跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/20 21:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳漢朗
研究生(外文):Han-Lang Wu
論文名稱:燃料電池質子交換膜用磺酸化聚醚醚酮之製備與性質研究
論文名稱(外文):Preparation and Properties of Sulfonated Poly(ether ether ketone) for Proton Conducting Membrane in Fuel Cell
指導教授:馬振基馬振基引用關係
指導教授(外文):Chen-Chi M. Ma
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:中文
論文頁數:189
中文關鍵詞:質子交換膜燃料電池磺酸化聚醚醚酮
外文關鍵詞:Proton Conducting MembraneFuel CellSulfonated Poly(ether ether ketone)
相關次數:
  • 被引用被引用:7
  • 點閱點閱:746
  • 評分評分:
  • 下載下載:153
  • 收藏至我的研究室書目清單書目收藏:2
本論文旨在研究磺酸化聚醚醚酮之製備方法,及其利用於燃料電池質子交換膜之可行性與相關性質。藉由後磺酸化步驟改質聚醚醚酮,隨著磺酸化程度增加,同時增加質子導電度。本研究發現,質子導電度的提昇會增加膜材對水或其他溶劑之膨潤程度,但降低膜材之尺寸安定性。為了要維持高質子導電度,同時降低膜材之含水率,本研究將磺酸化聚醚醚酮混摻不同的高分子來達成此目的。
本論文主要分為四部分,第一部份討論磺酸化聚醚醚酮之溶解度參數。研究結果發現,磺酸化聚醚醚酮的溶解度參數為26.4 J1/2 · cm-3/2與35.7 J1/2 · cm-3/2,與Nafion®同樣具有兩個溶解度參數(19.8 J1/2 · cm-3/2與35.3 J1/2 · cm-3/2)。由理論計算之磺酸化聚醚醚酮之溶解度參數為26.1 J1/2 · cm-3/2,這個數值與其中之一的實驗值相同。由理論之溶解度參數,經由Flory方程式可計算出理論之磺酸化聚醚醚酮在不同溶劑下之體積分率。當溶劑之溶解度參數小於35 J1/2 · cm-3/2,由van Krevelen方法推算之磺酸化聚醚醚酮,在不同溶劑下之體積分率與實驗值差異不大,但是當溶解度參數大於35 J1/2 · cm-3/2時則有明顯之差異,本論文認為這是來自於磺酸化基團存在的關係所造成。磺酸鈉鹽型態之磺酸化聚醚醚酮,相較原本之磺酸化聚醚醚酮,具有較低之溶劑膨潤程度。
本論文第二個部分探討磺酸化聚醚醚酮與聚醚碸聚摻合物,應用於質子交換膜之含水率、甲醇滲透率與質子導電度等性質。經過交錯極化魔角旋轉(magic angle spinning)之固態核磁共振儀分析,發現磺酸化聚醚醚酮之分子運動性會隨著聚醚碸添加量增加而降低。比較不同聚醚碸含量之聚摻合物玻璃轉移溫度,發現較不符合Fox方程式所預測的結果,而是相對地較符合Kwei方程式預測的結果,因此可知磺酸化聚醚醚酮與聚醚碸之間,可能存在特殊作用力(specific interaction)。本研究推測由於這特殊作用力,使得聚摻質子交換膜具有更低的甲醇滲透率與含水率。
本論文第三部分探討分別用聚乙烯砒咯烷酮(poly(vinylpyrrolidone) (PVP))、聚芳香族羥基醚氰苯(poly(arylene ether benzonitrile) (BPCN))、聚醯胺醯亞胺(poly (amide imide) (PAI)) 摻混磺酸化聚醚醚酮,探討磺酸化聚醚醚酮摻混不同含氮高分子,其膨潤程度之影響。第三部分又分為三小部分,第一小部分探討磺酸化聚醚醚酮與聚乙烯砒咯烷酮聚摻合物之質子傳導膜相關特性。研究發現,由於聚乙烯砒咯烷酮之高親水性,其形成之聚摻膜材之含水率,並不會隨著其含量增加而下降。然而,因為聚乙烯砒咯烷酮與磺酸化聚醚醚酮之間存在強特殊作用力,造成極低的甲醇滲透率。此外,因為高含水率,所以質子導電度並沒有明顯降低。當聚乙烯砒咯烷酮之含量為20 wt%時,具有最大的特殊作用力,使得聚摻膜材具有最低的甲醇膨潤率與甲醇滲透率。本研究同時利用這個比例的聚摻膜材進行膜電極組之組裝測試,並與商用材Nafion® 117做比較。相較於Nafion® 117,聚摻合膜材的開路電壓為0.72V,較Nafion® 117高(0.63V),且極化情形也較低,SPEEK在電壓為0.15V時,電流密度大於80 mA cm-2,而Nafion® 117在0.15V電壓下電流密度只有63 mA cm-2。
本論文第三部分中的第二小部分探討磺酸化聚醚醚酮混摻聚芳香族羥基醚氰苯。聚芳香族羥基醚氰苯是藉由2,6-雙氯苯腈(2,6-dichlorobenzonitrile)與雙酚(biphenol)聚合而成。本研究改變不同聚芳香族羥基之分子量,其分別為1,641,060及185,976 g mole-1。在相同的摻混重量百分比下,高分子量之聚芳香族羥基醚氰苯,對磺酸化聚醚醚酮膨潤程度之降低,較低分子量樣品明顯。透過霍式轉換紅外光譜研究,聚芳香族羥基醚氰苯與磺酸化聚醚醚酮之分子間作用力(inter molecular force)。結果顯示,聚芳香族羥基醚氰苯之氰基波峰有位移的現象。另外,酮基訊號之側波峰隨著聚芳香族羥基醚氰苯含量增加而有增大的趨勢,顯示磺酸化聚醚醚酮與聚芳香族羥基醚氰苯間存在較弱的分子作用力。另外,本研究同時討論磺酸化聚醚醚酮與聚芳香族羥基醚氰苯聚摻合物之熱性質,包含玻璃轉移溫度與熱重損失溫度,摻混30 wt. %聚芳香族羥基醚氰苯之磺酸化聚醚醚酮之玻璃轉移溫度,由196 oC下降至175 oC。
本論文第三部分之第三小部分探討磺酸化聚醚醚酮與聚醯胺醯亞胺聚摻合物之質子傳導膜相關性質。藉由固態核磁共振儀與霍式轉換紅外光譜鑑定其化學結構。探討聚摻膜材之溶解度參數對水或甲醇之膨潤程度之影響。此外,比較不同含量聚醯胺醯亞胺之聚摻膜材其水擴散係數與質子導電度之關聯性。相較於Nafion®,本研究所製備之聚摻膜材具有較低的甲醇滲透率與質子導電度。從質子甲醇選擇率(即質子導電度除於甲醇滲透率之比值)來看,本研究所製備之聚摻膜材之選擇率為3.46 x 104 S s cm-3,與Nafion® 3.30 x 104 S s cm-3相近。
本論文第四部分以SPEEK摻混二氧化矽之方式,藉由表面改質胺鹽二氧化矽與SPEEK間形成酸鹼作用力,藉此來降低膜材在甲醇溶液中的膨潤程度(swelling)。添加30 phr表面改質胺基二氧化矽之樣品,質子傳導度為0.026 S cm-1,而甲醇滲透率為4.71 cm2 s-1。
The objectives of this dissertation are the preparation and characterizations of proton exchange membrane in fuel cell utilizing sulfonated poly(ether ether ketone) (SPEEK) and its blend membranes. A post- sulfonation method was used to enhance the proton conductivity of SPEEK. Both water uptake and solvent uptake were increasing with the increasing of the degree of sulfonation. In order to reduce the swelling of the membrane at high proton conductivity, various polymers were blended with SPEEK.
