跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/01/30 12:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉思��
研究生(外文):Szu-Heng Liu
論文名稱:研發固相化學交聯方法學以研究豬大腦後突觸質密區組成蛋白質之排列結構
論文名稱(外文):Studying the protein organization of the postsynaptic density by a novel solid-phase- and chemical crosslinking-based technology
指導教授:張兗君
指導教授(外文):Yen-Chung Chang
學位類別:博士
校院名稱:國立清華大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
畢業學年度:95
語文別:中文
論文頁數:105
中文關鍵詞:後突觸質密區結構化學交聯細胞骨架蛋白質蛋白質體學
外文關鍵詞:postsynaptic densitystructurecross-linkingcytoskeletal proteinsproteomics
相關次數:
  • 被引用被引用:1
  • 點閱點閱:112
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:2
本研究中,我們研發了新的固相化學交聯方法學。在agarose beads 之上接上化學交聯試劑SAED,此反應劑可以選擇性地收集到生物分子聚體表面的蛋白質並進一步鑑定其身份。比較某一特定蛋白質在beads收集到的樣品與在原本總蛋白質中量的差異,可以得知該蛋白質在此生物分子聚體中空間分佈的資訊。本研究中我們先以一個已知結構的系統,synthetic three-layered protein complex,來驗證此新方法學的正確性。再利用此經驗證過的方法學,來分析豬大腦後突觸質密區組成蛋白質之間的排列結構。
我們決定了後突觸質密區之中5個主要蛋白質和19個次要蛋白質位於後突觸質密區的表面或內層。結果顯示,dynein intermediate chain、AMPA receptors、kainate receptors、N-cadherin、β-catenin、N-ethylmaleimide-sensitive factor、heat shock 70 kDa protein 8 isoform 2以及actin等蛋白質主要位居於表面。α,β-tubulin subunits、dynein heavy chain、MAP2A/2B、MAP2C/2D、spectrin、neurofilament heavy subunits、neurofilament medium subunits、heat shock 70 kDa protein 12A、α-internexin、dynamin-1 以及PSD-95位居於深度3.5 nm以內的區域。N-methyl-D-aspartate receptors 以及α-subunits of calcium, calmodulin-dependent protein kinase II位於表面但卻形成或位處於特殊的結構中。基於我們的實驗結果,並結合前人對於後突觸質密區組成蛋白質之間接合關係的了解,我們提出了PSD構造的分子模型。
Agarose beads carrying a cleavable, fluorescent, and photoreactive cross-linking reagent on the surface were synthesized and used to selectively pull out the proteins lining the surface of supramolecules. A quantitative comparison of the abundances of various proteins in the sample pulled out by the beads from supramolecules to their original abundances could provide the information on the spatial arrangement of these proteins in the supramolecule. The usefulness of these synthetic beads was successfully verified by trials using a synthetic protein complex consisting of three layers of different proteins on glass coverslip.
By using these beads, we determined the interior or superficial locations of 5 major and 19 minor constituent proteins in the postsynaptic density (PSD), a large protein complex and the landmark structure of asymmetric synapses in the mammalian CNS. The results indicate that α,β-tubulins, dynein heavy chain, microtubule-associated protein 2, spectrin, neurofilament H and M subunits, a hsp70 protein, α-internexin, dynamin and PSD-95 protein reside in the interior of the PSD. Dynein intermediate chain, AMPA receptors, kainate receptors, N-cadherin, β-catenin, N-ethylmaleimide-sensitive factor, a hsc70 protein and actin reside on the surface of the PSD. The results further suggest that the N-methyl-D-aspartate receptors and the α-subunits of calcium, calmodulin-dependent protein kinase II are likely to reside on the surface of the PSD with, however, unique local protein organizations. Based on our results and the known interactions between various PSD proteins from data mining, a model for the molecular organization of the PSD is proposed.
