(3.235.25.169) 您好!臺灣時間:2021/04/18 03:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李恩各
研究生(外文):En-Ko Lee
論文名稱:複雜蒸餾系統之簡易設計
論文名稱(外文):Shortcut Design of Coplex Distillation Systems
指導教授:汪上曉汪上曉引用關係
指導教授(外文):David Shan-Hill Wong
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:123
中文關鍵詞:簡易設計最小回流比反應蒸餾非關鍵成分分布最少理想板
外文關鍵詞:shortcut designminimum reflux ratioreactive distillationnon-key components distributionminimum number of stage
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
在蒸餾分離系統中,最小能量需求與最小迴流比之計算是一項重要的設計參數;相同地,最小理想板數決定了最低成本需求,利用精確的商用模擬軟體計算時,若給于正確的估計值則對於收斂問題可以獲得有效的解答。然而這些估算方法對於複合蒸餾塔(多重進料、多重出料、共沸蒸餾、反應蒸餾及受質傳限制蒸餾塔)的設計並不全然有用,那些傳統具啟發性的簡易設計方法,會因為無法正確計算非關鍵成分分布預估值,而得到錯誤的設計結果,或者僅能應用在特別的分離系統(如直接分離、間接分離、高純度分離系統) 。本研究的目的在發展一種具通用性以幾何為基礎之簡易設計方法,來計算蒸餾塔之最小迴流比與最小理想板數,此方法可以應用在各種型態的蒸餾分離系統,它包含整個設計問題的公式化,如何利用合適的數值演算法來尋找可靠有效的全域收斂解。本論文提出了對非莫耳守恆的反應蒸餾系統的數學模型,利用邊界值法開發成一般幾何捷徑設計方法的最適化問題,此外,根據Maxwell-Stefan質傳模式,我們也探討質傳作用對蒸餾系統設計的影響。各種情況的應用分析如多重進料、多重產物、受質傳限制蒸餾、反應蒸餾塔,利用諸多範例的說明可以證明,所提出的簡易設計方法可應用在蒸餾分離系統的概念設計上。
The minimum energy or minimum reflux ratio calculation is an important design parameter to distillation separation system. Similarly, determination of minimum number of plates gives a minimum estimate of the capital expenditure required. The rigorous commercial simulator could provide efficient solutions under good estimate for convergence problems. Such estimates may not be readily available for complex columns (multi-feed and multi-draw, azeotropic, reactive, mass-transfer limited distillations). The conventional heuristic shortcut design methods, which had been proposed either have not correct estimate to non-key component distribution caused erroneous results or restrict to specific separation (e.g. direct split, indirect split, sharp split). The objective of this work is to develop a general geometric based shortcut method for estimating the minimum reflux ratio and minimum number of stage that can be used for any columns. It includes the formulation of the problem, finding a suitable numerical algorithm that is efficient and guarantees global convergence. We have proposed the mathematical model to molar un-conservative reactive distillation system are developed a general geometric shortcut design method by formulating the boundary value method into an optimization problem. Furthermore, the influences of mass transfer effects to the design of distillation system are explored based on the Maxwell-Stefan mass transfer approach. Application analysis in various situations such as multi-feed and multi-product, mass transfer limited, and reactive columns will also be carried out. Many examples are implemented to show the ability and capability of the proposed shortcut design methods in conceptual design of distillation separation systems.
Contents

Chapter 1 Introduction 1
1.1 Brief Literature Survey 1
1.2 Objective, Scope and Organization 6
Chapter 2 Conventional Geometric Shortcut Design Methods 8
2.1 Binary Systems 8
2.1.1 McCabe and Thiele Diagram 8
2.1.2 Total Reflux 9
2.1.3 Condition of Feed Pinch and Minimum Reflux 10
2.2 Constant Relative Volatility Method for Multicomponents Systems 12
2.2.1 Fenske Equation 12
2.2.2 Underwood Equation 12
2.3 Conventional Geometric Shortcut Design Methods 13
2.3.1 Residue Curve Map 13
2.3.2 Boundary Value Method 19
2.3.3 Zero Volume Criterion 21
2.3.4 Minimum Angle Criterion 26
2.3.5 Eigenvalue Criterion 26
2.3.6 Rectification Body Method 27
2.4 Summary 29
Chapter 3 Solutions of Shortcut Design Problem for Multi-components Multi-feed Columns 31
3.1Conventional Multi-feed Columns Design Methods and Non-key Components Estimation 31
3.2 Theory 36
3.2.1 Basic CMO Model 37
3.2.2 Diverging Analysis 38
3.2.3 Minimum Reflux Ratio 39
3.2.4 Total Reflux 40
3.2.5 Finding Column Profiles and Reflux 40
3.2.6 Simulated Annealing Algorithm 41
3.3 Silmulation Results and Discussions 41
3.3.1 Single Feed Column 42
3.3.2 Double Feed Column 46
3.3.3 Multi-components Double Feed Column 49
3.3.4 Full Column Design Examples 50
3.4 Short Conclusions 53
Chapter 4 Solutions of Shortcut Design Problem for Reactive Distillation Systems 54