There are four parts in this dissertation. The first part discusses the solubility parameter of SPEEK. SPEEK exhibited two solubility parameters, 26.4 and 35.7 J1/2 · cm-3/2, which was similar to that of Nafion®. Since Nafion® has two cohesive energy densities. The theoretical solubility parameter of SPEEK, 26.1 J1/2 · cm-3/2, has been determined using the van Krevelen’s method and was correlated to the experimental value. The theoretical volume fraction of SPEEK in the solvent was determined using the Flory’s equation. The trend of theoretical volume fraction of SPEEK was fit quite well with the experimental results when the solubility parameter of solvent was lower than 35 J1/2 · cm-3/2. The significant deviation of the experimental volume fraction of SPEEK in high solubility parameter was resulted from the presence of sulfonic acid group. SPEEK with sulfonated group in sodium form (SO3Na) exhibited the reduced solvent absorption in comparison with the one in acid form (SO3H).
The second part of this dissertation describes the preparation of polymer blends of SPEEK and poly (ether sulfone) (PES). The investigation on water uptake, methanol uptake, permeability and proton conductivity has been conducted. The spin-lattice relaxation time (T1ρH) in the rotating frame of PES/SPEEK phase was obtained from the results of cross-polarization magic angle spinning (CP/MAS) solid state 13C NMR. SPEEK blended with PES result in increasing T1ρH, indicating the molecular motion of polymer chain was reduced. The glass transition temperature of the PES/SPEEK blend membranes were predicted by the Kwei equation. PES plays an important role in reducing water uptake, methanol uptake and methanol permeability while enhancing the thermal stability of the blend membrane, which shows the feasibility for direct methanol fuel cell.
The third part of this dissertation was the investigation on the blend of SPEEK with nitrogen-containing polymers. The nitrogen-containing polymers used in this research were poly(vinylpyrrolidone) (PVP), poly(arylene ether benzonitrile) (BPCN), and Poly (amide imide) (PAI). The first sub-part is the SPEEK/PVP acid-base polymer blends, which was designed to reduce methanol uptake and to decrease methanol permeability while maintaining high proton conductivity. The acid-base interaction occurring on the sulfonic acid group and on the tertiary amide group was characterized by FT-IR and DMA. As the composition of PVP is lower than 20 wt. % in the blends, the acid-base interaction causes great reduction on methanol uptake and the methanol permeability, however, the proton conductivity is still high. In this work, membrane-electrode assemblies (MEAs) have been prepared for direct methanol fuel cell (DMFC) from both blend membrane and Nafion® 117. DMFC single cell performance was also evaluated. Results confirmed that SPEEK with the degree of sulfonation (DS) = 69% blended with PVP (Mn=1,300,000) at a ratio of 80/20 (w/w) exhibits higher open-circuit voltages (OCV), 0.73 V and lower polarization loss (0.15V, current density > 80 mA cm-2) than those of Nafion® 117 (0.15V, current density > 60 mA cm-2). The acid-base blend membrane will be suitable for DMFC application.
