|
Chap1 1. (a) Hegedus, L. S. Transition Metal Organometallics in Organic Synthesis. In Comprehensive Organometallic Chemistry; Pergamon Press: Oxford, 1995; Vol 12. (b) Trost, B. M.; Verhoeven, T. R. Organopalladium Compounds in Organic Synthesis and in Catalysis. In Comprehensive Organometallic Chemistry; Pergamon Press: Oxford,1982; Vol 8. p 799. (c) Seddon, E. A.; Seddon K. R. The Chemistry of Ruthenium; Elsevier: Amsterdam, 1984. 2. (a) Seddon, E. A.; Seddon K. R. The Chemistry of Ruthenium; Elsevier: Amsterdam, 1984. (b) Griffith, W. P. The Chemistry of the Rarer Platinum Metals; Os, Ru, Ir and Rh; Wiley-Interscience: New York, 1967. 3. Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry, 4th ed.; John Wiley & Sons: New York, 1980. 4. Chan, W.-C.; Lau, C.-P.; Chen, Y.-Z.; Fang, Y.-Q.; Ng, S.-M.; Jia, G. Organometallics. 1997, 16, 34. 5. Yeh, K.-L.; Liu, B.; Lo, C.-Y.; Liu, R.-S.. J. Am. Chem. Soc. 2002, 124, 6510. 6. Datta, S.; Chang, C.-L.; Yeh, K.-L.; Liu, R.-S. J. Am. Chem. Soc. 2003, 125, 9294. 7. Shen, H.-C.; Pal, S.; Lian, J.-J.; Liu, R.-S. J. Am. Chem. Soc. 2003, 125, 15762. 8. Selected reviews: (a) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49. (b) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813. (c) Trost, B. M.; Toste, F. D.; Pinkerton, A. B. Chem. Rev. 2001, 101, 2067. (d) Shore, N. E. In Comprehensive Organometallic Chemistry; Abel, E. W.; Stone, F. G. A.; Wilkenson, G.; Hegedus, L. S. Eds.; Pergamon, Press: Oxford, 1995, Vol. 12, 703. (e) Geis, O.; Schaltz, H. Angew. Chem. Int. Eng. Ed. 1998, 37. 911. (f) Fruhauf, H. W. Chem. Rev. 1997, 97, 523. 9. (a) RajanBabu, T. V.; Nugent, W. A. J. Am. Chem. Soc. 1994, 116, 986. (b) Gansauer, A.; Pierobon, M.; Bluhm, H. Angew. Chem., Int. Eng. Ed. 1998, 37, 101. (c) Gansauer, A.; Bluhm, H.; Pierobon, M. J. Am. Chem. Soc. 1998, 120, 12849. (d) Odera, A.; Wu, C.-J.; Madhushaw, R. J.; Wang, S. L.; Liu, R.-S. J. Am. Chem. Soc. 2003, 125, 9610. 10. McDonald, F. E.; Schultz, C. C. J. Am. Chem. Soc. 1994, 116, 9363. 11. Molinaro, C.; Jamison, T. F. J. Am. Chem. Soc. 2003, 125, 8076. 12.Samir Kumar Mandal, and Subhas Chandra Roy. Tetrahedron Lett. 2006, 47, 1599. 13. Lo, C.-Y.; Guo, H.-Y.; Lian, J.-J.; Liu, R.-S. J. Org. Chem. 2002, 67, 3930. 14. Lo, C.-Y.; Guo, H.-Y.; Lian, J.-J.; Liu, R.-S. unpublished results. 15. Shen, H.-C.; Pal, S.; Lian, J.-J.; Liu, R.-S. J. Am. Chem. Soc. 2003, 125, 15762. 16.(a) Trost, B. M. Acc. Chem. Res. 2002, 35, 695. (b) Bruneau, C.; Dixneuf, P. Acc. Chem. Res. 1999, 32, 311. 17. The coupling of epoxide with alkyne and alkene via cleavage of the C-C bond of epoxide, see the selective examples: (a) Chou, W.