4.1 Literature Survey 54
4.2 Theory 66
4.2.1 Model of RDC 66
4.2.2 Feasible Column Design 70
4.2.3 Minimum Reflux Ratio 70
4.2.4 Minimum Number of Stages 71
4.3 Silmulation Results and Discussions 71
4.3.1 Solutions of Infinite Column Stages and Reflux Ratio 73
4.3.2 Solutions of Fixed Column Stages and Reflux Ratio 75
4.4 Short Conclusions 76
Chapter 5 Mass Transfer Effects on Minimum Reflux Ratio 78
5.1 Introduction 78
5.2 Distillation Curve with Mass Transfer 79
5.3 Effects of Mass Transfer on Different Pinch Scenarios 82
5.4 Nonideal Systems with Boundary Crossing 94
5.5 Mass Transfer Effects on Column Stages 99
5.6 Short Conclusions 101
Chapter 6 Conclusions 102
Notation 104
References 109


Figures

Figure 2-1:A standard McCabe-Thiele Diagram for a binary distillation system 9
Figure 2-2:Minimum number of stages at total reflux 10
Figure 2-3:Condition of "feed pinch" and minimum reflux 11
Figure 2-4:Condition of "tangent pinch" 11
Figure 2-5:A simple batch distillation still 15
Figure 2-6:Residual curve maps of an ideal ternary hydrocarbon mixture 16
Figure 2-7:RCM for acetone-chloroform-benzene at 1 atm 16
Figure 2-8:Operation leaves of feasible column products 18
Figure 2-9:Rectification and stripping curves at different reflux ratios 20
Figure 2-10:Classifications of direct and indirect split for ternary system 21
Figure 2-11:Collinearity condition of end pinch and saddle pinch for a sharp split 22
Figure 2-12:Collinearity condition of ZVC 23
Figure 2-13:Column profiles of non-sharp separation for ideal system 25
Figure 2-14:Geometric approximation of the manifold of plate-to-plate profiles at minimum reflux through rectification bodies 29
Figure 3-1:Different pinch scenarios 35
Figure 3-2:Example of bifurcation when starting point of a section is an end point 39
Figure 3-3:Column profiles of infeasible design in Case I 44
Figure 3-4:Column profiles of infeasible design in Case VI 45
Figure 3-5:Case VII-- rectification pinch for a two-feed column 47
Figure 3-6:Case VIII-- stripping pinch for a two-feed column 48
Figure 3-7:Case IX-- middle pinch for a two-feed column 48
Figure 3-8:Column profiles with infinite column stages for a two-feed column 51
Figure 3-9:Column profiles with infinite reflux ratio for a two-feed column 51
Figure 3-10:Column profiles with fixed column stages for a two-feed column 52
Figure 3-11:Column profiles with fixed reflux ratio for a two-feed column 52
Figure 4-1:RCM and column profiles at different reflux ratio for quaternary ideal system of RDC 64
Figure 4-2:Scheme of a double-feed, two-product RDC 67
Figure 4-3:Configuration of hypothetical ternary RDC 73
Figure 4-4:Column profiles of RDC at infinite column stages (Da=0.1, Keq=5,ε=90%, SPLK =99, SPHK =0.001) 74
Figure 4-5:Column profiles of RDC at infinite reflux ratio (Da=0.1, Keq=5,ε=90%, SPLK =99, SPHK =0.001) 74
Figure 4-6:Column profiles of RDC at finite column stages (Da=0.1, Keq=5,ε=90%, SPLK =99, SPHK =0.001, NT=15) 75
Figure 4-7:Column profiles of RDC at finite reflux ratio (Da=0.1, Keq=5,ε=90%, SPLK =99, SPHK =0.001, R=4.44) 76
Figure 5-1:Effect of mass transfer on pinch point locations (z=[0.3, 0.3, 0.4], R=1.465, SPLK=999, SPHK=0.001, SPNK=10-12) 84
Figure 5-2:Distillation curves and eigenvalues profiles for stripping end pinch(z=[0.3, 0.3, 0.4], R=1.465, SPLK=999, SPHK=0.001, SPNK=10-12, Noyref=19) 85
Figure 5-3:Effect of non-key split on stripping pinch (z=[0.3, 0.3, 0.4], SPLK=999, SPHK=0.001) 86
Figure 5-4:Effect of mass transfer effect on pinch point location to rectification pinch (z=[0.3, 0.3, 0.4], SPLK=999, SPHK=0.001) 88
Figure 5-5:Distillation curves and eigenvalues profiles for rectification end pinch (z=[0.3, 0.3, 0.4], SPLK=999, SPHK=0.001) 89
Figure 5-6:Effect of non-key distribution to indirect split (z=[0.3, 0.3, 0.4], SPLK=999, SPHK=0.001) 90
Figure 5-7:Infeasible design with mass transfer effect to different reflux ratios (z=[0.3, 0.3, 0.4], SPLK=999, SPHK=0.001) 90
Figure 5-8:Effect of mass transfer effect on minimum reflux for a feed pinch system (z=[0.3, 0.3, 0.4], SPLK=999, SPHK=0.001, SPNK=0.6, R=0.21) 92
