|
1.Agarwal S. and R. Taylor, “Distillation Column Design Calculations Using a Non-equilibrium Model,” Ind. Eng. Chem. Research, 33, 2631 (1994). 2.Agreda, V. H., L. R. Partin and W. H. Heise, “High-purity methyl acetate via reactive distillation,” Chem. Eng. Prog., 86(2), 40 (1990). 3.Almeida-Rivera, C. P., P. L. J. Swinkels and J. Grievink, “Designing reactive distillation processed: present and future,” Comput. Chem. Eng., 28, 1997 (2004). 4.ARCO Chemical Technology, “Ethers. Petrochemical Process ’95,” Hydrocarbon Process., 74, 110 (1995). 5.Balashov, M. I. and L. A. Serafimov, “The statics analysis of continuous combined reaction-fractionation process,” Theor. Found. Chem. Eng., 14, 803 (1980). 6.Balashov, M. I., V. P. Patlasov and L. A. Serafimov, “Rules of primary reaction zone spread in continuous combined reaction-fractionation process. Theor. Found. Chem. Eng., 15, 406 (1981). 7.Bansal, V., J. Perkins, E. Pistikopoulos, R. Ross and J. van Schijndel, “Simultaneous design and control optimisation under uncertainty,” Comput. Chem. Eng., 24, 261 (2000). 8.Barbosa, D. and M. F. Doherty, “The influence of equilibrium chemical reactions on vapor-liquid phase diagrams,” Chem. Eng. Sci., 43, 529 (1988a). 9.Barbosa, D. and M. F. Doherty, “The simple distillation of homogeneous reactive mixtures,” Chem. Eng. Sci., 43, 541 (1988b). 10.Barbosa, D. and M. F. Doherty, “Design and minimum reflux calculations for single-feed multicomponent reactive distillation columns,” Chem. Eng. Sci., 43, 1523 (1988c). 11.Barbosa, D. and M. F. Doherty, “Design and minimum reflux calculations for double-feed multicomponent reactive distillation columns,” Chem. Eng. Sci., 43, 2377 (1988d). 12.Barnes, F. J., Hanson, D. N. and King, C. J., “Calculation of Minimum Reflux for Distillation Columns with Multiple Feeds,” Ind. Eng. Chem. Process Des. Develop., 11(1), 136 (1972). 13.Baur, R., R. Taylor and R. Krishna, “Bifurcation analysis for TAME synthesis in a reactive distillation column: comparison of pseudo-homogeneous and heterogeneous reaction kinetics models,” Chem. Eng. Process., 42, 211 (2003). 14.Baur, R., R. Krishna and R. Taylor, “Influence of Mass Transfer in Distillation: Feasibility and Design,” AIChE J., 51, 854 (2005). 15.Bausa, J., Watzdorf, R. V. and Marquardt W., “Shortcut Methods for Nonideal Multicomponent Distillation:1. Simple Columns,” AIChE J., 44(10), 2181 (1998). 16.Bedenik, M. I., B. Pahor and Z. Kravanja, “Synthesis of reactor/separator networks by the combined MINLP/analysis approach,” Computer-Aided Chemical Engineering (Proceedings of ESCAPE-11), 9, 59 (2001). 17.Bessling, B., G. Schembecker, and K. H. Simmrock, “Design of processes with reactive distillation line diagrams,” Ind. Eng. Chem. Res., 36, 3032 (1997). 18.Bisowarno, B. H. and M. O. Tadé, “Dynamic simulation of startup in ethyl tert-butyl ether reactive distillation with input multiplicity,” Ind. Eng. Chem. Res., 39, 1950 (2000). 19.Bravo, J. L., A. Pyhalathi and H. Jaervelin, “Investigations in a catalytic distillation pilot plant: Vapor/ liquid equilibrium, kinetics and mass transfer issues,” Ind. Eng. Chem. Res., 32, 2220 (1993). 21.Buzad, G. and M. F. Doherty, “Design of three-component kinetically controlled reactive distillation columns using fixed-point methods,” Chem. Eng. Sci., 49, 1947 (1994). 