-N.; White, J. B. Tetrahedron Lett. 1991, 32, 7637. (b) Palomino, E.; Schaap, A. P.; Heeg, M. J. Tetrahedron Lett. 1989, 30, 6801. 18.(a) Merlic, C. A.; Pauly, M. E. J. Am. Chem. Soc. 1996, 118, 11319. (b) Maeyama, K.; Iwasawa, N. J. Org. Chem. 1999, 64, 1344. (c) Miura, T.; Iwasawa, N. J. Am. Chem. Soc. 2002, 124, 518. 19.(a) Rick L. Danheiser, Ronald G. Brisbois, James J. Kowalczyk, Raymond F. Miller. J. Am. Chem. Soc. 1990, 112, 3093. (b) Craig A. Merlic, Daqiang Xu. J. Am. Chem. Soc. 1991, 113, 7418. 20.The deuterium contents of 1-H-indene d-48 were calculated by the crude products given from deutertated d-30 because purification of indene d-48 on a Et3N-pretreated silica column led to a loss of deuterium content at the C1 and C3-indene proton. The C1-H and C3-H deuterium contents were estimated to be 30% and 46% respectively. Chap2 1. For a review on vinylidene complex, see: (a) Bruneau, C.; Dixneuf, P. H. Acc. Chem. Res. 1999, 32, 311. (b) Michael I. Bruce. Chem. Rev. 1991, 91, 197. 2. For examples of migration of a trialkylsilyl group, see: (a) Katayama, H.; Onitsuka, K.; Ozawa, F. Organometallics.1996, 15, 4642. (b) Neil G. Connelly, William E. Geiger, Cristina Lagunas, Bernhard Metz, Anne L. Rieger, Philip H. Rieger, Michael J. Shaw. J. Am. Chem. Soc. 1995, 117, 12202. (c) Werner, H.; Schneider, D. Angew. Chem. Int. Ed. 1991, 30, 700. (d) Seregin, I. V.; Gevorgyan, V. J. Am. Chem. Soc. 2006, 128, 12050. 3. For example of migration of a alkylthio group, see: David C. Miller, Robert J. Angelici. Organometallics.1991, 10, 79. 4. For examples of migration of the iodo group, see: (a) Lowe, C.; Hund, H.-U.; Berke, H. J. Organomet. Chem. 1989, 371, 311. (b) Miura, T.; Iwasawa, N. J. Am. Chem. Soc. 2002, 124, 518. (c) Victor Mamane, Peter Hannen, Alois Fürstner. Chem. Eur. J. 2004, 10, 4556. 5. Madhushaw, R. J.; Lin, M. -Y.; Abu Sohel, S. M.; Liu, R.-S. J. Am. Chem. Soc. 2004, 126, 6895. 6. Although many metal-catalyzed transformations of terminal alkynes proceed via metal-vinylidene intermediates, only two cases show solvent-dependent selectivity arising from an equilibrium between tungsten-vinylidene and tungsten-π-alkyne species, see: (a) Iwasawa, N.; Maeyama, K.; Kusama, H. Org. Lett. 2001, 3, 3871. (b) Kusama, H.; Yamabe, H.; Iwasawa, N. Org. Lett. 2002, 4, 2569. 7. Sromek, A. W.; Rubina, M.; Gevorgyan, V. J. Am. Chem. Soc. 2005, 127, 10500. 8. Richard W. Friesen, Richard W. Loo. J. Org. Chem. 1991, 56, 4821. 9. Jack E. Baldwin, Richard C. Thomas, Lawrence I. Kruse, Lee Silberman. J. Org. Chem. 1977, 42, 3846. 10.TpRuPPh3(CH3CN)2PF6 loses its catalytic activity in acetonitrile because of the unavailability of two coordination sites. 