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol. J. Phys. Chem. B 106, 10674-10679. Azevedo, E.B., Radler de Aquino Neto, F., Dezotti, M., 2004. TiO2-photocatalyzed degradation of phenol in saline media: lumped kinetics, intermediates, and acute toxicity. Appl. Catal. B: Environ. 54, 165-173. Bhore, N.A., Klein, M.T., Bischoff, K.B., 1990. The delplot technique: a new method for reaction pathway analysis. Ind. Eng. Chem. Res. 29, 313-316. Balcioglu, I.A., Arslan, I., 1998. Application of photocatalytic oxidation treatment to pretreated and raw effluents from the Kraft bleaching process and textile industry. Environ. Pollution 103, 261-268. Boujday, S., Wünsch, F., Portes, P., Bocquet, J.-F., Colbeau-Justin, C., 2004. Photocatalytic and electronic properties of TiO2 powders elaborated by sol-gel route and supercritical drying. Sol. Energ. Mat. Sol. C. 83, 421-433. Chan, A.H.C., Chan, C.K., Barford, J.P., Porter, J.F., 2003. Solar photocatalytic thin film cascade reactor for treatment of benzoic acid containing wastewater. Water Res. 37, 1125-1135. Colόn, G., Hidalgo, M.C., Navío, J.A., 2003. Photocatalytic behaviour of sulphated TiO2 for phenol degradation. Appl. Catal. B: Environ. 45, 39-50. Carpio, E., Zúñiga, P., Ponce, S., Solis, J., Rodriguez, J., Estrada, W., 2004. Photocatalytic degradation of phenol using TiO2 nanocrystals supported on activated carbon. J. Mol. Catal. A: Chem. 228, 293-298. Cheng, Y., Sun, H., Jin, W., Xu, N., 2007. Photocatalytic degradation of 4-chlorophenol with combustion synthesized TiO2 under visible light irradiation. Chem. Eng. J. 128, 127-133. Dosanjh, M.K., Wasa, D.A.J., 1987. Oxygen uptake studies on various sludge adaption to a waste containing chloro-, nitro-, and amino-substituted xenobiotics. Water Res. 21, 205-209. Draper, R.B., Fox, M.A., 1990. Titanium dioxide photosensitized reactions studied by diffuse reflectance flash photolysis in: aqueous suspensions of TiO2 powder. Langmuir 6, 1396-1402. Döker, O., Bayraktar, E., Mehmetoğlu, Ü., Çalimli, A., 2003. Production of iron-cobalt compound nanoparticles using reverse micellar system. Rev. Adv. Mater. Sci. 5, 498-500. Dunn, J.B., Savage, P.E., 2005. High-temperature liquid water: a viable medium for terephthalic acid synthesis. Environ. Sci. Technol. 39, 5427-5435. Du, Y., Zhou, M., Lei, L., 2007. Kinetic model of 4-CP degradation by Fenton/O2 system. Water Res. 41, 1121-1133. Emeline, A.V., Serpone, N., 2002. Spectral selectivity of photocatalyzed reactions occurring in liquid-solid photosystems. J. Phys. Chem. B: 106, 12221-12226. Fujishima, A., Honda, K., 1972. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37-38. Fujishima, A., Hashimoto, K., Watanabe, T., 1999. TiO2 photocatalysis fundamentals and applications. BKC, Tokyo. Fujishima, A., Rao, T.N., Tryk, D.A., 2000. Titanium dioxide photocatalysis. J. Photoch. Photobio. C 1, 1-21. Gimeno, O., Carbajo, M., Beltrán, F.J., Rivas, F.J., 2005. Phenol and substituted phenols AOPs remediation. J. Hazard. Mater. B119, 99-108. Guo, Z., Ma, R., Li, G., 2006. Degradation of phenol by nanomaterial TiO2 in wastewater. Chem. Eng. J. 119, 55-59. Herrmann, J.-M., 1999. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today 53, 115-129. Herrmann, J.-M., Guillard, C., Disdier, J., Lehaut, C., Malato, S., Blanco, J., 2002. New industrial titania photocatalysts for the solar detoxification of water containing various pollutants. Appl. Catal. B: Environ. 35, 281-294. Hong, S.S., Lee, M.S., Park, S.S., Lee, G.-D., 2003. Synthesis of nanosized TiO2/SiO2 particles in the microemulsion and their photocatalytic activity on the decomposition of p-nitrophenol. Catal. Today 87, 99-105. Jardim, W.F., Moraes, S.G., Takiyama, M.M.K., 1997. Photocatalytic degradation of aromatic chlorinated compounds using TiO2: toxicity of intermediates. Water Res. 31, 1728-1732. Jang, H.D., Kim, S.