Figure 5-9:Distillation curves and eigenvalues profiles for feed pinch (z=[0.3, 0.3, 0.4], SPLK=999, SPHK=0.001) 93
Figure 5-10:True minimum reflux ratio with large mass transfer effect on middle non-key split (z=[0.3, 0.3, 0.4], SPLK=999, SPHK=0.001) 94
Figure 5-11:Two columns separation flow sheet of non-ideal system 96
Figure 5-12:Location of products and distillation boundary of nonideal system 96
Figure 5-13:Effect of mass transfer on boundary crossing for a nonideal system in column 1 (z=[0.11, 0.214, 0.676], SPLK=99, SPHK=0.01, SPNK=10-12, R=10.04) 97
Figure 5-14:Effect of mass transfer on minimum reflux for a nonideal system in column 2 (SPLK=99, SPHK=0.01, R=8.17) 98
Figure 5-15:Effect of sharp non-key split leads an infeasible design to column2 98
Figure 5-16:Mass transfer effect on minimum number of stages to indirect split 100
Figure 5-17:Mass transfer effect on minimum number of stages to direct split 100


Tables

Table 3-1:Results of sharp separation to single-feed column (α1=2, α2=1.1,α3=1), q=1, z=(0.3, 0.3, 0.4), SPLK = 999, SPHK = 0.001 43
Table 3-2:Results of sharp separation to single-feed column (α1=2, α2=1.9,α3=1), q=1, z=(0.3, 0.3, 0.4), SPLK = 999, SPHK = 0.001 45
Table 3-3:Results of different pinch situations to double-feed column 47
Table 3-4:Results of sharp separation to multi-components double-feed column, z1=(0.4, 0.3, 0.2, 0.1), q1=1, z2=(0.1, 0.2, 0.3, 0.4), q2=1, SPLK = 999, SPHK = 0.001 49
1.Agarwal S. and R. Taylor, “Distillation Column Design Calculations Using a Non-equilibrium Model,” Ind. Eng. Chem. Research, 33, 2631 (1994).
2.Agreda, V. H., L. R. Partin and W. H. Heise, “High-purity methyl acetate via reactive distillation,” Chem. Eng. Prog., 86(2), 40 (1990).
3.Almeida-Rivera, C. P., P. L. J. Swinkels and J. Grievink, “Designing reactive distillation processed: present and future,” Comput. Chem. Eng., 28, 1997 (2004).
4.ARCO Chemical Technology, “Ethers. Petrochemical Process ’95,” Hydrocarbon Process., 74, 110 (1995).
5.Balashov, M. I. and L. A. Serafimov, “The statics analysis of continuous combined reaction-fractionation process,” Theor. Found. Chem. Eng., 14, 803 (1980).
6.Balashov, M. I., V. P. Patlasov and L. A. Serafimov, “Rules of primary reaction zone spread in continuous combined reaction-fractionation process. Theor. Found. Chem. Eng., 15, 406 (1981).
7.Bansal, V., J. Perkins, E. Pistikopoulos, R. Ross and J. van Schijndel, “Simultaneous design and control optimisation under uncertainty,” Comput. Chem. Eng., 24, 261 (2000).
8.Barbosa, D. and M. F. Doherty, “The influence of equilibrium chemical reactions on vapor-liquid phase diagrams,” Chem. Eng. Sci., 43, 529 (1988a).
9.Barbosa, D. and M. F. Doherty, “The simple distillation of homogeneous reactive mixtures,” Chem. Eng. Sci., 43, 541 (1988b).
10.Barbosa, D. and M. F. Doherty, “Design and minimum reflux calculations for single-feed multicomponent reactive distillation columns,” Chem. Eng. Sci., 43, 1523 (1988c).
11.Barbosa, D. and M. F. Doherty, “Design and minimum reflux calculations for double-feed multicomponent reactive distillation columns,” Chem. Eng. Sci., 43, 2377 (1988d).
12.Barnes, F. J., Hanson, D. N. and King, C. J., “Calculation of Minimum Reflux for Distillation Columns with Multiple Feeds,” Ind. Eng. Chem. Process Des. Develop., 11(1), 136 (1972).
13.Baur, R., R. Taylor and R. Krishna, “Bifurcation analysis for TAME synthesis in a reactive distillation column: comparison of pseudo-homogeneous and heterogeneous reaction kinetics models,” Chem. Eng. Process., 42, 211 (2003).
14.Baur, R., R. Krishna and R. Taylor, “Influence of Mass Transfer in Distillation: Feasibility and Design,” AIChE J., 51, 854 (2005).
15.Bausa, J., Watzdorf, R. V. and Marquardt W., “Shortcut Methods for Nonideal Multicomponent Distillation:1. Simple Columns,” AIChE J., 44(10), 2181 (1998).
16.Bedenik, M. I., B. Pahor and Z. Kravanja, “Synthesis of reactor/separator networks by the combined MINLP/analysis approach,” Computer-Aided Chemical Engineering (Proceedings of ESCAPE-11), 9, 59 (2001).