壹、緒論………………………………………………………………1
貳、材料與方法
一、藥品………………………………………………………………5
二、純化PSD和subcellular fraction ……………………………6
三、凝膠電泳分析 (SDS-PAGE) ……………………………………9
四、西方點漬法 (Western blot)…………………………………11
五、電子顯微鏡分析PSD結構………………………………………12
六、合成SAED-conjugated DADPA-agarose beads reagent……13
七、利用SAED-conjugated DADPA-agarose beads reagent收集PSD 表層蛋白 ……………………………………………………………14
八、二維蛋白質電泳 ………………………………………………15
九、MALDI-TOF MS 鑑定蛋白質身份………………………………16
十、合成three-layered protein complex (TPC)………………18
十一、利用SAED-conjugated DADPA beads收集TPC表面蛋白質.20
十二、使用原子力顯微鏡檢測TPC…………………………………20
參、結果
一、 SAED-conjugated DADPA beads 的合成……………………22
二、 證明SAED-conjugated DADPA beads 的可用性……………23
三、 PSD的純化、形態與成份鑑定 ………………………………25
四、 以 SAED 或 SAED-conjugated DADPA beads 標定PSD……27
五、 鑑定SAED-conjugated DADPA beads 收集到的PSD表面蛋白質 …………………………………………………………………29
六、 預估E (Exterior)/T (Total) ratios 的範圍……………30
七、 根據E/T ratios決定24種PSD蛋白質的表面或內層分佈 …32
肆、討論
一、 PSD的各種組成蛋白質的表面/內層分佈……………………35
二、 α-CaMKII在PSD中的分佈 ……………………………………36
三、 細胞膜蛋白質在PSD中的分佈 ………………………………37
四、 PSD的分子模型 ………………………………………………39
五、 本方法學未來展望……………………………………………42
伍、表
表一、MALDI-TOF MS 鑑定PSD蛋白質 ……………………………46
陸、圖
圖1 、 SAED-conjugated DADPA agarose beads 的合成與應用..48
圖2 、 Synthetic three-layered protein complex (TPC)的特徵鑑定,使用TPC來證明 SAED-conjugated DADPA beads的功能………50
圖3 、 豬大腦皮質純化所得PSD的形態與成份鑑定 ………………53
圖4 、 分別以 SAED 或 SAED-conjugated DADPA beads 標定PSD蛋白質…55
圖5 、 利用一維凝膠電泳和西方點漬法來分析PSD蛋白質及SAED-conjugated beads與PSD反應後收集到的蛋白質之組成……………58
圖6 、 利用二维凝膠電泳分析比較PSD蛋白質以及經由SAED-conjugated DADPA beads 收集的PSD表面蛋白質之間成份的差異..60
圖7 、 利用西方點漬法和二維蛋白質電泳分析, 共決定了24種PSD蛋白質的E/T ratios………………………………………………………62
圖8 、PSD的分子模型 …………………………………………………64
柒、參考文獻……………………………………………………………66

捌、附錄
附錄一、以固相化學交聯方法學研究紅血球細胞膜表面蛋白質……76
附錄二、利用不連續蔗糖梯度離心證明microtubule 和 actin filament與 PSD之間的交互作用………………………………………90
李慧貞(2002), 後突觸質密區中新鑑定的蛋白質-PSD500之研究 / Identification and characterization of a novel protein-PSD500 in the postsynaptic densities, 國立清華大學生命科學系碩士論文
古美雲(2003), 利用二維電泳法分析鼠腦之後突觸質密區(PSD)與其主要蛋白α-CaMKII / Analysis of postsynaptic density and α-CaMKII in rat brain by two-dimensional gel electrophoresis, 國立清華大學分子醫學研究所碩士論文
游珮均(2006), 利用化學交聯法分析後突觸質密區(PSD)之蛋白結構 / Analysis of protein organization of the postsynaptic density by chemical cross-linking method, 國立清華大學分子醫學研究所碩士論文
Baines, A. J., Keating, L., Phillips, G. W., and Scott, C. (2001) The postsynaptic spectrin/4.1 membrane protein ‘accumulation machine’. Cell. Biol. Mol. Lett. 6, 691-702.
Beesley, P. W., Mummery, R., and Tibaldi, J. (1995) N-cadherin is a major glycoprotein component of isolated rat forebrain postsynaptic densities. J. Neurochem. 64, 2288-2294.
Blomberg, F., Cohen, R. S., and Siekevitz, P. (1977) The structure of postsynaptic densities isolated from dog cerebral cortex. II. Characterization and arrangement of some of the major proteins within the structure. J. Cell. Biol. 74, 204-225.
Boggon, T. J., Murray, J., Chappuis-Flament, S., Wong, E., Gumbiner, B. M., and Shapiro, L. (2002) C-cadherin ectodomain structure and implications for cell adhersion mechanisms. Science 296, 1308-1313.