The second sub-part was the SPEEK blended with poly(arylene ether benzonitrile), BPCN, which was synthesized using 2,6-dichlorobenzonitrile and biphenol. Two molecular weights of BPCN 1,641,060 and 185,976 g mole-1 were synthesized by controlling the stoichiometry of the monomers and were blended with SPEEK. The higher the molecular weight of the BPCN in the blends, the lower the degree of swelling can be obtained. At the same ion exchange capacity, the SPEEK blended with high molecular weight of BPCN resulted in the lower water uptake, low swelling, low lambda value, and low methanol permeability comparing to the one with low molecular weight. The molecular interaction between SPEEK and BPCN was studied by FT-IR. From the increasing shoulder peak of carbonyl of SPEEK and the slightly shifted peak of nitrile of BPCN, it was suggested that the molecular interaction between these two functional groups were existed. The glass transition temperature and thermal stability of SPEEK/BPCN blends was also discussed in this study.
The third sub-part was the SPEEK blended with poly(amide imide), PAI, which was synthesized using 1,2,4-benzenetricarboxylic anhydride (BTBA) and 4,4’-methylenebis (phenyl isocyanate) (MBPI). SPEEK/PAI blend membranes were prepared and the properties were investigated by NMR, GPC, FT-IR and AFM. The chemical structures of PAI and SPEEK were characterized by using NMR and FT-IR. The adsorption of the SPEEK/PAI blend membrane of water or methanol solution was also characterized. The significant swelling of the blend membrane in concentrated methanol solution was explained by the solubility parameter. The water diffusion coefficient (DH2O) was related to the lambda value of the membrane. The SPEEK/PAI blend membrane had a lower proton conductivity and methanol permeability than that of Nafion® 117. Furthermore, the relative selectivity (proton conductivity divided by methanol permeability) of the SPEEK/PAI 70/30 w/w blend membrane was 3.46 x 104 S s cm-3, which is closed to that of Nafion® 117 (3.30 x 104 S s cm-3).
The fourth part describes the amine salt modified colloidal silica blended with SPEEK. By means of the acid-base interaction between the modified silica and SPEEK, the swelling and methanol uptake of the membranes were reduced. Although the proton conductivity was decreased up 50 %, the 80 % reduction was found in the methanol permeability. The composite membrane with 30 % amine salt modified silica is suitable for further DMFC application.
中文摘要 I
Abstract IV
謝誌 VII
目錄 VIII
圖目錄 XVI
表目錄 XIX

第一章 緒論 1
1-1 前言 1
1-2 研究目的與內容……………………………………………….5
1-2-1 研究目的………………………………………………….5
1-2-2 研究內容………………………………………………….7
1-3 參考文獻……………………………………………………...12
第二章 理論基礎與文獻回顧 13
2-1 離子傳遞機制(The ion migration mechanism) 14
2-2 高分子膜材對水之吸附與膨潤 18
2-3 商業化之燃料電池用質子交換膜………………………………...20
2-4 Nafion®的相關研究文獻………………………………………....21
2-4-1型態學(Morphology)…………………………………….21
2-4-2由XRD(X-ray diffarction)來觀測型態………………….23
2-4-3利用原子力顯微鏡(Atomic Force Microspectroscopy) 觀測型態……..………………………………………….25
2-4-4推測Nafion孔洞結構的方法…………………………..26
2-4-5確認球形型態的模型…………………………………...27
2-4-6 Nafion的介電性質—導電度與含水程度……………...28
2-4-7甲醇在Nafion中之輸送………………………………..29