17.Bessling, B., G. Schembecker, and K. H. Simmrock, “Design of processes with reactive distillation line diagrams,” Ind. Eng. Chem. Res., 36, 3032 (1997).
18.Bisowarno, B. H. and M. O. Tadé, “Dynamic simulation of startup in ethyl tert-butyl ether reactive distillation with input multiplicity,” Ind. Eng. Chem. Res., 39, 1950 (2000).
19.Bravo, J. L., A. Pyhalathi and H. Jaervelin, “Investigations in a catalytic distillation pilot plant: Vapor/ liquid equilibrium, kinetics and mass transfer issues,” Ind. Eng. Chem. Res., 32, 2220 (1993).
21.Buzad, G. and M. F. Doherty, “Design of three-component kinetically controlled reactive distillation columns using fixed-point methods,” Chem. Eng. Sci., 49, 1947 (1994).
22.Buzad, G. and M. F. Doherty, “New tools for the design of kinetically controlled reactive distillation columns for ternary mixtures,” Comput. Chem. Eng., 19, 395 (1995).
23.Cardoso, M. F., R. L. Salcedo, S. F. de Azevedo and D. Barbosa, “Optimization of reactive distillation processes with simulated annealing,” Chem. Eng. Sci., 55, 5059 (2000).
24.Carra, S., M. Morbidelli, E. Santacesaria and G. Buzzi, “Synthesis of propylene oxide from propylene chlorohydrins - II. Modeling of the distillation with chemical reaction unit,” Chem. Eng. Sci., 34, 1133 (1979a).
25.Carra, S., E. Santacesaria, M. Morbidelli and L. Cavalli, “Synthesis of propylene oxide from propylene chlorohydrins – I. Kinetic aspects of the process,” Chem. Eng. Sci., 34, 1123 (1979b).
26.Castillo F. J. L. and G. P. Towler, “Influence of Multicomponent Mass Transfer on Homogeneous Azeotropic Distillation,” Chem. Eng. Sci., 53, 963 (1998).
27.Castillo F., D. Thong and G. Towler, “Homogeneous azeotropic distillation. 1. Design procedure for single-feed column at nontotal reflux,” Ind. Eng. Chem. Res., 37, 987 (1998).
28.Castillo F. J. L., D. Y. C. Thong and G. P. Towler, “Homogeneous Azeotropic Distillation. 2. Design Procedure for Sequences of Columns,” Ind. Eng. Chem. Research, 37, 998 (1998).
29.Chadda, N., M. F. Malone and M. F. Doherty, “Feasibility products for kinetically controlled reactive distillation of ternary mixtures,” AIChE J., 46, 923, (2000).
30.Chadda, N., M. F. Malone and M. F. Doherty, “Effect of chemical kinetics on feasibility splits for reactive distillation,” AIChE J., 47, 590, (2001).
31.Chadda, N., M. F. Malone and M. F. Doherty, “Feasibility and synthesis of hybrid reactive distillation systems,” AIChE J., 48, 2754, (2003). Choi, S. H. and Manousiouthakis, V., “Global Optimization Methods for Chemical Process Design: Deterministic and Stochastic Approaches,” Korean J. Chem. Eng., 19(2), 227 (2002).
32.Choi, S. H. and Manousiouthakis, V., “Global Optimization Methods for Chemical Process Design: Deterministic and Stochastic Approaches,” Korean J. Chem. Eng., 19(2), 227 (2002).
33.Chou, S. M., Tsou F. M. and Yaw, C. L., “ Factor Method for Minimum Reflux: Multifeed Distillation Column with Multiple Sidestreams,” J. Chin. Inst. Chem. Engrs., 19(2), 91 (1988).
34.Chou, S. M. and Yaw, C. L., “Reflux for Multifeed Distillation,” Hydro. Pro., December, 41 (1986a).
35.Chou, S. M., Yaw, C. L. and Cheng, J. S., “Application of Factor Method for Minimum Reflux: Multiple Feed Distillation Columns,” the Can. J. of Chem. Eng., 64(4), 254 (1986b).
36.Chou, S. M., Tsou F. M. and Yaw, C. L., “ Factor Method for Minimum Reflux: Multifeed Distillation Column with Multiple Sidestreams,” J. Chin. Inst. Chem. Engrs., 19(2), 91 (1988).
37.Ciric, A. R. and D. Gu, “Synthesis of nonequilibrium reactive distillation by MINLP optimization,” AIChE J., 40, 1479 (1994).
38.Ciric, A. R. and P. Miao, “Steady-state multiplicities in an ethylene glycol reactive distillation column,” Ind. Eng. Chem. Res., 33, 2738 (1994).
39.Costa, L. and P. Oliveira, “Evolutionary algorithms approach to the solution of mixed integer non-linear programming problems,” Comput. Chem. Eng., 25, 257 (2001).
40.Doherty M. F., “Properties of liquid-vapor composition surfaces for multicomponent mixtures with constant latent heat,” Chem. Eng. Sci., 40, 1979 (1985).