Brieher, W. M., Yap, A. S., and Gumbiner, B. M. (1996) Lateral dimerization is required for the homophilic binding activity of C-cadherin. J. Cell Biol. 135, 487-496.
Carlin, R. K., Grab, D. J., Cohen, R. S., and Siekevitz, P. Isolation and characterization of postsynaptic densities from various brain regions: enrichment of different types of postsynaptic densities. (1980) J. Cell. Biol. 86, 831-843.
Chen, X., Vinade, L., Leapman, R. D., Petersen, J. D., Nakagawa, T., Phillips, T. M., Sheng, M., and Reese, T. S. (2005) Mass of the postsynaptic density and enumeration of three key molecules. Proc. Natl. Acad. Sci. U. S. A. 102, 11551-11556.
Cho, K. O., Hunt, C. A., and Kennedy, M. B. (1992) The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein. Neuron 9, 929-942.
Cohen, R. S., Blomberg, F., Berzins, K., and Siekevitz, P. (1977) The structure of postsynaptic densities isolated from dog cerebral cortex I. overall morphology and protein composition. J. Cell. Biol. 74, 181-203.
Collins, M. O., Yu, L., Coba, M. P., Husi, H., Campuzano, I., Blackstock, W. P., Choudhary, J. S., and Grant, S. G. (2005) Proteomic analysis of in vivo phosphorylated synaptic proteins. J. Biol. Chem. 280, 5972 –5982.
Das, S., Gerwin, C., and Sheng, Z.-H. (2003) Syntaphilin binds to dynamin-1 and inhibits dynamin-dependent endocytosis. J. Biol. Chem. 278, 41221-41226.
Dosemeci, A., Reese, T. S., Petersen, J., and Tao-Cheng, J. H. (2000) A novel particulate form of Ca2+/CaMKII-dependent protein kinase II in neurons. J. Neurosci. 20, 3076-3084.
Dosemeci, A., Tao-Cheng, J. H., Vinade, L., and Jaffe, H. (2006) Preparation of postsynaptic density fraction from hippocampal slices and proteomic analysis. Biochemical and Biophysical Research Communications 339, 687-694.
Dosemeci, A., Tao-Cheng, J. H., Vinade, L., Winters, C. A., Pozzo-Miller, L., and Reese, T. S. (2001) Glutamate-induced transient modification of the postsynaptic density. Proc. Natl. Acad. Sci. U.S.A. 98, 10428-10432.
Edwards, F. A. (1995) LTP: a structural model to explain the inconsistencies. Trends Neurosci. 18, 250-255.
Ehlers, M. D. (2003) Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat. Neurosci. 6, 231-242.
Garcia, R. A. G., Vasudevan, K., and Buonanno, A. (2000) The neuregulin receptor ErbB-4 interacts with PDZ-containing proteins at neuronal synapses. Proc. Natl. Acad. Sci. U.S.A. 97, 3596-3601.
Geisler, N., Fischer, S., Vandekerckhove, J., Plessmann, U., and Weber, K. (1984) Hybrid character of a large neurofilament protein (NF-M): intermediate filament type sequence followed by a long and acidic carboxy-terminal extension. EMBO J. 3, 2701-2706.
Han, Z., Truong, Q. A., Park, S., and Breslow, J. L. (2003) Two Hsp70 family members expressed in atherosclerotic lesions. Proc. Natl. Acad. Sci. U.S.A. 100, 1256-1261.
Hollmann, M., and Heinemann, S. (1994) Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31-108.
Huang, Y. Z., Won, S., Ali, D. W., Wang, Q., Tanowitz, M., Du, Q. S., Pelkey, K. A., Yang, D. J., Xiong, W. C., Salter, M. W., and Mei, L. (2000) Regulation of neuregulin signaling by PSD-95 interacting with ErbB4 at CNS synapses. Neuron 26, 443-455.
Irie, M., Hata, Y., Takeuchi, M., Ichtchenko, K., Toyoda, A., Hirao, K., Takai, Y., Rosahl, T. W., and Sudhof, T. C. (1997) Binding of neuroligins to PSD-95. Science 277, 1511-1515.