2-4-8質子導電度 (Proton Conductivity)……………………..30
2-4-8-1不同含水程度下Nafion®的質子導電度………30
2-4-8-2 Nafion®在不同含水程度及溫度情況下之質子傳導性(conductance)……...………………………30
2-4-8-3 Nafion在水與甲醇溶液中的質子導電度…….31
2-4-8-4電滲透 (Electro-Osmosis)……………………..32
2-5主鏈含有芳香族與醚基之聚合物 33
2-5-1離子聚合物........................................................................35
2-5-2磺酸化聚醚醚酮 (Sulfonated poly(ether ether ketone), SPEEK)…………………..………………………………39
2-6 質子傳導膜專利整理 51
2-7 質子交換膜專利管理圖…………………………………….…....55
2-8質子交換膜技術表 60
2-9 參考文獻 67
第三章 磺酸化聚醚醚酮之膨潤行為與溶解度參數 74
3-1前言 74
3-2 研究內容 .75
3-2-1實驗藥品………………………………………...……….75
3-2-2製備SPEEK膜材………………………………………...75
3-2-3核磁共振儀(1H Nuclear Magnetic Resonance, NMR)......76
3-2-4 含水率與離子交換當量...................................................76
3-2-5 實驗流程圖……………………………………………...77
3-3結果與討論…………………………………………………….77
3-3-1 SPEEK的磺酸化………………………………………...77
3-3-2 SPEEK在純溶劑的膨潤行為…………………………...79
3-3-3 SPEEK在混合溶劑中的膨潤行為……………………...87
3-4 結論…………………………………………………...………88
3-5 參考文獻……………………………………………………...89
第四章 聚醚碸與磺酸化聚醚醚酮聚摻膜材之研究 92
4-1前言 92
4-2 實驗部分 93
4-2-1實驗藥品…………………………………………………93
4-2-2製備PES/SPEEK質子傳導膜..........................................93
4-2-3含水率、含甲醇率與尺寸變化率....................................94
4-2-4甲醇滲透率………………………………………………94
4-2-5質子導電度………………………………………………95
4-2-6碳核磁共振光譜 (13C CP/MAS NMR spectroscopy)…..96
4-2-7熱差卡式分析(Differential Scanning Calorimeter, DSC).96
4-2-8熱重損失分析儀(Thermogravimetric analysis, TGA)......97
4-2-9 實驗流程圖……………………………………………...97
4-3 結果與討論 97
4-3-1 含水率與含甲醇率的變化 98
4-3-2甲醇滲透率與質子導電度 101
4-3-3交錯極化固態核磁共振碳譜 103
4-3-4 PES/SPEEK聚摻之玻璃轉移溫度 105
4-3-5熱穩定度 107
4-4 結論 109
4-5參考文獻……………………………………………………...110
第五章 含氮高分子與磺酸化聚醚醚酮聚摻之研究 113
5-1前言 113
5-2聚乙烯砒咯烷酮與磺酸化聚醚醚酮聚摻之製備 與性質研究……………………………..…………………..…….118
5-2-1 實驗部分………………..………..………………….…118
5-2-1-1 實驗藥品……….......…...…………………………....118
5-2-1-2製備SPEEK/PVP聚摻質子傳導膜………………….118
5-2-1-3鑑定SPEEK/PVP聚摻合物…………………………118
5-2-1-3-1霍式轉換紅外線光譜………………...…….......…..119
5-2-1-3-2動態機械分析儀…………………...…...…………..119
5-2-1-3-3直接甲醇燃料電池單電池性能測試…………...….119
5-2-1-4 實驗流程圖……………………………………….…120
5-2-2結果與討論……………………….………………….……….....120
5-2-2-1 PEEK的磺酸化……………………………….……...120
5-2-2-2以FTIR鑑定SPEEK/PVP酸鹼作用力…….….…....121
5-2-2-3 SPEEK/PVP熱性質分析…………………………….123
5-2-2-4含水率與含甲醇率…………………………………...124
5-2-2-5甲醇滲透率…………………………………………..127
5-2-2-6質子導電度…………………………………………...128
5-2-2-7直接甲醇燃料電池單電池測試……………………...129
5-3聚芳香族羥基醚氰苯與磺酸化聚醚醚酮聚摻之合成 與性質研究 132
5-3-1實驗部分. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5-3-1-1實驗藥品……………………………………………...132
5-3-1-2聚芳香族羥基醚氰苯聚合方法……………………...132
5-3-1-3 SPEEK/BPCN聚摻質子傳導膜製備方法...………...133
5-3-2分子結構鑑定部分……………………………………..133
5-3-2-1固有黏度……………………………………………...134
5-3-2-2分子量測量--凝膠層析分析儀………………………134
5-3-2-3微觀結構--原子力顯微鏡……………………………134
5-3-2-4離子交換當量與Lambda值測試……………………134
5-3-2-5 實驗流程圖…………………………………...…......135
5-3-3結果與討論……………………………………………..135
5-3-3-1 SPEEK與BPCN之製備與分子結構鑑定………….135
5-3-3-2分子作用力鑑定--霍式轉換紅外光譜………………138
5-3-3-3 SPEEK/BPCN聚摻型態……………………………..139
5-3-3-4含水率、膨潤程度、離子交換當量、 l值與質子導電度..…………………………………..141
5-3-3-5甲醇滲透率…………………………………………..145
5-3-3-6玻璃轉移溫度………………………………………..145
5-3-3-7熱穩定度……………………………………………..146
5-4聚醯胺醯亞胺與磺酸化聚醚醚酮聚摻之合成與性質研究 149
5-4-1實驗部分. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5-4-1-1實驗藥品……………………………………………...149