11.Chock, P. B.; Halpern, J. J. Am. Chem. Soc. 1966, 88, 3511. 12.The conpent of structure C” arises form the recent report on the acid- catalyzed carbocyclization siloxyalkanes with arenas and alkenes. Zhang, L.; Kozmin, S. A. J. Am. Chem. Soc. 2004, 126, 10204. Chap3 1. See selected reviews: (a) Ma, S.-M.; Yu, S.; Gu, Z. Angew. Chem. Int. Ed. 2006, 45, 200. (b) Bruneau, C. Angew. Chem. Int. Ed. 2005, 44, 2328. (c) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813. (d) Mendez, M.; Mamane, V.; Fürstner, A. Chemtracts, 2003, 16, 397. (e) Diver, S. T.; Giessert, A. J. Chem. Rev. 2004, 104, 1317. 2. Madhushaw, R.; Lo, C.-Y.; Hwang, C.-W.; Su, M.-D.; Shen, H.-C.; Pal, S.; Shaikh, I. R.; Liu, R.-S. J. Am. Chem. Soc. 2004, 126, 15560. 3. (a) Fürstner, A.; Szillat, H.; Stelzer, F. J. Am. Chem. Soc. 2000, 122, 6785. (b) Mendez, M.; Munoz, M. P.; Nevado, C.; Cardenas, D. J.; Echavarren, A. M. J. Am. Chem. Soc. 2001, 123, 10511. (c) Chatani, N.; Inoue, H.; Kotsuma, T.; Murai, S. J. Am. Chem. Soc. 2002, 124, 10294. (d) Nieto-Oberhuber, C.; Munoz, P. M.; Bunuel, E.; Nevado, C.; Cardenas, D. J.; Echavarren, A. M. Angew. Chem. Int. Ed. 2004, 43, 2402. 4. In this AuPPh3+-based catalysis,3d the cycloisomerization proceeds at room temperatures, however, the chemoselectivity heavily depends on alternation of the alkenyl substituents, the connecting atom X.3d 5. Diene products IV and V were also produced from Rh(1)-catalyzed cycloisomerization of 1,6-enynes via initial formation of rhodium-vinylidene intermediates, however, there is no skeletal rearrangement according to the 2H-labeling experiments. See: Kim, H.; Lee C. J. Am. Chem. Soc. 2005, 127, 10180. 6. Treatment of alcohol 1 with TfOH (10 mol %) in toluene (23 oC, 10 min) produced two new products distinct from 3-10 and 3-11, and this information indicates that the catalytic activity of Zn(OTf)2 is not caused by TfOH. 7. (a) Winstein, S.; Shtavsky, M.; Norton, C.; Woodward, R. B. J. Am. Chem. Soc. 1955, 77, 4183. (b) Winstein, S.; Lewin, A. H.; Pande, K. C. J. Am. Chem. Soc. 1963, 85, 2324. 8. Fürstner, A.; Davies, P. W.; Gress, T. J. Am. Chem. Soc. 2005, 127, 8244 and reference therein. Chap4 1. Christian Bruneau. Angew. Chem. Int. Ed. 2005, 44, 2328. 2. Breitmeier, E. Terpene; Teuber: Leipzig, 1999. 3. Ludger A. Wessjohann, Wolfgang Brandt, and Thies Thiemann. Chem. Rev. 2003, 103, 1625. 4. Armin de Meijere. Chem. Rev. 2003, 103, 931. 5. Hélène Lebel, Jean-François Marcoux, Carmela Molinaro, and André B. Charette. Chem. Rev. 2003, 103, 977. 6. Jochanan Blum, Hanita Beer-Kraft, and Yacoub Badrieh. J. Org. Chem. 1995, 60, 5567. 7. Cristina Nevado, Catalina Ferrer, and A. M. Echavarren. Org. Lett. 2004, 6, 3191. 