22.Buzad, G. and M. F. Doherty, “New tools for the design of kinetically controlled reactive distillation columns for ternary mixtures,” Comput. Chem. Eng., 19, 395 (1995). 23.Cardoso, M. F., R. L. Salcedo, S. F. de Azevedo and D. Barbosa, “Optimization of reactive distillation processes with simulated annealing,” Chem. Eng. Sci., 55, 5059 (2000). 24.Carra, S., M. Morbidelli, E. Santacesaria and G. Buzzi, “Synthesis of propylene oxide from propylene chlorohydrins - II. Modeling of the distillation with chemical reaction unit,” Chem. Eng. Sci., 34, 1133 (1979a). 25.Carra, S., E. Santacesaria, M. Morbidelli and L. Cavalli, “Synthesis of propylene oxide from propylene chlorohydrins – I. Kinetic aspects of the process,” Chem. Eng. Sci., 34, 1123 (1979b). 26.Castillo F. J. L. and G. P. Towler, “Influence of Multicomponent Mass Transfer on Homogeneous Azeotropic Distillation,” Chem. Eng. Sci., 53, 963 (1998). 27.Castillo F., D. Thong and G. Towler, “Homogeneous azeotropic distillation. 1. Design procedure for single-feed column at nontotal reflux,” Ind. Eng. Chem. Res., 37, 987 (1998). 28.Castillo F. J. L., D. Y. C. Thong and G. P. Towler, “Homogeneous Azeotropic Distillation. 2. Design Procedure for Sequences of Columns,” Ind. Eng. Chem. Research, 37, 998 (1998). 29.Chadda, N., M. F. Malone and M. F. Doherty, “Feasibility products for kinetically controlled reactive distillation of ternary mixtures,” AIChE J., 46, 923, (2000). 30.Chadda, N., M. F. Malone and M. F. Doherty, “Effect of chemical kinetics on feasibility splits for reactive distillation,” AIChE J., 47, 590, (2001). 31.Chadda, N., M. F. Malone and M. F. Doherty, “Feasibility and synthesis of hybrid reactive distillation systems,” AIChE J., 48, 2754, (2003). Choi, S. H. and Manousiouthakis, V., “Global Optimization Methods for Chemical Process Design: Deterministic and Stochastic Approaches,” Korean J. Chem. Eng., 19(2), 227 (2002). 32.Choi, S. H. and Manousiouthakis, V., “Global Optimization Methods for Chemical Process Design: Deterministic and Stochastic Approaches,” Korean J. Chem. Eng., 19(2), 227 (2002). 33.Chou, S. M., Tsou F. M. and Yaw, C. L., “ Factor Method for Minimum Reflux: Multifeed Distillation Column with Multiple Sidestreams,” J. Chin. Inst. Chem. Engrs., 19(2), 91 (1988). 34.Chou, S. M. and Yaw, C. L., “Reflux for Multifeed Distillation,” Hydro. Pro., December, 41 (1986a). 35.Chou, S. M., Yaw, C. L. and Cheng, J. S., “Application of Factor Method for Minimum Reflux: Multiple Feed Distillation Columns,” the Can. J. of Chem. Eng., 64(4), 254 (1986b). 36.Chou, S. M., Tsou F. M. and Yaw, C. L., “ Factor Method for Minimum Reflux: Multifeed Distillation Column with Multiple Sidestreams,” J. Chin. Inst. Chem. Engrs., 19(2), 91 (1988). 37.Ciric, A. R. and D. Gu, “Synthesis of nonequilibrium reactive distillation by MINLP optimization,” AIChE J., 40, 1479 (1994). 38.Ciric, A. R. and P. Miao, “Steady-state multiplicities in an ethylene glycol reactive distillation column,” Ind. Eng. Chem. Res., 33, 2738 (1994). 39.Costa, L. and P. Oliveira, “Evolutionary algorithms approach to the solution of mixed integer non-linear programming problems,” Comput. Chem. Eng., 25, 257 (2001). 40.Doherty M. F., “Properties of liquid-vapor composition surfaces for multicomponent mixtures with constant latent heat,” Chem. Eng. Sci., 40, 1979 (1985). 