41.Doherty M. F. and G. A. Caldarola, “Design and Synthesis of Homogeneous Azeotropic Distillations. 3. The Sequencing of Columns for Azeotropic and Extractive Distillations,” Ind. Eng. Chem. Fundamentals, 24, 474 (1985).
42.Doherty, M. F. and G. Buzad, “Reactive distillation by design,” Chem. Eng. Res. Des., 70, 448 (1992).
43.Doherty, M. F. and M. F. Malone, Conceptual design of distillation systems, McGraw-Hill, New York (2001).
44.Espinosa, J., N. Scenna and G. A. Perez, “Graphical procedure for reactive distillation systems.” Chem. Eng. Commun., 119, 109 (1993).
45.Feinberg, M. and D. Hildebrandt, “Optimal reactor design from a geometric viewpoint - I. Universal properties of the attainable region,” Chem. Eng. Sci., 52, 1637 (1997).
46.Feinberg, M., “Recent results in optimal reactor synthesis via attainable theory,” Chem. Eng. Sci., 54, 2535 (1999).
47.Fenske, M. R., “Fractionation of Straight-run Pennsylvania Gasoline,“ Ind. Eng. Chem., 24, 482 (1932).
48.Fidkowski, Z. T., Malone, M. F. and Doherty M. F., “Feasibility of Separations for Distillation of Nonideal Ternary Mixtures,” AIChE J., 39(8) 1303 (1993).
49.Frey, T. and J. Stichlmair, “MINLP optimization of reactive distillation columns,” Computer-Aided Chemical Engineering (Proceedings of ESCAPE-10), 8, 115 (2001).
50.Gadewar, S. B., N. Chadda, M. F. Malone and M. F. Doherty, “Feasibility and process alternatives for reactive distillation,” In K. Sundmacher, & A. Kienle (Eds.), Reactive distillation. Status and future directions (pp. 145–168). Wiley–VCH. (2003).
51.Georgiadis, M., M. Schenk, E. Pistikopoulos and R. Gani, “The interactions of design, control and operability in reactive distillation systems,” Comput. Chem. Eng., 26, 735 (2002).
52.Giessler, S., R. Y. Danilov, R. Y. Pisarenko, L. A. Serafimov, S. Hasebe and I. Hashimoto, “Feasibility study of reactive distillation using the analysis of statics,” Ind. Eng. Chem. Res., 37, 2220 (1998).
53.Giessler, S., R. Y. Danilov, R. Y. Pisarenko, L. A. Serafimov, S. Hasebe and I. Hashimoto, “Feasible separation modes for various reactive distillation systems,” Ind. Eng. Chem. Res., 38, 4060 (1999).
54.Glanz, S. and Stichlmair, J., “Minimum Energy Demand of Distillation Columns with Multiple Feeds,” Chem. Eng. Technol., 20, 93 (1997).
55.Gmehling J., U. Onken and W. Arlt, Vapor-Liquid Equilibrium Data Collection, DECHEMA, Frankfurt (1977).
56.Grosser, J. H., M. F. Doherty and M. F. Malone, “Modeling of reactive distillation systems,” Ind. Eng. Chem. Res., 26, 983 (1987).
57.Gumus, Z. H. and A. Ciric, “Reactive distillation column design with vapor/liquid/liquid equilibria,” Comput. Chem. Eng., 21, S983 (1997).
58.Güttinger, T. E. and M. Morari, “Predicting multiple steady states in distillation: Singularity analysis and reactive systems,” Comput. Chem. Eng., 21, s995 (1997).
59.Güttinger, T. E., “Predicting multiple steady states in equilibrium reactive distillation. 1. analysis of nonhybrid systems,” Ind. Eng. Chem. Res., 38, 1633 (1999a).
60.Güttinger, T. E., “Predicting multiple steady states in equilibrium reactive distillation. 2. analysis of hybrid systems,” Ind. Eng. Chem. Res., 38, 1649 (1999b).
61.Hauan, S., T. Hertzberg and K. M. Lien, ”Why methyl-tertbutyl-ether production by reactive distillation may yield multiple solutions,” Ind. Eng. Chem. Res., 34, 987 (1995).
62.Hauan, S. and K. M. Lien, “Geometric visualization of reactive fixed points,” Comput. Chem. Eng., 20, S133 (1996).
63.Hauan, S., “Multiplicity in reactive distillation of MTBE,” Comput. Chem. Eng., 21, 117 (1997).
64.Hauan, S., S. M. Schrans and K. M. Lien, “Dynamic evidence of the multiplicity mechanism in methyl tert-butyl ether reactive distillation,” Ind. Eng. Chem. Res., 36, 3995 (1997).
65.Hauan, S. and K. M. Lien, “A phenomena based design approach to reactive distillation,” Chem. Eng. Res. Des., 76, 396 (1998).
66.Hauan, S., On the behavior of reactive distillation systems, Doctoral thesis, Norwegian University of Science and Technology. Trondheim (1998).
67.Hauan, S., A. W. Westerberg and K. M. Lien, “Phenomena-based analysis of fixed points in reactive separation systems,” Chem. Eng. Sci., 55, 1053 (2000a).