5-4-1-2聚合聚芳香族羥基醚氰苯…………………………...149
5-4-1-3 SPEEK/PAI聚摻合物之質子傳導膜之製備………..150
5-4-1-4分子結構及性質鑑定部分…………………………..150
5-4-1-5 水擴散係數………………………………………….150
5-4-1-6 實驗流程圖………………………………………….152
5-4-3結果與討論……………………………………………..153
5-4-3-1磺酸化聚醚醚酮之製備……………………………...153
5-4-3-2聚醯胺醯亞胺聚摻合物之分子結構………………...153
5-4-3-3 SPEEK/PAI聚摻之含水率、膨潤程度、離子交換當量、l值…………………………………………………....155
5-4-3-4水分子擴散速率……………………………………..158
5-4-3-5微觀結構分析--SPM…..……………………………..159
5-4-3-6分子間作用力-- FTIR………………………………..161
5-4-3-7甲醇滲透率與質子導電度…………………………..162
5-5結論 164
5-6參考文獻 166
第六章 二氧化矽摻混磺酸化聚醚醚酮質子傳導膜之研究 171
6-1前言 171
6-2 研究內容 .173
6-2-1實驗藥品 ……………………………………...……….173
6-2-2製備SPEEK摻混表面改質胺鹽二氧化矽膜材………173
6-2-3 分子結構及性質鑑定部分…………………………….174
6-3結果與討論………………………………………………………..174
6-3-1磺酸化聚醚醚酮摻混表面改質胺鹽二氧化矽膜材
之型態…………………………………………………...174
6-3-2 膜材樣品之質子傳導度、含水率、甲醇滲透率…….175
6-4 結論……………………………………………………….…179
6-5 參考文獻…………………………………………………….180
第七章 總結論 181
附錄、已發表之相關著作一覽表 187
1. 葉俊毅,聚乙烯共乙烯醇摻合磷酸與硫酸薄膜性質探討,元智大學碩士論文,91年元月。
2. Fiona, M.G. Polymer Electrolytes, RSC Materials Monographs, UK, 1997.
3. Hu, Y.; Wang, Z.; Li, H.; Huang, X.; Chen, L. Ionic Conductivity and Association Studies of Novel RTMS Electrolyte Based on LiTFSI and Acetamide. Journal of The Electrochemical Society, 151(9) (2004) A1424-A1428.
4. Choi, P.; Jalani, N.H.; Datta, R. Thermodynamics and Proton Transport in Nafion I. Membrane Swelling, Sorption, and Ion-Exchange Equilibrium. Journal of The Electrochemical Society, 152(3) (2005) E84-E89.
5. Flory, P.J. Principles of Polymer Chemistry. Cornell University Press, Ithaca, NY (1953).
6. Freger, V. Elastic energy in microscopically phase-separated swollen polymer networks. Polymer, 43 (2002) 71-76.
7. Nafion® NE-112, NE-1135, N-115, N-117 Product Information, Du Pont. NAE101(Oct2000).
8. Meresi, G.; Wang, Y.; Bandis, A.; Inglefield, P. T.; Jones, A. A.; Wen, W.-Y. Morphology of dry and swollen perfluorosulfonate ionomer by fluorine-19 MAS, NMR and xenon-129 NMR. Polymer 42 (2001) 6153-6160.
9. Laporta, M.; Pegoraro, M.; Zanderighi, L. Recast Nafion-117 thin film from water solution. Macromolecular Materials and Engineering 282 (2000) 22-29.
10. Gebel, G. Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution. Polymer 41 (2000) 5829-5838.
11. Elliott, J. A.; Hanna, S.; Elliott, A. M. S.; Cooley, G. E. Interpretation of the Small-Angle X-ray Scattering from Swollen and Oriented Perfluorinated Ionomer Membranes. Macromolecules 33 (2000) 4161-4171.
12. McLean, R. Scott; Doyle, Marc; Sauer, Bryan B. Interpretation of the Small-Angle X-ray Scattering from Swollen and Oriented Perfluorinated Ionomer Membranes. Macromolecules 33 (2000) 4161-4171.
13. Divisek, J.; Eikerling, M.; Mazin, V.; Schmitz, H.; Stimming, U.; Volfkovich, Yu. M. A study of capillary porous structure and sorption properties of Nafion proton-exchange membranes swollen in water. Journal of the Electrochemical Society 145 (1998) 2677-2683.
14. Nemat-Nasser, Sia; Li, Jiang Yu. Electromechanical response of ionic polymer-metal composites. Journal of Applied Physics 87 (2000) 3321-3331.
15. http://www.psrc.usm.edu/mauritz/nafion.html
16. Brookman, P. J.; Nicholson, J. W. in: Developments in Ionic Polymers, vol. 2; eds. A. D. Wilson and H. J. Prosser, (Elsevier Applied Science Publishers: London , 1986) pp. 269-283.
17. Paddison, Stephen J.; Reagor, David W.; Zawodzinski, Thomas A., Jr. High frequency dielectric studies of hydrated Nafion. Journal of Electroanalytical Chemistry 459 (1998) 91-97.
18. Paddison, S. J.; Bender, G.; Kreuer, Klaus-Dieter; Nicoloso, N.; Zawodzinski, T. A., Jr. The microwave region of the dielectric spectrum of hydrated Nafion and other sulfonated membranes. Journal of New Materials for Electrochemical Systems 3 (2000) 291-300.
19. Ren, X.; Springer, T. E.; Gottesfeld, S. Water and methanol uptakes in Nafion membranes and membrane effects on direct methanol cell performance. Journal of the Electrochemical Society 147 (2000) 92-98.
20. Anantaraman, A. V.; Gardner, C.L. Studies on ion-exchange membranes. Part 1. Effect of humidity on the conductivity of Nafion®. Journal of Electroanalytical Chemistry 414 (1996) 115-120.
21. Cappadonia, Marcella; Wilhelm Erning, J.; Saberi Niaki, Seyedeh M.; Stimming, Ulrich. Conductance of Nafion 117 membranes as a function of temperature and water content. Solid State Ionics 77 (1995) 65-69.