41.Doherty M. F. and G. A. Caldarola, “Design and Synthesis of Homogeneous Azeotropic Distillations. 3. The Sequencing of Columns for Azeotropic and Extractive Distillations,” Ind. Eng. Chem. Fundamentals, 24, 474 (1985). 42.Doherty, M. F. and G. Buzad, “Reactive distillation by design,” Chem. Eng. Res. Des., 70, 448 (1992). 43.Doherty, M. F. and M. F. Malone, Conceptual design of distillation systems, McGraw-Hill, New York (2001). 44.Espinosa, J., N. Scenna and G. A. Perez, “Graphical procedure for reactive distillation systems.” Chem. Eng. Commun., 119, 109 (1993). 45.Feinberg, M. and D. Hildebrandt, “Optimal reactor design from a geometric viewpoint - I. Universal properties of the attainable region,” Chem. Eng. Sci., 52, 1637 (1997). 46.Feinberg, M., “Recent results in optimal reactor synthesis via attainable theory,” Chem. Eng. Sci., 54, 2535 (1999). 47.Fenske, M. R., “Fractionation of Straight-run Pennsylvania Gasoline,“ Ind. Eng. Chem., 24, 482 (1932). 48.Fidkowski, Z. T., Malone, M. F. and Doherty M. F., “Feasibility of Separations for Distillation of Nonideal Ternary Mixtures,” AIChE J., 39(8) 1303 (1993). 49.Frey, T. and J. Stichlmair, “MINLP optimization of reactive distillation columns,” Computer-Aided Chemical Engineering (Proceedings of ESCAPE-10), 8, 115 (2001). 50.Gadewar, S. B., N. Chadda, M. F. Malone and M. F. Doherty, “Feasibility and process alternatives for reactive distillation,” In K. Sundmacher, & A. Kienle (Eds.), Reactive distillation. Status and future directions (pp. 145–168). Wiley–VCH. (2003). 51.Georgiadis, M., M. Schenk, E. Pistikopoulos and R. Gani, “The interactions of design, control and operability in reactive distillation systems,” Comput. Chem. Eng., 26, 735 (2002). 52.Giessler, S., R. Y. Danilov, R. Y. Pisarenko, L. A. Serafimov, S. Hasebe and I. Hashimoto, “Feasibility study of reactive distillation using the analysis of statics,” Ind. Eng. Chem. Res., 37, 2220 (1998). 53.Giessler, S., R. Y. Danilov, R. Y. Pisarenko, L. A. Serafimov, S. Hasebe and I. Hashimoto, “Feasible separation modes for various reactive distillation systems,” Ind. Eng. Chem. Res., 38, 4060 (1999). 54.Glanz, S. and Stichlmair, J., “Minimum Energy Demand of Distillation Columns with Multiple Feeds,” Chem. Eng. Technol., 20, 93 (1997). 55.Gmehling J., U. Onken and W. Arlt, Vapor-Liquid Equilibrium Data Collection, DECHEMA, Frankfurt (1977). 56.Grosser, J. H., M. F. Doherty and M. F. Malone, “Modeling of reactive distillation systems,” Ind. Eng. Chem. Res., 26, 983 (1987). 57.Gumus, Z. H. and A. Ciric, “Reactive distillation column design with vapor/liquid/liquid equilibria,” Comput. Chem. Eng., 21, S983 (1997). 58.Güttinger, T. E. and M. Morari, “Predicting multiple steady states in distillation: Singularity analysis and reactive systems,” Comput. Chem. Eng., 21, s995 (1997). 59.Güttinger, T. E., “Predicting multiple steady states in equilibrium reactive distillation. 1. analysis of nonhybrid systems,” Ind. Eng. Chem. Res., 38, 1633 (1999a). 60.Güttinger, T. E., “Predicting multiple steady states in equilibrium reactive distillation. 2. analysis of hybrid systems,” Ind. Eng. Chem. Res., 38, 1649 (1999b). 61.Hauan, S., T. Hertzberg and K. M. Lien, ”Why methyl-tertbutyl-ether production by reactive distillation may yield multiple solutions,” Ind. Eng. Chem. Res., 34, 987 (1995). 