68.Hauan, S., J. W. Lee, A. W. Westerberg and K. M. Lien, “Properties of sectional profiles in reactive separation cascades,” AIChE Symposium, 96, 397 (2000b).
69.Hauan, S., A. R. Ciric, A. W. Westerberg and K. M. Lien, “Difference points in extractive and reactive cascades. I - Basic properties and analysis,” Chem. Eng. Sci., 55, 3145 (2000c).
70.Higler, A. P., “Nonequilibrium modelling of reactive distillation: multiple steady states in MTBE synthesis,” Chem. Eng. Sci., 54, 1389 (1999).
71.Hoffmaster W. R. and S. Hauan, “Difference points in extractive and reactive cascades. III – Properties of column section profiles with arbitrary reaction distribution,” Chem. Eng. Sci., 59, 3671 (2004).
72.Hoffmaster W. R. and S. Hauan, “Difference points in extractive and reactive cascades. IV – Feasible regions for multisection columns with kinetic reactions and side streams,” Chem. Eng. Sci., 60, 7075 (2005).
73.Hoffmaster W. R. and S. Hauan, “Using feasible regions to design and optimize reactive distillation columns with ideal VLE,” AIChE J., 52, 1744 (2006).
74.Jacobs, R. and R. Krishna, “Multiple solutions in reactive distillation for methyl-tert-butyl ether synthesis,” Ind. Eng. Chem. Res., 32, 1706 (1993).
75.Julka, V. and M. F. Doherty, “Geometric behavior and minimum flows for nonideal multicomponent distillation.” Chem. Eng. Sci., 45, 1801 (1990).
76.Kirkpattric, S., C. D. Gellatt and M. P. Vechi, “Optimization by simulated annealing,” Science, 220, 671 (1983).
77.Kister, H. Z., “Graphically Find Theoretical Trays and Minimum Reflux for Complex Binary Distillation,” Chem. Eng., Jan. 21, 97 (1985).
78.Knight J. R. and M. F. Doherty, “Design and Synthesis of Homogeneous Azeotropic Distillations. 5. Columns with Nonnegligible Heat Effects,” Ind. Eng. Chem. Fundamentals, 25, 279 (1986).
79.Koehler, J., Aguirre, P. and Blass, E., “Minimum Reflux Calculations for Nonideal Mixtures Using the Reversible Distillation Model,” Chem. Eng. Sci., 46, 3007 (1991).
80.Koehler J., P. Poellmann and E. Blass, “A Review on Minimum Energy Calculations for Ideal and Nonideal Distillations,” Ind. Eng. Chem. Research, 34, 1003 (1995).
81.Laroche L., N. Bekiaris, H. W. Andersen and M. Morari, “Homogeneous Azeotropic Distillation: Separability and Flowsheet Synthesis,” Ind. Eng. Chem. Research, 31, 2190 (1992).
82.Lee, J. W., S. Hauan, K. M. Lien and A. W. Westerberg, “Difference points in extractive and reactive cascades. II – Generating design alternatives by the lever rule for reactive systems,” Chem. Eng. Sci., 55, 3161 (2000a).
83.Lee, J. W., S. Hauan, K. M. Lien and A. W. Westerberg, “Graphical methods for designing reactive distillation columns. I - The Ponchon-Savarit Diagram,” Proceedings of the Royal Society of London Series A: Mathematical Physical and Engineering Sciences, 456, 1953 (2000b).
84.Lee, J. W., S. Hauan, K. M. Lien and A. W. Westerberg, “Graphical methods for designing reactive distillation columns. II. The McCabe-Thiele Diagram,” Proceedings of the Royal Society of London Series A: Mathematical Physical and Engineering Sciences, 456, 1965 (2000c).
85.Lee, J. W., S. Hauan and A. W. Westerberg, “Reaction distribution in a reactive distillation column by graphical methods,” AIChE J., 46, 1218 (2000d).
86.Levy, S. G., D. B. Van Dogen and M. F. Doherty, “Design and synthesis of homogeneous azeotropic distillations. 2. minimum reflux calculation for nonideal and azeotropic columns,” Ind. Eng. Chem. Fundam., 24, 463 (1985).
87.McCabe, W. L. and Thiele, E. W., “Graphical Design of Fractionating Columns.” Ind. Eng. Chem., 17, 606 (1925).
88.Malone, M. F. and M. F. Doherty, “Reactive distillation,” Ind. Eng. Chem. Res., 39, 3953 (2000).
89.Metropolis, N., A. Rosenbluth, M. Rosenbluth, A. Teller and E. Teller, “Equation of state calculations by fast computing machines,” J. Chem. Phys., 21, 1087 (1953).
90.Mira, C., Chaotic Dynamics, World Scientific, New Jersey (1987).
91.Nisoli, A., M. F. Malone and M. F. Doherty, “Attainable regions for reaction with separation,” AIChE J., 43, 374 (1997).
92.Offers, H., Düssel, R. and Stichlmair, J., “Minimum Energy Requirement of Distillation Processes,” Comp. Chem. Eng., 19, s247 (1995).