22. Chen, R. S.; Jayakody, J. P.; Greenbaum, S. G.; Pak, Y. S.; Xu, G.; McLin, M. G.; Studies of water in Nafion membranes. Using deuteron and oxygen-17 nuclear magnetic resonance, and dielectric relaxation techniques. Journal of the Electrochemical Society 140 (1993) 889-95.
23. Zawodzinski, Thomas A., Jr.; Springer, Thomas E.; Davey, John; Jestel, Roger; Lopez, Cruz; Valerio, Judith; Gottesfeld, Shimshon. A comparative study of water uptake by and transport through ionomeric fuel cell membranes. Journal of the Electrochemical Society 140 (1993) 1981-1985.
24. Edmondson, C. A.; Stallworth, P. E.; Wintersgill, M. C.; Fontanella, J. J.; Dai, Y.; Greenbaum, S. G. Electrical conductivity and NMR studies of methanol/water mixtures in Nafion membranes. Electrochimica Acta 43 (1998) 1295-1299.
25. Fontanella, J. J.; Wintersgill, M. C.; Chen, R. S.; Wu, Y.; Greenbaum, S. G Charge transport and water molecular motion in variable molecular weight Nafion membranes: high pressure electrical conductivity and NMR. Electrochimica Acta 40 (1995) 2321-2326.
26. Chen, R. S.; Stallworth, P. E.; Greenbaum, S. G.; Fontanella, J. J.; Wintersgill, M. C. High pressure NMR and electrical conductivity studies in acid form NAFION membranes. Electrochimica Acta 40 (1995) 309-313.
27. Zawodizinski, T.A., J. Davey, J. V.; Gottesfeld, S. The water content dependence of electro-osmotic drag in proton-conducting polymer electrolytes. Electrochimica Acta 40 (1995) 297-302.
28. Ren, X.; Gottesfeld, S. Electro-osmotic Drag of Water in Poly(perfluoro sulfonic acid) Membranes. Journal of The Electrochemical Society 148 (2001) A87-A93
29. Michael, A.; Hickner, H. G.; Kim, Y.S.; Einsla, B.R.; McGrath, J.E. Alternative Polymer Systems for Proton Excahnge Membranes (PEM). Chemistry Review 104 (2004) 4587-4612.
30. Noshay, A.; Bobeson, L.M. Sulfonated polysulfone. Journal of Applied Polymer Science 20 (1976) 1885-1903.
31. Genova-Dimitrova, P.; Baradie, B.; Foscallo, D.; Poinsignon, C.; Sanchez, J. Y. Ionomeric membranes for proton exchange membrane fuel cell (PEMFC): sulfonated polysulfone associated with phosphatoantimonic acid. Journal of Membrane Science 185 (2001) 59-71.
32. Kerres, Jochen A. Development of ionomer membranes for fuel cells. Journal of Membrane Science 185 (2001) 3-27.
33. Kerres, J.; Cui, W.; Reichle, S., New sulfonated engineering polymers via the metalation route. I. Sulfonated poly(ethersulfone) PSU Udel® via metalation-sulfination-oxidation. Journal of Polymer Science: Part A: Polymer Chemistry 34 (1996) 2421–2438.
34. Kerres, J.A.; van Zyl, A.J. Development of new ionomer blend membranes, their characterization, and their application in the perstractive separation of alkenes from alkene-alkane mixtures. I. Polymer modification, ionomer blend membrane preparation, and characterization. Journal of Applied Polymer Science 74 (1999) 428–438.
35. Kerres, J.; Cui, W.; Reichle, S. New sulfonated engineering polymers via the metalation route. 1. Sulfonated poly(ethersulfone) PSU Udel® via metalation–sulfination–oxidation. Journal of Polymer Science: Part A: Polymer Chemistry 34 (1996) 2421–2438.
36. Kerres, J.; Cui, W.; Disson, R.; Neubrand, W. Development and Characterization of Crosslinked Ionomer Membranes Based Upon Sulfinated and Sulfonated PSU Crosslinked PSU Blend Membranes by Disproportionation of Sulfinic Acid Groups. Journal of Membrane Science 139 (1998) 211-225.
37. Cui, W.; Kerres, J.; Eigenberger G. Development and Characterization of Ion-Exchange Polymer Blend Membranes. Separation and Purification Technology 14 (1998) 145-154.
38. Jorissen, L.; Gogel, V.; Kerres, J.; Garche, J. New membranes for direct methanol fuel cells. Journal of Power Sources 105 (2002) 267-273.
39. Jin, X.; Bishop, M.T.; Ellis, T.S.; Karasz, F.E. A Sulphonated Poly(arylene Ether Ketone). Birtich Polymer Journal 17 (1985) 4-10.
40. Bishop, M.T.; Karasz, F.E.; Russo, P.S. Langley, K.H. Solubility and Properties of a Poly(aryl ether ketone) in Strong Acids. Macromolecules 18 (1985) 86-93.
41. Zimm, B.H. The Scattering of Light and the Radial Distribution Function of High Polymer Solutions Journal of Chemical Physics 16 (1948) 1093-1099..