62.Hauan, S. and K. M. Lien, “Geometric visualization of reactive fixed points,” Comput. Chem. Eng., 20, S133 (1996). 63.Hauan, S., “Multiplicity in reactive distillation of MTBE,” Comput. Chem. Eng., 21, 117 (1997). 64.Hauan, S., S. M. Schrans and K. M. Lien, “Dynamic evidence of the multiplicity mechanism in methyl tert-butyl ether reactive distillation,” Ind. Eng. Chem. Res., 36, 3995 (1997). 65.Hauan, S. and K. M. Lien, “A phenomena based design approach to reactive distillation,” Chem. Eng. Res. Des., 76, 396 (1998). 66.Hauan, S., On the behavior of reactive distillation systems, Doctoral thesis, Norwegian University of Science and Technology. Trondheim (1998). 67.Hauan, S., A. W. Westerberg and K. M. Lien, “Phenomena-based analysis of fixed points in reactive separation systems,” Chem. Eng. Sci., 55, 1053 (2000a). 68.Hauan, S., J. W. Lee, A. W. Westerberg and K. M. Lien, “Properties of sectional profiles in reactive separation cascades,” AIChE Symposium, 96, 397 (2000b). 69.Hauan, S., A. R. Ciric, A. W. Westerberg and K. M. Lien, “Difference points in extractive and reactive cascades. I - Basic properties and analysis,” Chem. Eng. Sci., 55, 3145 (2000c). 70.Higler, A. P., “Nonequilibrium modelling of reactive distillation: multiple steady states in MTBE synthesis,” Chem. Eng. Sci., 54, 1389 (1999). 71.Hoffmaster W. R. and S. Hauan, “Difference points in extractive and reactive cascades. III – Properties of column section profiles with arbitrary reaction distribution,” Chem. Eng. Sci., 59, 3671 (2004). 72.Hoffmaster W. R. and S. Hauan, “Difference points in extractive and reactive cascades. IV – Feasible regions for multisection columns with kinetic reactions and side streams,” Chem. Eng. Sci., 60, 7075 (2005). 73.Hoffmaster W. R. and S. Hauan, “Using feasible regions to design and optimize reactive distillation columns with ideal VLE,” AIChE J., 52, 1744 (2006). 74.Jacobs, R. and R. Krishna, “Multiple solutions in reactive distillation for methyl-tert-butyl ether synthesis,” Ind. Eng. Chem. Res., 32, 1706 (1993). 75.Julka, V. and M. F. Doherty, “Geometric behavior and minimum flows for nonideal multicomponent distillation.” Chem. Eng. Sci., 45, 1801 (1990). 76.Kirkpattric, S., C. D. Gellatt and M. P. Vechi, “Optimization by simulated annealing,” Science, 220, 671 (1983). 77.Kister, H. Z., “Graphically Find Theoretical Trays and Minimum Reflux for Complex Binary Distillation,” Chem. Eng., Jan. 21, 97 (1985). 78.Knight J. R. and M. F. Doherty, “Design and Synthesis of Homogeneous Azeotropic Distillations. 5. Columns with Nonnegligible Heat Effects,” Ind. Eng. Chem. Fundamentals, 25, 279 (1986). 79.Koehler, J., Aguirre, P. and Blass, E., “Minimum Reflux Calculations for Nonideal Mixtures Using the Reversible Distillation Model,” Chem. Eng. Sci., 46, 3007 (1991). 80.Koehler J., P. Poellmann and E. Blass, “A Review on Minimum Energy Calculations for Ideal and Nonideal Distillations,” Ind. Eng. Chem. Research, 34, 1003 (1995). 81.Laroche L., N. Bekiaris, H. W. Andersen and M. Morari, “Homogeneous Azeotropic Distillation: Separability and Flowsheet Synthesis,” Ind. Eng. Chem. Research, 31, 2190 (1992). 82.Lee, J. W., S. Hauan, K. M. Lien and A. W. Westerberg, “Difference points in extractive and reactive cascades. II – Generating design alternatives by the lever rule for reactive systems,” Chem. Eng. Sci., 55, 3161 (2000a). 