跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/13 07:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張鐵諺
研究生(外文):Tie-Yan Chang
論文名稱:適用於DVB-H接收系統之十位元30-MS/s管線式類比數位轉換器與混合電壓共容輸出入單元設計
論文名稱(外文):A 10-bit 30-MS/s Pipeline ADC for DVB-H Receiver Systems and Mixed-Voltage Tolerant I/O Cell Design
指導教授:王朝欽
指導教授(外文):Chua-Chin Wang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:69
中文關鍵詞:類比數位轉換器輸出入單元混合電壓管線式
外文關鍵詞:Mixed-VoltagePipelineADCI/O Cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:202
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文的第一部份我們提出了一個適用於手持式數位電視(digital video broadcasting over handheld, DVB-H)系統之十位元、30 MHz取樣頻率的管線式類比數位轉換器。此類比數位轉換器是採用每級為1.5-bit之管線式架構。提出的設計在0.18 um CMOS製程下實現,差動輸入峰對峰範圍為2 V,而且佈局後模擬結果顯示當輸入為700 kHz的全擺幅正弦波時可以得到57.85 dBc的SFDR。在3.3 V的供應電壓下,最大消耗功率為37 mW,而晶片核心面積為0.27 mm2。
論文第二個部分中我們描述了一個使用典型CMOS 2P4M 0.35 um製程所製作之完全混合電壓共容輸出入單元設計。不同於傳統混合電壓共容輸出入單元,本設計可以傳送與接收的電壓訊號範圍為5/3.3/1.8 V。藉由在輸出級使用堆疊式PMOS與堆疊式NMOS以及利用電壓準位轉換器來提供堆疊式PMOS閘極適當之控制電壓,則閘極氧化層過度應力與熱載子降低等問題將可避免。並且使用閘極追蹤與浮動N型井電路來移除不預期之漏電流路徑。當負載電容為20 pF而且提供給I/O的供應電壓為5/3.3/1.8 V時,本設計的最快傳輸速度分別為103/120/84 Mbps。
The first topic of this thesis proposes a 10-bit, 30 Msample/s pipeline analog-to-digital converter (ADC) suitable for digital video broadcasting over handheld (DVB-H) systems. The ADC is based on the 1.5-bit-per-stage pipeline architecture. The proposed design is implement- ed by 0.18 um CMOS technology. The input range is 2 V peak-to-peak differential signals, and the post-layout simulation result shows that the spurious-free dynamic range (SFDR) is 57.85 dBc with a full-scale sinusoidal input at 700 KHz. The maximum power consumption is 37 mW given a 3.3 V power supply. The core area is 0.27 mm2.
The second topic is to propose a fully mixed-voltage-tolerant I/O cell implemented using typical CMOS 2P4M 0.35 um process. Unlike traditional mixed-voltage-tolerant I/O cell, the proposed design can transmit and receive the digital signals with voltage levels of 5/3.3/1.8 V. By using stacked PMOS and stacked NMOS at the output stage and a voltage level converter providing appropriate control voltages for the gates of the stacked PMOS, the gate-oxide overstress and hot-carrier degradation are avoided. Moreover, gate-tracking and floating N-well circuits are used to remove the undesirable leakage current paths. The maximum transmitting speed of the proposed I/O cell is 103/120/84 Mbps for the supply voltage of I/O cell at 5/3.3/1.8 V, respectively, given the load of 20 pF.
目錄
摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 ix
第一章 概論 1
1.1 研究動機 1
1.2 文獻探討 2
1.2.1 適用於DVB-H接收系統之十位元30-MS/s管線
式類比數位轉換器 2
1.2.2 混合電壓共容輸出入單元設計 4
1.3 論文大綱 6
第二章 適用於DVB-H接收系統之十位元30-MS/s管線式類比
數位轉換器 7
2.1 簡介 7
2.2 電路架構與原理說明 8
2.2.1 S/H電路 9
2.2.2 1.5-bit ADC stage電路 12
2.2.3 動態比較器電路 15
2.2.4 錯誤更正電路 16
2.3 模擬結果 17
2.3.1 DNL/INL模擬結果 17
2.3.2 SFDR模擬結果 18
2.4 預計規格與比較 19
2.4.1 預計規格列表 19
2.4.2 效能比較 19
2.5 晶片佈局 20
2.5.1 佈局考量 20
2.5.2 佈局圖 21
2.6 晶片量測與討論 22
2.6.1 S/H電路量測 23
2.6.2 結論與討論 25
第三章 混合電壓共容輸出入單元設計 26
3.1 簡介 26
3.2 電路架構與原理說明 27
3.2.1 預先驅動電路 29
3.2.2 輸入級電路 29
3.2.3 輸出級電路 30
3.2.4 閘極追蹤電路 31
3.2.5 浮動N型井電路 31
3.2.6 電壓準位轉換器電路 32
3.2.7 靜態放電(Electrostatic Discharge, ESD)防護能
力 34
3.3 模擬結果 35
3.3.1 HSPICE模擬結果 35
3.4 預計規格與比較 38
3.4.1 預計規格列表 38
3.4.2 效能比較 38
3.5 晶片佈局 39
3.5.1 佈局考量 39
3.5.2 佈局圖 40
3.6 晶片量測與討論 41
3.6.1 Vg1電壓訊號量測 41
3.6.2 Vg2電壓訊號量測 43
3.6.3 VC2電壓訊號量測 45
3.6.4 輸出訊號量測 46
3.6.5 輸入級電路訊號量測 47
3.6.6 量測規格列表 48
3.6.7 結論與討論 49
第四章 結論與成果 51
參考文獻 53
[1]www.dvb.org

[2]R. van de Plassche, “CMOS integrated analog-to-digital and digital-to-analog converter,” Kluwer Academic, 2nd Edition, 2003.