-K., Kim, S.-J., 2001. Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties. J. Nanopart. Res. 3, 141-147. Jiang, B., Yin, H., Jiang, T., Yan, J., Fan, Z., Li, C., Wu, J., and Wada, Y., 2005. Size-controlled synthesis of anatase TiO2 nanopparticles by carboxylic acid group-containing organics. Mater. Chem. Phys. 92, 595-599. Kormann, C., Bahnemann, D.W., Hoffmann, M.R., 1988. Preparation and characterization of quantum-size titanium-dioxide. J. Phys. Chem. 92, 5196-5201. Ku, Y., Hsieh, C.B., 1992. Photocatalytic decomposition of 2,4-dichlorophenol in aqueous TiO2 suspensions. Water Res. 26, 1451-1456. Kumar, P., Mittal, K.L., 1999. Handbook of Microemulsion Science and Technology. Mercel Dekker: New York. Kolen’ko, Y.V., Churagulov, B.R., Kunst, M., Mazerolles, L., Colbeau-Justin, C., 2004. Photocatalytic properties of titania powders prepared by hydrothermal method. Appl. Catal. B: Environ. 54, 51-58. Linsebigler, A.L., Lu, G., Yates Jr., J.T., 1995. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95, 735-758. Low, G.K.-C., McEvoy, S.R., 1996. Analytical monitoring systems based on photocatalytic oxidation principles. TrAC Trend. Anal. Chem. 15, 151-156. Lachheb, H., Puzenat, E., Houas, A., Ksibi, M., Elaloui, E., Guillard, C., Herrmann, J.-M., 2002. Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl. Catal. B: Environ. 39, 75-90. Liu, G., Li, X., Zhao, J., Horikoshi, S., Hidaka, H., 2000. Photooxidation mechanism of dye alizarin red in TiO2 dispersions under visible illumination: an experimental and theoretical examination. J. Mol. Catal. A: Chem. 153, 221-229. Liu, D., Zhang, J., Han, B., Chen, J., Li, Z., Shen, D., and Yang, G., 2003. Recovery of TiO2 nanoparticles synthesized in reverse micelles by antisolvent CO2. Colloid Surface A227, 45-48. Li, G., Li, L., Boerio-Goates, J., Woodfield, B.F., 2005. High purity anatase TiO2 nanocrystals: near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry. J. Am. Chem. Soc. 127, 8659-8666. Lin, H., Huang, C.P., Li, W., Ni, C., Shah, S.I., Tseng, Y.-H., 2006. Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl. Catal. B: Environ. 68, 1-11. Matthews, R., 1984. Hydroxylation reactions induced by near-ultraviolet photolysis of aqueous titanium dioxide suspensions. J. Chem. Soc. Farad. T. 80, 457-471. Mills, G., Hoffmann, M.R., 1993. Photocatalytic degradation of pentachlorophenol on TiO2 particles: identification of intermediates and mechanism of reaction. Environ. Sci. Technol. 27, 1681-1689. Moran, P.D., Bartlett, J.R., Bowmaker, G.A., Woolfrey, J.L., Cooney, R.P., 1999. Formation of TiO2 sols, gels and nanopowders from hydrolysis of Ti(OiPr)4 in AOT reverse micelles. J. Sol-Gel Sci. Techn. 15, 251-262. Maira, A.J., Yeung, K.L., Lee, C.Y., Yue, P.L., Chan, C.K., 2000. Size effects in gas-phase photo-oxidation of trichloroethylene using nanometer-sized TiO2 catalysts. J. Catal. 192, 185-196. Minero, C., Mariella, G., Maurino, V., Pelizzetti, E., 2000. Photocatalytic transformation of organic compounds in the presence of inorganic anions. 1. hydroxyl-mediated and direct electron-transfer reactions of phenol on a titanium dioxide-fluoride system. Langmuir 16, 2632-2641. Mori, Y., Okastu, Y., Tsujimoto, Y., 2001. Titanium dioxide nanoparticles produced in water-in-oil emulsion. J. Nanopart. Res. 3, 219, 219-225. Malato, S., Blanco, J., Cáceres, J., Fernández-Alba, A.R., Agüera, A., Rodríguez, A., 2002. Photocatalytic treatment of water-soluble pesticides by photo-Fenton and TiO2 using solar energy. Catal. Today 76, 209-220. Malato, S., Blanco, J., Vidal, A., Fernández, P., Cáceres, J. Trincado, P., Oliveira, J.C., Vincent, M., 2002. New large solar photocatalytic plant: set-up and preliminary results. Chemosphere 47, 235-240. Malato, S., Blanco, J., Vidal, A., Richter, C., 2002. Photocatalytic with solar energy at a pilot-plant scale: an overview. Appl. Catal. B: Environ. 