83.Lee, J. W., S. Hauan, K. M. Lien and A. W. Westerberg, “Graphical methods for designing reactive distillation columns. I - The Ponchon-Savarit Diagram,” Proceedings of the Royal Society of London Series A: Mathematical Physical and Engineering Sciences, 456, 1953 (2000b). 84.Lee, J. W., S. Hauan, K. M. Lien and A. W. Westerberg, “Graphical methods for designing reactive distillation columns. II. The McCabe-Thiele Diagram,” Proceedings of the Royal Society of London Series A: Mathematical Physical and Engineering Sciences, 456, 1965 (2000c). 85.Lee, J. W., S. Hauan and A. W. Westerberg, “Reaction distribution in a reactive distillation column by graphical methods,” AIChE J., 46, 1218 (2000d). 86.Levy, S. G., D. B. Van Dogen and M. F. Doherty, “Design and synthesis of homogeneous azeotropic distillations. 2. minimum reflux calculation for nonideal and azeotropic columns,” Ind. Eng. Chem. Fundam., 24, 463 (1985). 87.McCabe, W. L. and Thiele, E. W., “Graphical Design of Fractionating Columns.” Ind. Eng. Chem., 17, 606 (1925). 88.Malone, M. F. and M. F. Doherty, “Reactive distillation,” Ind. Eng. Chem. Res., 39, 3953 (2000). 89.Metropolis, N., A. Rosenbluth, M. Rosenbluth, A. Teller and E. Teller, “Equation of state calculations by fast computing machines,” J. Chem. Phys., 21, 1087 (1953). 90.Mira, C., Chaotic Dynamics, World Scientific, New Jersey (1987). 91.Nisoli, A., M. F. Malone and M. F. Doherty, “Attainable regions for reaction with separation,” AIChE J., 43, 374 (1997). 92.Offers, H., Düssel, R. and Stichlmair, J., “Minimum Energy Requirement of Distillation Processes,” Comp. Chem. Eng., 19, s247 (1995). 93.Papalexandri, K. P. and E. N. Pistikopolous, “Generalized modular representation framework for process synthesis,” AIChE J., 42, 1010 (1996). 94.Pekkanen, M., “A local optimization method for the design of reactive distillation,” Comput. Chem. Eng., 19, S235 (1995). 95.Pisarenko, Y. A. and L. A. Serafimov, “Steady states for a reactive-distillation column with one product stream,” Theor. Found. Chem. Eng., 21, 281 (1988). 96.Pisarenko, Y. A., O. A. Epifanova and L. A. Serafimov, “Conditions for a steady state in a reactive distillation operation,” Theor. Found. Chem. Eng., 22, 31 (1988a). 97.Pisarenko, Y. A., O. A. Epifanova and L. A. Serafimov, “Dynamics of continuous evaporation with a chemical reaction,” Theor. Found. Chem. Eng., 22, 483 (1988b). 98.Pisarenko, Y. A. and L. A. Serafimov, “Statics of systems involving chemical conversions,” Theor. Found. Chem. Eng., 25, 519 (1992). 99.Pisarenko, Y. A., R. Y. Danilov and L. A. Serafimov, “Infinite-efficiency operating conditions in analysis of statics of reactive rectification,” Theor. Found. Chem. Eng., 29, 556 (1995). 100.Pisarenko, Y. A., R. Y. Danilov and L. A. Serafimov, “Possible modes of separation in continuous reactive-distillation processes,” Theor. Found. Chem. Eng., 30, 585 (1996). 101.Pisarenko, Y. A., R. Y. Danilov and L. A. Serafimov, “Application of the concept of a limiting paths to estimating the feasibility of steady states in analyzing the statics of reactive-distillation processes,” Theor. Found. Chem. Eng., 31, 43 (1997). 