93.Papalexandri, K. P. and E. N. Pistikopolous, “Generalized modular representation framework for process synthesis,” AIChE J., 42, 1010 (1996).
94.Pekkanen, M., “A local optimization method for the design of reactive distillation,” Comput. Chem. Eng., 19, S235 (1995).
95.Pisarenko, Y. A. and L. A. Serafimov, “Steady states for a reactive-distillation column with one product stream,” Theor. Found. Chem. Eng., 21, 281 (1988).
96.Pisarenko, Y. A., O. A. Epifanova and L. A. Serafimov, “Conditions for a steady state in a reactive distillation operation,” Theor. Found. Chem. Eng., 22, 31 (1988a).
97.Pisarenko, Y. A., O. A. Epifanova and L. A. Serafimov, “Dynamics of continuous evaporation with a chemical reaction,” Theor. Found. Chem. Eng., 22, 483 (1988b).
98.Pisarenko, Y. A. and L. A. Serafimov, “Statics of systems involving chemical conversions,” Theor. Found. Chem. Eng., 25, 519 (1992).
99.Pisarenko, Y. A., R. Y. Danilov and L. A. Serafimov, “Infinite-efficiency operating conditions in analysis of statics of reactive rectification,” Theor. Found. Chem. Eng., 29, 556 (1995).
100.Pisarenko, Y. A., R. Y. Danilov and L. A. Serafimov, “Possible modes of separation in continuous reactive-distillation processes,” Theor. Found. Chem. Eng., 30, 585 (1996).
101.Pisarenko, Y. A., R. Y. Danilov and L. A. Serafimov, “Application of the concept of a limiting paths to estimating the feasibility of steady states in analyzing the statics of reactive-distillation processes,” Theor. Found. Chem. Eng., 31, 43 (1997).
102.Pisarenko, Y. A., L. A. Serafimov, C. A. Cardona, D. L. Efremov and A. S. Shuwalov, “Reactive distillation design: Analysis of the process statics,” Rev. Chem. Eng., 17, 253 (2001).
103.Pollmann, P., Glanz, S. and Blass, E., “Calculating Minimum Reflux of Nonideal Component Distillation Using Eigenvalue Theory,” Comp. Chem. Eng., 18, s49 (1994).
104.Poth, N., T. Frey, T. and J. Stichlmair, “MINLP optimization of kinetically controlled reactive distillation processes,” Computer-Aided Chemical Engineering (Proceedings of ESCAPE-11), 9, 79 (2001).
105.Reyes, J. A., Gomez, A. and Marcilla, A., “Graphical Concepts to Orient the Minimum Reflux Ratio Calculation on Ternary Mixtures Distillation,” Ind. Eng. Chem. Res., 39, 3912 (2000).
106.Riddle, L., “HPI Construction Boxscore,” Hydrocarbon Process., 75, 1 (1996).
107.Seferelis, P. and J. Grievink, “Optimal design and sensitivity analysis of reactive distillation units using collocation models,” Ind. Eng. Chem. Res., 40, 1673 (2001).
108.Serafimov, L. A., Y. A. Pisarenko and K. A. Kardona, “Optimization of reactive distillation processes,” Theor. Found. Chem. Eng., 33, 455 (1999a).
109.Serafimov, L. A., Y. A. Pisarenko and N. Kulov, “Coupling chemical reaction with distillation: Thermodynamic analysis and practical applications,” Chem. Eng. Sci., 54, 1383 (1999b).
110.Shiras, R. N., Hanson, D. N. and Gibson, C. H., “Calculation of Minimum Reflux in Distillation Columns,” Ind. Eng. Chem. Res., 42, 871 (1950).
111.Shoemaker, J. D. and E. M. Jones, “Cumene by catalytic distillation,” Hydrocarbon Process., 66, 57 (1987).
112.Siirola, J. J., “An industrial perspective on process ynthesis,” AIChE Symposium, 304, 222 (1995).
113.Smith, L. A. and M. N. Huddleston, “New MTBE design now commercial,” Hydrocarbon Process., 61, 121 (1982).
114.Sneesby, M. G., M. O. Tadé and T. N. Smith, “Implications of steady-state multiplicity for operation and control of etherification columns,” Distillation and absorption '97, Institute of the Chemical Engineers Symposium Series, 142, 205 (1997).
115.Sneesby, M. G., M. O. Tadé and T. N. Smith, “Steady-state transitions in the reactive distillation of MTBE,” Comput. Chem. Eng., 22, 879 (1998a).
116.Sneesby, M. G., M. O. Tadé and T. N. Smith, “Multiplicity and pseudo-multiplicity in MTBE and ETBE reactive distillation,” Chem. Eng. Res. Des., 76, 525 (1998b).
117.Sneesby, M. G., M. O. Tadé and T. N. Smith, “Mechanistic interpretation of multiplicity in hybrid reactive distillation: Physically realizable cases,” Ind. Eng. Chem. Res., 37, 4424 (1998c).
