跳到主要內容

臺灣博碩士論文加值系統

(3.236.68.118) 您好!臺灣時間:2021/07/31 20:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃建儒
研究生(外文):Huang Chien-Ju
論文名稱:試題反應局部獨立性的偵測指標之模擬研究-Speedtest與GPCM資料探討
論文名稱(外文):Simulation Study on Detection for Local Dependence Indices of Speed Test and GPCM
指導教授:林原宏林原宏引用關係
學位類別:碩士
校院名稱:國立臺中教育大學
系所名稱:教育測驗統計研究所
學門:教育學門
學類:教育測驗評量學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:90
中文關鍵詞:試題反應理論局部獨立性多向度廣義部份給分模式
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用電腦模擬資料之分析,探討試題在違反局部獨立性的兩種情境下,就Kim, Cohen, and Lin (2005)所提出的X2、G2、Q3、Zd 等四個多元計分局部獨立性偵測指標,分析此四個指標的偵測表現。
本研究針對兩種可能違反局部獨立性情境進行模擬研究。第一種模擬研究為一般部分給分模式下之多向度多元計分資料,影響局部獨立性因子為:1.試題數;2.向度相關程度;3.反應類別數。第二種模擬研究為二元計分速度測驗資料,影響局部獨立性因子為:1.題數;2.向度數;3.遺漏加權比率。本研究比較在不同影響局部獨立因子之組合下,四個指標違反虛無假設之比率,並分析四個指標的局部獨立性偵測結果。本研究的結果發現:
一、四個偵測指標X2 ,G2 ,Q3 ,Zd 均可偵測出違反局部獨立性的試題配對。
二、第一種模擬情境中,X2、G2 指標偵測違反局部獨立性的結果是相近的,而四個指標中,Zd指標能較靈敏地偵測違反局部獨立性的試題,Q3指標則最差,在試題數、向度相關程度與反應類別數三種因子中,以試題數影響指標偵測結果最大。
三、第二種模擬情境中,隨著題數、向度數和遺漏加權比率的增加,四種指標違反虛無假設的比率也會增加。其中 X2、G2指標在題數較少情形下,可靈敏地偵測出違反局部獨立性的試題,而Zd則較會受遺漏加權比率影響,三種因子中以題數影響指標偵測結果最大。
根據結果與發現,研究者提出測驗實務資料分析以及未來進階研究之相關建議。
The purpose of this study is to investigate the detection performance of local independence indicesX2、G2、Q3、Zd by data simulation. These four indices were provided by Kim, Cohen and Lin (2005).
Two simulation situations are considered in the study. The first one is for multidimensional and polytomous items. The simulated factors include number of items, correlation between dimensions and response categories. The second one is for dichotomous items with two dimensions on speed test. The simulated factors include number of items, number of dimensions and ration of missing items. The comparisons between four indices within varied simulated situations are discussed.
The results of the simulations are depicted as follows.
1. All four indices show that these indices could detect the violation of local independence sensitively.
2. In first one simulation, the results of ,X2、G2 detect the violation of local independence are quite similar. The Zd can detect the violation of local independence sensitively. However, Q3 detect the violation of local independence is not so sensitive. And the factor, number of items, affects the results greatly.
3. In the second simulation, the violations of local independence increase as the number of items, number of dimensions and ratio of missing items increase. X2、G2 can detect the local independence sensitively for small number of items. However, Zd will be affected greatly by the ratio of missing items. And number of items affects the results the most.
Based on the findings and results, some recommendations suggestions for future research are discussed.
封面
中文摘要
Abstract
授權書
簽署人須知
謝辭
目錄
表目錄
圖目錄
第一章 緒論
第一節 研究動機
第二節 研究目的
第三節 名詞釋義
第二章 文獻探討
第一節 試題反應理論.