102.Pisarenko, Y. A., L. A. Serafimov, C. A. Cardona, D. L. Efremov and A. S. Shuwalov, “Reactive distillation design: Analysis of the process statics,” Rev. Chem. Eng., 17, 253 (2001). 103.Pollmann, P., Glanz, S. and Blass, E., “Calculating Minimum Reflux of Nonideal Component Distillation Using Eigenvalue Theory,” Comp. Chem. Eng., 18, s49 (1994). 104.Poth, N., T. Frey, T. and J. Stichlmair, “MINLP optimization of kinetically controlled reactive distillation processes,” Computer-Aided Chemical Engineering (Proceedings of ESCAPE-11), 9, 79 (2001). 105.Reyes, J. A., Gomez, A. and Marcilla, A., “Graphical Concepts to Orient the Minimum Reflux Ratio Calculation on Ternary Mixtures Distillation,” Ind. Eng. Chem. Res., 39, 3912 (2000). 106.Riddle, L., “HPI Construction Boxscore,” Hydrocarbon Process., 75, 1 (1996). 107.Seferelis, P. and J. Grievink, “Optimal design and sensitivity analysis of reactive distillation units using collocation models,” Ind. Eng. Chem. Res., 40, 1673 (2001). 108.Serafimov, L. A., Y. A. Pisarenko and K. A. Kardona, “Optimization of reactive distillation processes,” Theor. Found. Chem. Eng., 33, 455 (1999a). 109.Serafimov, L. A., Y. A. Pisarenko and N. Kulov, “Coupling chemical reaction with distillation: Thermodynamic analysis and practical applications,” Chem. Eng. Sci., 54, 1383 (1999b). 110.Shiras, R. N., Hanson, D. N. and Gibson, C. H., “Calculation of Minimum Reflux in Distillation Columns,” Ind. Eng. Chem. Res., 42, 871 (1950). 111.Shoemaker, J. D. and E. M. Jones, “Cumene by catalytic distillation,” Hydrocarbon Process., 66, 57 (1987). 112.Siirola, J. J., “An industrial perspective on process ynthesis,” AIChE Symposium, 304, 222 (1995). 113.Smith, L. A. and M. N. Huddleston, “New MTBE design now commercial,” Hydrocarbon Process., 61, 121 (1982). 114.Sneesby, M. G., M. O. Tadé and T. N. Smith, “Implications of steady-state multiplicity for operation and control of etherification columns,” Distillation and absorption '97, Institute of the Chemical Engineers Symposium Series, 142, 205 (1997). 115.Sneesby, M. G., M. O. Tadé and T. N. Smith, “Steady-state transitions in the reactive distillation of MTBE,” Comput. Chem. Eng., 22, 879 (1998a). 116.Sneesby, M. G., M. O. Tadé and T. N. Smith, “Multiplicity and pseudo-multiplicity in MTBE and ETBE reactive distillation,” Chem. Eng. Res. Des., 76, 525 (1998b). 117.Sneesby, M. G., M. O. Tadé and T. N. Smith, “Mechanistic interpretation of multiplicity in hybrid reactive distillation: Physically realizable cases,” Ind. Eng. Chem. Res., 37, 4424 (1998c). 118.Springer P. A. M. and R. Krishna, “Crossing of Boundaries in Ternary Azeotropic Distillation: Influence of Interphase Mass Transfer,” Int. Comm. Heat Mass Transfer, 28, 347 (2001). 119.Springer P. A. M., B. Buttinger, R. Baur and R. Krishna, “Crossing of the Distillation Boundaries in Homogeneous Azeotropic Distillation: Influence of Interphase Mass Transfer,” Ind. Eng. Chem. Research, 41, 1621 (2002). 120.Springer P. A. M., R. Baur and R. Krishna, “Influence of Interphase Mass Transfer on the Composition Trajectories and Crossing of Boundaries in Ternary Azeotropic Distillation,” Sep. Puri. Technology, 29, 1 (2002). 121.Stichlmair J. G. and J. R. Fair, Distillation: principles and practices, Wiley, New York (1998). 122.Stichlmair, J. G., Offers, H. and Potthoff, R. W., “Minimum Reflux and Minimum Reboil in Ternary Distillation,” Ind. Eng. Chem. Res., 32, 2438 (1993). 