118.Springer P. A. M. and R. Krishna, “Crossing of Boundaries in Ternary Azeotropic Distillation: Influence of Interphase Mass Transfer,” Int. Comm. Heat Mass Transfer, 28, 347 (2001).
119.Springer P. A. M., B. Buttinger, R. Baur and R. Krishna, “Crossing of the Distillation Boundaries in Homogeneous Azeotropic Distillation: Influence of Interphase Mass Transfer,” Ind. Eng. Chem. Research, 41, 1621 (2002).
120.Springer P. A. M., R. Baur and R. Krishna, “Influence of Interphase Mass Transfer on the Composition Trajectories and Crossing of Boundaries in Ternary Azeotropic Distillation,” Sep. Puri. Technology, 29, 1 (2002).
121.Stichlmair J. G. and J. R. Fair, Distillation: principles and practices, Wiley, New York (1998).
122.Stichlmair, J. G., Offers, H. and Potthoff, R. W., “Minimum Reflux and Minimum Reboil in Ternary Distillation,” Ind. Eng. Chem. Res., 32, 2438 (1993).
123.Stichlmair, J. and T. Frey, “Mixed-integer nonlinear programming optimization of reactive distillation processes,” Ind. Eng. Chem. Res., 40, 5978 (2001).
124.Subawalla, H. and J. Fair, “Design guidelines for solid-catalyzed reactive distillation systems,” Ind. Eng. Chem. Res., 38, 3696 (1999).
125.Sundaresan S., J. K. Wong and R. Jackson, “Limitations of the Equilibrium Theory of Countercurrent Devices,” AIChE J., 33, 1466 (1987).
126.Sundmacher, K. and U. Hoffmann, “Development of a new catalytic distillation process for fuel ethers via a detailed nonequilibrium model,” Chem. Eng. Sci., 51, 2359 (1996).
127.Taylor R. and R. Krishna, Multicomponent Mass Transfer, John Wiley, New York (1993).
128.Taylor, R. and R. Krishna, “Review: Modelling reactive distillation,” Chem. Eng. Sci., 55, 5183 (2000).
129.Taylor, R., R. Baur and R. Krishna, “Influence of Mass Transfer in Distillation: Residue Curves and Total Reflux,” AIChE J., 50, 3134 (2004).
130.Towler, G. P. and S. J. Frey, “Reactive distillation. In S. Kulprathipanja, Reactive separation processes,” Philadelphia: Taylor and Francis (Chapter 2) (2000).
131.Underwood, A. J. V., “The Theory and Practice of Testing Stills,” Trans. AIChE., 10, 112 (1932).
132.Ung, S. and M. F. Doherty, “Vapor liquid phase equilibrium in systems with multiple chemical reactions,” Chem. Eng. Sci., 50, 23 (1995a).
133.Ung, S. and M. F. Doherty, “Theory of phase equilibria in multireaction systems,” Chem. Eng. Sci., 50, 3201 (1995b).
134.Ung, S. and M. F. Doherty, “Synthesis of reactive distillation ystems with multiple equilibrium chemical reactions,” Ind. Eng. Chem. Res., 34, 2555 (1995c).
135.Van Dogen, D. B. and M. F. Doherty, “Design and synthesis of homogeneous azeotropic distillations. 1. problems formulation for a single column,” Ind. Eng. Chem. Fundam., 24, 454 (1985).
136.Wahnschafft O. M., J. W. Koehler, E. Blass and A. W. Westerberg, “The product composition regions of single feed azeotropic distillation columns,” Ind. Eng. Chem. Res., 31, 2345 (1992).
137.Wang, S. J., D. S. H. Wong and E. K. Lee, “Effect of interaction multiplicity on control system design for a MTBE reactive distillation column,” J. Process Control, 13, 503 (2003a).
138.Wang, S. J., D. S. H. Wong and E. K. Lee, “Control of a reactive distillation column in the kinetic regime for the synthesis of n-butyl acetate,” Ind. Eng. Chem. Res., 42(21), 5182 (2003b).
139.Wankat, P. C., Equilibrium staged separations, PTR Prentice Hall, N. J., U.S.A. (1988).
140.Westerberg, A. W., J. W. Lee and S. Hauan, “Synthesis of distillation-based processes for non-ideal mixtures,” Comput. Chem. Eng., 24, 2043 (2000).
141.Yaws, C. L., Li, K. Y. and Fang, C. S., “How to Find the Minimum Reflux for Binary Systems in Multiple-Feed Columns,” Chem. Eng., May 18, 153 (1981a).
142.Yaws, C. L., Li, K. Y. and Fang, C. S., “How to Find the Minimum Reflux for Multicomponent Systems in Multiple-Feed Columns,” Chem. Eng., June 1, 63 (1981b).
143.Zeng, K. L., C. L. Kuo and I. L. Chien, “Design and control of butyl acrylate reactive distillation column system,” Chem. Eng. Sci., 61, 4417 (2006).
144.Zoeller, J. R., V. H. Agreda, S. L. Cook, N. L. Lafferty, S. W. Polichnowski and D. M. Pond, “Eastman- Chemical-Company Acetic-Anhydride Process,” Catal. Today, 13, 73 (1992).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