42. Bailly, C.; Williams, D.J.; Karasz, F.E.; MacKnight, W.J. The Sodium Salts of Sulphonated Poly(aryl-ether-ether-ketone) (PEEK): Proparation and Characterization. Polymer 28 (1987) 1009-1016.
43. Karcha, R.J.; Porter, R.S. Miscible Blends of a Sulfonated Poly(aryl ether ketone) and Aromatic Polyimides. Journal of Polymer Science: Part B: Polymer Physics 27 (1989) 2153-2155.
44. Karcha, R.J.; Porter, R.S. Miscible Blends of a Sulfonated Poly(aryl ether ketone) and Aromatic Polyimides. Journal of Polymer Science: Part B: Polymer Physics 31 (1993) 821-830.
45. Leung, L.; Williams, D.J.; Karasz, F.E.; MacKnight, W.J. Miscible Blends of Aromatic Polybenzimidazoles and Aromatic Polyimides. Polymer Bulletin 16 (1986) 457-464.
46. Schneider, N. S.; Macknight, W. J.; Sung, N. H. Relaxation-coupled Diffusion in Several Elastomeric Materials. Polymeric Materials Science and Engineering (1988), 58, 957-61.
47. Olabisi, O.; Robeson, L.M.; Shaw, M.T. Polymer-polymer Miscibility, Academic Press, New York, 1979.
48. Shibuya, N.; Porter, R.S. Kinetics of PEEK Sulfonation in Concentrated Sulfuric Acid. Macromolecules 25 (1992) 6495-6499.
49. Luo, Y.; Huo, R.; Jin, X.; Karasz, F.E. Thermal Degradation of Sulfonated Poly(aryl ether ether ketone). Journal of Analytical and Applied Pyroylsis 34 (1995) 229-242.
50. Lu, X.; Weiss, R.A. Specific Interactions and Miscibility of Blends of Poly(e-caprolactam) and Sulfonated PEEK Ionomer. Journal of Polymer Science: Part B: Polymer Physics 34 (1996) 1795-1807.
51. Wang, F.; Chen, T.; Xu, J. Sodium Sulfonate-Functionalized Poly(ether ether ketone)s. Macromolecular Chemistry and Physics 199 (1998) 1421-1426.
52. Linkous, C.A.; Anderson, H.R.; Kopitzke, R.W.; Nelson, G.L. Development of New Proton Exchange Membrane Electrolytes for Water Electrolysis at Higher Temperatures International Journal of Hydrogen Energy 23 (1998) 525-529.
53. Cui, W., Kerres, J.; Eigenberger, G. Development and Characterization of Ion-exchange Polymer Blend Membranes Separation and Purification Technology 14 (1998) 145-154.
54. Kobayashi, T.; Rikukawa, M.; Sanui, K.; Ogata, N. Proton-Conducting Polymers Derived from Poly(ether-etherketone) and Poly(4-phenoxybenzoyl-1,4-phenylene). Solid State Ionics 106 (1998) 219-225.
55. Zaidi, S.M.J.; Mikhailenko, S.D.; Robertson, G.P.; Guiver, M.D.; Kaliaguine, S. Proton Conducting Composite Membranes from Polyether Ether Ketone and Heteropolyacids for Fuel Cell Applications. Journal of Membrane Science 173 (2000) 17-34.
56. Mikhailenko, S.D.; Zaidi, S.M.J.; Kaliaguine, S. Electrical Properties of Sulfonated Polyether Ether Ketone/Polyetherimide Blend Membranes Doped with Inorganic Acids. Journal of Polymer Science: Part B: Polymer Physics 38 (2000) 1386-1395.
57. Huang, R.Y.M.; Shao, P.; Feng, X.; Burns, C.M. Pervaporation Separation of Water/isopropanol Mixture Using Sulfonated Poly(ether ether ketone) (SPEEK) Membranes: Transport Mechanism and Separation Performance. Journal of Membrane Science 192 (2001) 115-127.
58. Mikhailenko, S.D.; Zaidi, S.M.J.; Kaliaguine, S. Sulfonated Polyether Ether Ketone Based Composite Polymer Electrolyte Membranes. Catalysis Today 67 (2001) 225-236.
59. Nan, C.W.; Smith, D.M. A.C. Electrical Properties of Composite Solid Electrolytes. Materials Science and Engineering B-Solid State Materials for Advanced Technology 10 (1991) 99-106.
60. Nan, C.W.; Liu, L.; Cai, N.; Zhai, J.; Ye, Y.; Lin, Y. H.; Dong, L. J.; Xiong, C. X. A Three-phase Magnetoelectric Composite of Piezoelectric Ceramics, Rare-earth Iron Alloys, and Polymer. Applied Physics Letters (2002), 81(20), 3831-3833.
61. Huang, R.Y.M.; Shao, P.; Burns, C.M.; Feng, X. Sulfonation of Poly(ether ether ketone) (PEEK): Kinetic Study and Characterization. Journal of Applied Polymer Science 82 (2001) 2651-2660.
62. Bowen, W.R.; Doneva, T.A.; Yin, H.B. Polysulfone-Sulfonated Poly(ether ether) Ketone Blend membranes: Systematic Synthesis and Characterization. Journal of Membrane Science 181 (2001) 253-263.