8. Alois Fürstner, Frank Stelzer, and Hauke Szillat. J. Am. Chem. Soc. 2001, 123, 11863. 9. C. Nieto-Oberhuber, M. Paz Munoz, E. Bunuel, C. Nevado, D. J. Cardenas, A. M. Echavarren. Angew. Chem. Int. Ed. 2004, 43, 2402. 10. Naoto Chatani, Ken Kataoka, Shinji Murai, Naoyuki Furukawa, and Yoshio Seki. J. Am. Chem. Soc. 1998, 120, 9104. 11. E. Mainetti, V. Mouries, L. Fensterbank, Max Malacria, J. Marco- Contelles. Angew. Chem. Int. Ed. 2002, 41, 2132. 12.Koji Miki, Kouichi Ohe, and Sakae Uemura. J. Org. Chem. 2003, 68, 8505. 13.Michael R. Luzung, Jordan P. Markham, and F. Dean Toste. J. Am. Chem. Soc. 2004, 126, 10858. 14.Victor Mamane, Tobias Gress, Helga Krause, and Alois Fürstner. J. Am. Chem. Soc. 2004, 126, 8654. 15.Youssef Harrak, Christophe Blaszykowski, Matthieu Bernard, Kevin Cariou, Emily Mainetti, Virginie Mouriès, Anne-Lise Dhimane, Louis Fensterbank, and Max Malacria. J. Am. Chem. Soc. 2004, 126, 9524. 16.F. Monnier, D. Castillo, S. Derien, L. Toupet, P. H. Dixneuf. Angew. Chem. Int. Ed. 2003, 42, 5474. 17. Alois Fürstner, Paul W. Davies, and Tobias Gress. J. Am. Chem. Soc. 2005, 126, 8244. 18.Jing Zhao, Colin O. Hughes, and F. Dean Toste. J. Am. Chem. Soc. 2006, 128, 7437. Chap5 1. (a) Aubert, C.; Buisine, O.; Mlacria, M. Chem. Rev. 2002, 102, 813. (b) Diver, S. T,; Giessert, A. J. Chem. Rev. 2004, 104, 1317. (c) Mendez, M.; Mamane, V.; Fürstner, A. Chemtracts 2003, 16, 397. 2. (a) Barry M. Trost, Gerald J. Tanoury. J. Am. Chem. Soc. 1988, 110, 1636. (b) Chatani, N.; Furukawa, N.; Sakurai, H.; Murai, S. Organometallics. 1996, 15, 901. (c) Furstner, A.; Stelzer, F.; Szillat, H. J. Am. Chem. Soc. 2001, 123, 11863. (d) Bhanu Prasad, B. A.; Yoshimoto, F. K.; Sarpong, R. J. Am. Chem. Soc. 2005, 127, 12468. 3. (a) A. Stephen K. Hashmi, Graham J. Hutchings. Angew. Chem. Int. Ed. 2006, 45, 7896. (b) Alois Fürstner, Paul W. Davies. Angew. Chem. Int. Ed. 2007, 46, 3410. 4. Sherry, B. D.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 15978. 5. Jung, H. H.; Floreancig, P. E. Org. Lett. 2006, 8, 1949. 6. Buzas, A.; Istrate, F.; Gagosz, F. Org. Lett. 2006, 8, 1957. 7. Nguyen, R. V.; Yao, X.; Li, C. J. Org. Lett. 2006, 8, 2397. 8. Xing, D.; Guan, B.; Cai, G.; Fang, Z.; Yang, L.; Shi, Z. Org. Lett. 2006, 8, 693. 9. Wei, C.; Li, C.-J. J. Am. Chem. Soc. 2003, 125, 9584. 10. Asao, N.; Sato, K. Org. Lett. 2006, 8, 5361. 11. Zhang, L.; Kozmin, S. A. J. Am. Chem. Soc. 2004, 126, 11806. 12. Peng, L.; Zhang, X.; Zhang, S.; Wang, J. J. Org. Chem. 2007, 72, 1192. 13. Karpov, A. S.; Muller, T. J. J. Org. Lett. 2006, 5, 3451. 14. Albert, B. J.; Sivaramakrishnan, A.; Naka, T.; Koide, K. J. Am. Chem. Soc. 2006, 128, 2792.
|