[3]B. Razavi, “Principles of data conversion system design,” IEEE Press, 1995.
[4]J. Li, J. Zhang, B. Shen, X. Zeng, Y. Guo, and T. Tang, “A 10bit 30Msps CMOS A/D converter for high performance video applicati- ons,” 2005 Proceedings of the 31st European Solid-state Circuits Conference, (ESSCIRC 2005), pp. 523-526, Sept. 2005.
[5]M. Mohajerin, C. Chen, and E. Abdel-Raheem, “A new 12-b 40 MS/s, low-power, low-area pipeline ADC for video analog front ends,” 2005 IEEE Pacific Rim Conference on Communications, Co- mputers and Signal Processing, (PACRIM 2005), pp. 597-600, Aug. 2005.
[6]O. A. Adeniran, A. Demosthenous, C. Clifton, S. Atungsiri, and R. Soin, “A CMOS low-power ADC for DVB-T and DVB-H systems,” Proceedings of the 2004 International Symposium on Circuits and Systems, (ISCAS ''04), vol. 1, pp. I-209 - I-212, May 2004.
[7]T. B. Cho, and P. R. Gray, “A 10 b, 20 Msample/s, 35mW pipeline A/D converter,” IEEE J. of Solid-State Circuits, vol. 30, no. 3, pp. 166-172, March 1995.
[8]S. H. Lewis, “Optimizing the stage resolution in pipelined, multistage, analog-to-digital converters for video-rate applications,” IEEE Trans. on Circuits and Systems II, vol.39, no. 8, pp. 516-523, Aug. 1992.
[9]K. El-Sankary, A. Kassem, R. Chebli, and M. Sawan, “Low power, low voltage, 10bit-50MSPS pipeline ADC dedicated for front-end ultrasonic receivers,” Microelectronics, The 14th International Conf- erence on 2002-ICM , pp. 219-222, Dec. 2002.
[10]David Johns, and Ken Martin, “ANALOG INTEGRATED CIRCUIT DESIGN,” John Wiley, 1st Edition, 1997.
[11]Z. Tao, “A Low Voltage High-precision Sample-and-hold Circuit,” Proceedings of the Connecticut Symposium on Microelectronics & Optoelectronics, pp. O15-1-O15-4, Storrs, CT, April 2001.
[12]鄭光偉, “一伏十位元CMOS導管式類比數位轉換器,” 國立台灣大學, 2002.
[13]A. M. Abo, and P. R. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter,” IEEE J. of Solid-State Circuits, vol. 34, no. 5, pp. 599-606, May 1999.
[14]C.-H. Chuang, and M.-D. Ker, “Design on mixed-voltage-tolerant I/O interface with novel tracking circuits in a 0.13-um CMOS techn- ology,” in Proc. of IEEE Int. Symp. on Circuits and Systems, vol. 2, pp. 577-580, May 2004.
[15]T. Furukawa, D. Turner, S. Mittl, M. Maloney, R. Serafin, W. Clark, J. Bialas, L. Longenbach, and J. Howard, “Accelerated gate-oxide breakdown in mixed-voltage I/O circuits,” in Proc. of IEEE Int. Symp. on Reliability Physics, pp. 169-173, April 1997.
[16]E. Takeda, and N. Suzuki, “An empirical model for device degradati- on due to hot-carrier injection,” IEEE Electron Device Letter, vol. 4, pp. 111-113, 1983.
[17]M. J. M. Pelgrom, and E. C. Dijkmans, “A 3/5 V compatible I/O buffer,” IEEE J. of Solid-State Circuits, vol. 30, no. 7, pp. 823-825, July 1995.
[18]M.-D. Ker, and C.-S. Tsai, “Design of 2.5V/5V mixed-voltage CMOS I/O buffer with only thin oxide device and dynamic n-well bias circuit,” in Proc. IEEE Int. Symp. on Circuits and Systems, vol. 5, pp. V-97 – V-100, May 2003.
[19]M.-D. Ker, S.-L. Chen, and C.-S. Tsai, “Overview and design of mi- xed-voltage I/O buffers with low-voltage thin-oxide CMOS transis- tors,” IEEE Tran. On Circuits and Systems I: Regular Paper, vol. 53, no. 10, pp. 1934-1945, Sep. 2006.
[20]M.-D. Ker, and S.-L. Chen, “Design of mixed-voltage I/O buffer by using NMOS-blocking technique,” IEEE J. of Solid-State Circuits, vol. 41, no. 10, pp. 2324-2333, Oct. 2006.
[21]M.-D. Ker, and C.-H. Chung, “Electrostatic discharge protection for design for mixed-voltage CMOS I/O buffers,” IEEE J. of Solid-State Circuits, vol. 37, no. 8, pp. 1046-1055, Aug. 2002.
[22]C.-C. Wang, J.-M. Huang, and T.-Y. Zhang, “10-Bit 30-MS/s low power pipeline ADC for DVB-H receiver systems,” 2006 Workshop on Consumer Electronics and Signal Processing (WCEsp 2006), E0X006, CD-ROM version, Nov. 2006.
[23]C.-C. Wang, T.-J. Lee, and T.-Y. Chang, “Mixed-voltage-tolerant I/O buffer design,” International Symposium on Integrated Circuits 2007 (ISIC 2007), Paper ID:conf103a82, accepted, Sep. 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