63. Kreuer, K.D. On the Development of Proton Conducting Polymer Membranes for Hydrogen and Methanol Fuel Cells. Journal of Membrane Science 185 (2001) 29-39.
64. Kreuer, K.D. On the Development of Proton Conducting Materials for Technological Applications. Solid State Ionics 97 (1997) 1-15.
65. Agmod, N. The Grotthuss Mechanism. Chemical Physics Letters 244 (1995) 456-462.
66. Tuckerman, M.E.; Marx, D.; Klein, M.L.; Parrinello, M. On the Quantum Nature of the Shared Proton in Hydrogen Bonds. Science 275 (1997) 817-820.
67. Kreuer, K.D. Proton Conductivity:Materials and Applications. Chemistry of Materials 8 (1996) 610-641.
68. Nunes, S.P.; Ruffann, B.; Rikowski, E.; Vetter, S.; Richau, K. Inorganic Modification of Proton Conductive Polymer Membranes for Direct Methanol Fuel Cells. Journal of Membrane Science 203 (2002) 215-225.
69. Wilhelm, F.G.; Punt, I.G.M.; van der Vegt, N.F.A.; Strathmann, H.; Wessling, M. Cation Permeable Membrane from Blends of Sulfonated Poly(ether ether ketone) and Poly(ether sulfone). Journal of Membrane Science 199 (2002) 167-176.
70. Manea, C.; Mulder, M. Characterization of Polymer Blends of Polyethersulfone/sulfonated Polysulfone and Polyethersulfone/sulfonated Polyetheretherketone for Direct Methanol Fuel Cell Application. Journal of Membrane Science 206 (2002) 443-453.
71. Robertson, G.P.; Mikhailenko, S.D.; Wang, K.; Xing, P.; Guiver, M.D.; Kaliaguine, S. Casting Solvent Interactions with Sulfonated Poly(ether ether ketone) During Proton Exchange Membrane Fabrication. Journal of Membrane Science 219 (2003) 113-121.
72. Ponce, M.L.; Prado, L.; Ruffmann, B.; Richau, K.; Mohr, R.; Nunes, S.P. Reduction of Methanol Permeability in Polyetherketone-heteropolyacid Membranes. Journal of Membrane Science 217 (2003) 5-15.
73. Drioli, E.; Regina, A.; Casciola, M.; Oliveti, A.; Trotta, F.; Massari, T. Sulfonated PEEK-WC Membranes for Possible Fuel Cell Application. Journal of Membrane Science 228 (2004) 139-148.
74. Xing., P.; Robertson, G.P.; Guiver, M.D.; Mikhailenko, S.D.; Kaliaguine, S. Sulfonated Poly(aryl ether ketone)s Containing Naphalene Moieties Obtained by Direct Copolymerization as Novel Polymers for Proton Exchange Membranes. Journal of Polymer Science: Part A: Polymer Chemistry 42 (2004) 2866-2876.
75. Gil, M.; Ji, X.; Li, X.; Na, H.; Hampsey, J.E.; Lu, Y. Direct Synthesis of Sulfonated Aromatic Poly(ether ether ketone) Proton Exchange Membranes for Fuel Cell Application. Journal of Membrane Science 234 (2004) 75-81.
76. Xing, P.; Robertson. G.P.; Guiver, M.D.; Mikhailenko, S.D.; Wang, K.; Kaliaguine, S. Synthesis and Characterization of Sulfonated Poly(ether ether ketone) for Proton Exchange Membrane. Journal of Membrane Science 229 (2004) 95-106.
77. Xing, P.; Robertson, G.P.; Guiver, M.D.; Mikhailenko, S.D.; Kaliaguine, S. Sulfonated Poly(aryl ether ketone)s Containing Hexafluoroisopropylidene Diphenyl Moiety Prepared by Direct Copolymerization, as Proton Exchange Membranes for Fuel Cell Application. Macromolecules 37 (2004) 7960-7967.
78. Jiang, R.; Kunz, H.R.; Fenton, J.M. Investigation of Membrane Property and Fuel Cell Behavior with Sulfonated Poly(ether ether ketone) Electrolyte: Temperature and Relative Humidity Effects. Journal of Power Sources 150 (2005) 120-128.
79. Xing, D.M.; Yi, B.L.; Liu, F.Q.; Fu, Y.Z.; Zhang, H.M. Characterization of Sulfonated Poly(ether ether ketone)/Polytetrafluoroethylene Composite Membranes for Fuel Cell Application. Fuel Cells 5 (2005) 406-411.
80. Swier, S.; Shaw, M.T.; Weiss, R.A. Morphology control of sulfonated poly(ether ketone ketone) poly(ether imide) blends and their use in proton-exchange membranes. Journal of Membrane Science 270 (2006) 22-31.
81. Li, X.; Chen, D.; Xu, D.; Zhao, C.; Wang, Z.; Lu, H.; Na, H. SPEEKK/ polyaniline (PANI) composite membranes for direct methanol fuel cell usages Journal of Membrane Science 275 (2006) 134-140.
82. Jiang, R.; Kunz, H.R.; Fenton, J.M. Multilayer Structure Membranes with Sulfonated Hydrocarbon Methanol Barrier for Direct Methanol Fuel Cells. Journal of The Electrochemistry Society 153(8) (2006) A1554-A1561.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