37, 1-15. Malato, S., Blanco, J., Vidal, A., Alarcón, D., Maldonado, M.I., Cáceres, J., Gernjak, W., 2003. Applied studies in solar photocatalytic detoxification: an overview. Sol. Energy 75, 329-336. Muruganandham, M., Shobana, N., Swaminathan, M., 2005. Optimization of solar photocatalytic degradation conditions of reactive Yellow 14 azo dye in aqueous TiO2. J. Mol. Catal. A: Chem. 246, 153-160. Nargiello, M., Herz, T., 1993. Physical-chemical characteristics of P-25 making it suited as the catalyst in photodegradation of organic compounds. In: Ollis, D.F., Al-Ekabi, H. (Eds.). Photocatalytic Purification and Treatment of Water and Air. Elsevier, pp. 801-807. Natarajan, S., Olson, W.W., Abraham, M.A., 2000. Reaction pathways and kinetics in the degradation of forging lubricants. Ind. Eng. Chem. Res. 39, 2837-2842. Nagaveni, K., Hegde, M.S., Ravishankar, N., Subbanna, G.N., and Madras, G., 2004. Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity. Langmuir 20, 2900-2907. Nagaveni, K., Sivalingam, G., Hegde, M.S., Madras, G., 2004. Photocatalytic degradation of organic compounds over combustion-synthesized nano-TiO2. Environ. Sci. Technol. 38, 1600-1604. Nagaveni, K., Sivalingam, G., Hegde, M.S., Madras, G., 2004. Solar photocatalytic degradation of dyes: high activity of combustion synthesized nano TiO2. Appl. Catal. B: Environ. 48, 83-93. Nahar, M.S., Hasegawa, K., Kagaya, S., 2006. Photocatalytic degradation of phenol by visible light-responsive iron-doped TiO2 and spontaneous sedimentation of the TiO2 particles. Chemosphere 65, 1976-1982. O''Donoghue, M., 1983. A guide to Man-made Gemstones (in english). Great Britain: Van Nostrand Reinhold Company, 40–44. Ollis, F., Pelizzetti, E., Serpons, N., 1991. Destruction of water contaminants. Environ. Sci. Technol. 25, 1523-1529. Ollis, D.F., Al-Ekabi, H., 1993. eds. Photocatalytic purification and treatment of water and air. Elsevier, Amsterdam. Ohno, T., Akiyoshi, M., Umebayashi, T., Asai, K., Mitsui, T., Matsumura, M., 2004. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl. Catal. A: Gen. 265, 115–121. Okamoto, K., Yamamoto, Y., Tanaka, H., Tanaka, M., 1985. Heterogeneous photocatalytic decomposition of phenol over TiO2 powder. Bull. Chem. Soc. Jpn. 58, 2015-2022. Ormad, M.P., Ovelleiro, J.L., Kiwi, J., 2001. Photocatalytic degradation of concentrated solutions of 2,4-dichlorophenol using low energy light identification of intermediates. Appl. Catal. B: Environ. 32, 157-166. Park, H.K., Kim, D.K., Kim, C.H., 1997. Effect of solvent on titania particle formation and morphology in thermal hydrolysis of TiCl4. J. Am. Ceram. Soc. 80, 743-749. Rivera, A.P., Tanaka, K., Hisanaga, T., 1993. Photocatalytic degradation of pollutant over TiO2 in different crystal structures. Appl. Catal. B: Environ. 3, 37-44. Romero, M., Blanco, J., Sánchez, B., Vidal, A., Malato, S., Cardona, A.I., Garcia, E., 1999. Solar photocatalytic degradation of water and air pollutants: challenges and perspectives. Sol. Energy 66, 169-182. Rachel, A., Subrahmanyam, M., Boule, P., 2002. Comparison of photocatalytic efficiencies of TiO2 in suspended and immobilized form for the photocatalytic degradation of nitrobenzenesulfonic acids. Appl. Catal. B: Environ. 37, 301-308. Serpone, N., Lawless, D., Khairutdinov, R., 1995. Size effects on the photophysical properties of colloidal anatase TiO2 particles. J. Phys. Chem. 99, 16646-16654. Shinoda, K., Friberg, S., 1986. Emulsions and solubilization. New York: Wiley, pp. 16. Stefan, M.I., Bolton, J.R., 1998. Mechanism of the degradation of 1,4-dioxane in dilute aqueous solution using the UV/Hydrogen peroxide process. Environ. Sci. Technol. 