第二節 多向度的意義及相關研究
第三節 局部獨立性的假設及其意義
第四節 局部獨立性之偵測指標
第三章 研究方法
第一節 研究架構
第二節 研究工具
第三節 資料模擬流程
第四章 研究結果與討論
第一節 局部獨立虛無假設模擬結果分佈圖
第二節 多元計分的局部獨立性偵測指標之模擬結果
第三節 二元計分速度測驗的局部獨立性偵測指標之模擬結果
第五章 研究結論與建議
第一節 結論
第二節 建議
參考文獻
中文部份
英文部分
1.余民寧(1991)。IRT學理與應用。取自http://www.edutest.com.tw/e-rt/irt.htm.
2.李金泉(1992)。SAS/PC實務與應用統計分析。台北市:松崗電腦圖書資料股份有限公司。
3.林清山(1992)。心理與教育統計學。台北:東華書局。
4.林原宏(2006)。數學試題的局部獨立性與題組反應模式:兼論其在數學考卷的評析與檢驗。數學考卷編製暨評析研討會。台中市:國立台中教育大學。
5.陳柏熹(2005)。電腦化適性測驗的理論與研究。國家精英季刊,1(1),157-174。
6.趙素珍(1998)。IRT軟體估計精準度之比較。國立台中教育大學國民教育研究所碩士論文。
1.Adam, R. J., Wilson, M., & Wang, W. C. (1997). The multidimensional random coefficients multinomial logit model. Applied Phsychological Measurement,21(1), 1-12.
2.Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika, 43, 561-573.
3.Bao, H., & Mislevy, R. J. (2004). Assessing local item dependence in building explanation tasks. Department of Measurement, Statistics & Evaluation, University of Maryland, College Park.
4.Birnbaum, A. (1968). Some latent trait models and their user in inferring an examinee’s ability. In F. M. Lord & M. R. Novick, Statistical theories of mental rest scores (pp. 397-479). Reading, MA: Addison-Wesley.
5.Bock, R. D. (1972). Estimating item parameters and latent ability when the response are scored in two or more nominal categories. Psychometrika, 37, 29-51.
6.Chen, W. H., & Thissen, D. (1997). Local dependence indexes for item pairs using item response theory. Journal of Educational and Behavioral Statistics, 22, 265-289.
7.Choppin, B. (1983). A two-parameter latent trait model. (CSE Report No. 197). Los Angeles. CA: University of California, Center for the Study of Evaluation, Graduate School of Education.
8.Douglas, J., Kim, H. R., Habing, B., & Gao, F. (1998). Investigating local dependence with conditional functions. Journal of Educational and Behavioral Statistics, 23(2), 129-151.
9.Ferrara, S., Huynh, H., & Baghi, H. (1997). Contextual characteristics of locally dependent open-ended item clusters in a large-scale performance, Applied Measurement in Education, 10(2), 123-144.
10.Ferrara, S., Huynh, H., & Michaels, H. (1999). Contextual explanations of local dependence in item clusters in a large scale hands-on science performance assessment. Journal of Educational Measuremet, 36(2), 119-140.
11.Jiao, H., & Kamata, A. (2003). Model comparisons in the presence of local item dependence. Paper presented at the Annual Meeting of the American Educational Research Association, Chicago, IL. April 21-25, 2003.
12.Keller, L. A., Swaminathan , H., & Sireci, S. G. (2003). Evaluating scoring procedures for context-dependent item sets1. Applied Measurement in Education, 16(3), 207-222.
13.Kim, S. H., Cohen, A. S., & Lin, Y. H. (2005). LDIP: A computer program for local dependence indices for polytomous items [Software and Manual]. Athens, GA: University of Georgia.
14.Kromrey, J. D., Parshall, C. G., Chason, W. M., & Yi, Q. (1999). Generating item response based on multidimensional item response theory. The 24-rd SAS® Users Group International(SUGI) Conference, 241-246.
15.Lawley, D. N. (1943). On problems connected with item selection and test construction. Proceedings of the Royal Society of Edinburgh, 62-A, 74-82.
16.Lee, Y. W. (2004). Examining passage-related local item dependence (LID) and measurement construct using statistics in an EFL reading comprehension test. Educational Testing Service, NJ: Princeton.
17.Lin, Y. H., Kim, S. H., & Cohen, A. S. (2006). Local dependence indices and detection investigation for polytomous items. Paper Presented on the 71st Annual Meeting of the Psychometric Society. Montreal, Canada.