123.Stichlmair, J. and T. Frey, “Mixed-integer nonlinear programming optimization of reactive distillation processes,” Ind. Eng. Chem. Res., 40, 5978 (2001). 124.Subawalla, H. and J. Fair, “Design guidelines for solid-catalyzed reactive distillation systems,” Ind. Eng. Chem. Res., 38, 3696 (1999). 125.Sundaresan S., J. K. Wong and R. Jackson, “Limitations of the Equilibrium Theory of Countercurrent Devices,” AIChE J., 33, 1466 (1987). 126.Sundmacher, K. and U. Hoffmann, “Development of a new catalytic distillation process for fuel ethers via a detailed nonequilibrium model,” Chem. Eng. Sci., 51, 2359 (1996). 127.Taylor R. and R. Krishna, Multicomponent Mass Transfer, John Wiley, New York (1993). 128.Taylor, R. and R. Krishna, “Review: Modelling reactive distillation,” Chem. Eng. Sci., 55, 5183 (2000). 129.Taylor, R., R. Baur and R. Krishna, “Influence of Mass Transfer in Distillation: Residue Curves and Total Reflux,” AIChE J., 50, 3134 (2004). 130.Towler, G. P. and S. J. Frey, “Reactive distillation. In S. Kulprathipanja, Reactive separation processes,” Philadelphia: Taylor and Francis (Chapter 2) (2000). 131.Underwood, A. J. V., “The Theory and Practice of Testing Stills,” Trans. AIChE., 10, 112 (1932). 132.Ung, S. and M. F. Doherty, “Vapor liquid phase equilibrium in systems with multiple chemical reactions,” Chem. Eng. Sci., 50, 23 (1995a). 133.Ung, S. and M. F. Doherty, “Theory of phase equilibria in multireaction systems,” Chem. Eng. Sci., 50, 3201 (1995b). 134.Ung, S. and M. F. Doherty, “Synthesis of reactive distillation ystems with multiple equilibrium chemical reactions,” Ind. Eng. Chem. Res., 34, 2555 (1995c). 135.Van Dogen, D. B. and M. F. Doherty, “Design and synthesis of homogeneous azeotropic distillations. 1. problems formulation for a single column,” Ind. Eng. Chem. Fundam., 24, 454 (1985). 136.Wahnschafft O. M., J. W. Koehler, E. Blass and A. W. Westerberg, “The product composition regions of single feed azeotropic distillation columns,” Ind. Eng. Chem. Res., 31, 2345 (1992). 137.Wang, S. J., D. S. H. Wong and E. K. Lee, “Effect of interaction multiplicity on control system design for a MTBE reactive distillation column,” J. Process Control, 13, 503 (2003a). 138.Wang, S. J., D. S. H. Wong and E. K. Lee, “Control of a reactive distillation column in the kinetic regime for the synthesis of n-butyl acetate,” Ind. Eng. Chem. Res., 42(21), 5182 (2003b). 139.Wankat, P. C., Equilibrium staged separations, PTR Prentice Hall, N. J., U.S.A. (1988). 140.Westerberg, A. W., J. W. Lee and S. Hauan, “Synthesis of distillation-based processes for non-ideal mixtures,” Comput. Chem. Eng., 24, 2043 (2000). 141.Yaws, C. L., Li, K. Y. and Fang, C. S., “How to Find the Minimum Reflux for Binary Systems in Multiple-Feed Columns,” Chem. Eng., May 18, 153 (1981a). 142.Yaws, C. L., Li, K. Y. and Fang, C. S., “How to Find the Minimum Reflux for Multicomponent Systems in Multiple-Feed Columns,” Chem. Eng., June 1, 63 (1981b). 143.Zeng, K. L., C. L. Kuo and I. L. Chien, “Design and control of butyl acrylate reactive distillation column system,” Chem. Eng. Sci., 61, 4417 (2006). 144.Zoeller, J. R., V. H. Agreda, S. L. Cook, N. L. Lafferty, S. W. Polichnowski and D. M. Pond, “Eastman- Chemical-Company Acetic-Anhydride Process,” Catal. Today, 13, 73 (1992).
|