32, 1588-1595. Saha, N.C., Bhunia, F., Kaviraj, A., 1999. Toxicity of phenol to fish and aquatic ecosystems. Bull. Environ. Contam. Toxicol. 63, 195-202. Sun, B., Vorontsov, A.V., Smirniotis, P.G., 2003. Role of platinum deposited on TiO2 in phenol photocatalytic oxidation. Langmuir 19, 3151-3156. Sivalingam, G., Nagaveni, K., Hegde, M.S., Madras, G., 2003. Photocatalytic degradation of various dyes by combustion synthesized nano anatase TiO2. Appl. Catal. B: Environ. 45, 23-38. Sobczyński, A., Duczmal, Ł., Zmudziński, W.J., 2004. Phenol destruction by photocatalysis on TiO2: an attempt to solve the reaction mechanism. J. Mol. Catal. A: Chem. 213, 225-230. Santos, A., Yustos, P., Quintanilla, A., García-Ochoa, F., Casas, J.A., Rodríguez, J.J., 2004. Evolution of toxicity upon wet catalytic oxidation of phenol. Environ. Sci. Technol. 38, 133-138. Sui, X., Chu, Y., Xing, S., Yu, M., Liu, C., 2004. Self-organization of spherical PANI/TiO2 nanocomposites in reverse micelles. Colloid Surface A 251, 103-107. Turchi, C.S., Ollis, D.F., 1990. Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. J. Catal. 122, 178-192. Thornton, T.D., Savage, P.E., 1992. Phenol oxidation pathways in supercritical water. Ind. Eng. Chem. Res. 31, 2451-2456. Theurich, J., Lindner, M., Bahnemann, D.W., 1996. Photocatalytic degradation of 4-chlorophenol in aerated aqueous titanium dioxide suspensions: a kinetic and mechanistic study. Langmuir 12, 6368-6376. Tišler, T., Zagorc-Končan, J., 1997. Comparative assessment of toxicity of phenol, formaldehyde, and industrial wastewater to aquatic organisms. Water Air Soil Poll. 97, 315-322. Vorkapic, D., Matsoukas, T., 1998. Effect of temperature and alcohols in the preparation of titania nanoparticles from alkoxides. J. Am. Ceram. Soc. 81, 2815-2820. Vautier, M., Guillard, C., Herrmann, J.-M., 2001. Photocatalytic degradation of dyes in water: case study of indigo and of indigo carmine. J. Catal. 201, 46-59. Wu, J., 1999. The fineness of ATH and its application in nonhalogen flame retardant technique. Chem. Ind. Eng. Prog., 2, http://www.dfmg.com.tw/liture/china/% A4% C6%A4u% B6i%AEi/990215.htm, visited in August 2006. Wang, C.-C., Zhang, Z., Ying, J.Y., 1997. Photocatalytic decomposition of halogenated organics over nanocrystalline titania. Nanostruct. Mater. 9, 583-586. Wang, W., Serp, P., Kalck, P., Luís Faria, J., 2004. Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol-gel method. Appl. Catal. B: Environ. 56, 305-312. Yeber, M.C., Rodríguez, J., Freer, J., Baeza, J., Durán, N., Mansilla, H.D., 1999. Advanced oxidation of a pulp mill bleaching wastewater. Chemosphere 39, 1679-1688. Yuan, G., Keane, M.A., 2003. Liquid phase catalytic hydrodechlorination of 2,4-dichlorophenol over carbon supported palladium: an evaluation of transport limitations. Chem. Eng. Sci. 58, 257-267. Yang, G.-J., Li, C.-J., Han, F., Ohmori, A., 2004. Microstructure and photocatalytic performance of high velocity oxy-fuel sprayed TiO2 coatings. Thin Solid Films 466, 81-85. Zhang, D., Qi, L., Ma, J., Cheng, H., 2002. Formation of crystalline nanosized titania in reverse micelles at room temperature. J. Mater. Chem. 12, 3677-3680. Zhu, H.Y., Li, J.-Y., Zhao, J.-C., Churchman, G.J., 2004. Photocatalysts prepared from layered clays and titanium hydrate for degradation of organic pollutants in water. Appl. Clay Sci. 28, 79-88. Zazo, J.A., Casas, J.A., Mohedano, A.F., Gilarranz, M.A., Rodríguez, J.J., 2005. Chemical pathway and kinetics of phenol oxidation by fenton’s reagent. Environ. Sci. Technol. 39, 9295-9302.
|