18.Lord, F. M. (1952). A theory of test scores. Psychometrika Monograph No. 7, 17.
19.Lord, F. M. (1980). Applications of item response theory to practical testing problems. Hillsdale, NJ: Lawrence Erlbaum Associated
20.Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149-174.
21.Masters, G. N., & Wright, B. D. (1984). The essential process in a family of measurement models. Psychometrika, 49, 529-544.
22.Muraki, E. (1996). RESGEN: item response generator [Software and Manual].
23.Muraki, E. (1997). A generalized partial credit model. In W. J. van der Linden & R. K. Hambleton (Eds.), Handbook of modern item response theory (pp.153-164). New York: Springer-Verlag.
24.Muraki, E., & Bock, R. D. (2003) PARSCALE for Windows [Software and Manual].
25.Rasch, G. (1960). Probabilistic models for some intelligence and attainment test. Conpenhagen: Danish Institute for Educational.
26.Reckase, M. D. (1985). The difficulty of test items that measure more than one ability. Paper presented at the annual meeting of the American Educational Research Association, Chicago, IL.
27.Reckase, M. D. (1997). A linear logistic multidimensional model for dichotomous scored items. In W. J. van der Linden & R. K. Hambleton (Eds.), Handbook of modern item response theory (pp.271-286). New York: Springer-Verlag.
28.Samejima, F. (1969). Estimation of latent ability using a pattern of graded scores. Psychometrika Monograph No. 17, 34.
29.Samejima, F. (1972). A general model for free-response data. Psychometrika Monograph No. 18.
30.Swaminathan, S., & Bawa, K. (2005). Category-specific coupon proneness: The impact of individual characteristics and category-specific variables. Journal of retailing, 81(3), 205-214.
31.Sympson, J. B. (1983). A new IRT model for calibrating multiple choice items. Paper presented at the annual meeting of the Psychometric Society, Los Angeles, CA.
32.Thissen, D., & Steinberg, L. (1984). A response model for multiple choice items. Psychometrika, 49, 501-519.
33.Thissen, D., & Steinberg, L. (1986). A taxonomy of item response models. Psychometrika, 51, 567-577.
34.Tucker, L. R. (1946). Maximum validity of a test with equivalent items. Psychometrika, 11, 1-13.
35.Uebersax, J. S. (1999). Probit latent class analysis with dichotomous or ordered category measures: conditional independence/dependence models. Applied Psychological Measurement, 23(4), 283-297.
36.Yen, W. M. (1981). Using simulation results to choose a latent trait model. Applied Psychological Measurement, 5, 245-262.
37.Yen, W. M. (1984). Effects of local item dependence on the fit and equating performance of the three-parameter logistic model. Applied Psychological Measurement, 8, 125-145.
38.Yen, W. M. (1993). Scaling performance assessment: strategies for managing local item dependence. Journal of Educational Measurement, 30, 187-213.
39.van der Linden, W. J., & Hambleton, R. K., Eds. (1996), Handbook of modern item response theory. New York: Springer-Verlag.
40.van den Wollenberg, A. L. (1982). Two text statistics for the Rasch model. Psychometrika, 47, 123-140.
41.Wang, W. C., & Wilson, M. (2005). Exploring local item dependence using a random-effect facet model. Applied Psychological Measurement, 29(4), 296-318.
42.Wilson, M., & Adam, R. J. (1995). Rasch models for item boundless. Psychometrika, 60(2), 181-198.
43.Winsberg, S., Thissen, D., & Wainer, H. (1983). Estimation of the form of the item characteristic curve using monotone splines. Paper presented at the annual meeting of the Psychometric Society, Los Angeles, CA.
44.Xie, Y. (2001). Dimensionality, Dependence, or Both? An Application of the Item Bundle Model to Multidimensional Data. Paper presented at the Annual Meeting of the American Educational Research Association, Seattle, WA.
45.Zenisky, A. L., Hambleton, R. K., & Sireci, S. G. (2000). Effects of local item dependence on the validity of IRT item, test, and ability statistics. Paper presented at the annual meeting of the National Council on Measurement in Education, New Orleans, LA.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top