Jordan, B. A., Fernholz, B. D., Boussac, M., Xu, C., Grigorean, G., Ziff, E. B., and Neubert, T. A. (2004) Identification and verification of novel rodent postsynaptic density proteins. Mol. Cell. Proteomics 3, 857-871.
Kaplan, M. P., Chin, S. S., Fliegner, K. H. and Liem, R. K. (1990) Alpha-internexin, a novel neuronal intermediate filament protein, precedes the low molecular weight neurofilament protein (NF-L) in the developing rat brain. J. Neurosci. 10, 2735–2748.
Kennedy, M. B. (1997) The postsynaptic density at glutamatergic synapses. Trends Neurosci. 20, 264-268.
Kennedy, M. B. (2000) Signal-processing machines at the postsynaptic density. Science 290, 750-754.
Kornau, H. C., Schenker, L. T., Kennedy, M. B., and Seeburg, P. H. (1995) Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269, 1737-1740.
Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.
Lai, S. L., Chiang, S. F., Chen, I. T., Chow, W. Y., and Chang, Y. C. (1999) Interprotein disulfide bonds formed during isolation process tighten the structure of the postsynaptic density. J. Neurochem. 73, 2130-2138.
Lai, S. L., Ling, S. C., Kuo, L. H., Shu, Y. C., Chow, W. Y., and Chang, Y. C. (1998) Characterization of granular particles isolated from postsynaptic densities. J. Neurochem. 71, 1694-1701.
Li, K. W., Hornshaw, M. P., Van der Schors, R. C., Watson, R., Tate, S., Casetta, B., Jimenez, C. R., Gouwenberg, Y., Gundelfinger, E. D., Smalla, K. H., and Smit, A. B. (2004) Proteomics analysis of rat brain postsynaptic density: implications of the diverse protein functionalgroups for the integration of synaptic physiology. J. Biol. Chem. 279, 987-1002.
Ligon, L. A., Karki, S., Tokito, M., and Holzbaur, E. L. F. (2001) Dynein binds to β-catenin and may tether microtubules at adherens junctions. Nat. Cell. Biol. 3, 913-917.
Lisman, J. E., and Harris, K. M. (1993) Quantal analysis and synaptic anatomy-integrating two views of hippocampal plasticity. Trends Neurosci. 16, 141-147.
Lisman, J., Schulman, H., and Cline, H. (2002) The molecular basis of CaMKII function in synaptic and behavioural memory. Nat. Rev. Neurosci. 3, 175-190.
Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265-275.
Luna, E. J., and Hitt, A. L. Cytoskeleton-plasma membrane interactions. (1992) Science 258, 955-964.
Luscher, C., Nicoll, R. A., Malenka, R. C., and Muller, D. (2000) Synaptic plasticity and dynamic modulation of the postsynaptic membrane. Nat. Neurosci. 3, 545-550.
Marrs, G. S., Green, S. H., and Dailey, M. E. (2001) Rapid formation and remodeling of postsynaptic densities in developing dendrites. Nat. Neurosci. 4, 1006-1013.
Matsuzawa, M., Liesi, P., and Knoll, W. (1996) Chemically modifying glass surfaces to study substratum-guided neurite outgrowth in culture. J. Neurosci. Methods 69, 189-196.
Monahan, J. B., and Michel, J. (1987) Identification and characterization of an N-methyl-D-aspartate-specific L- [3H] glutamate recognition site in synaptic plasma membrane. J. Neurochem. 48, 1699-1708.
Moon, I. S., Park, I. S., Schenker, L. T., Kennedy, M. B., Moon, J.-I., and Jin, I. (2001) Presence of both constitutive and Inducible forms of heat shock protein 70 in the cerebral cortex and hippocampal synapses. Cereb Cortex 11, 238-248.
Murthy, V. N., Schikorski, T., Stevens, C. F., and Zhu, Y. (2001) Inactivity produces increases in neurotransmitter release and synapse size. Neuron 32, 673-682.
Naisbitt, S., Valtschanoff, J., Allison, D. W., Sala, C., Kim, E., Craig, A. M., Weinberg, R. J., and Sheng, M. (2000) Interaction of the postsynaptic density-95/guanylate kinase domain-associated protein complex with a light chain of myosin-V and dynein. J. Neurosci. 20, 4524-4534.
Noel, J., Ralph, G. S., Pickard, L., Williams, J., Molnar, E., Uney, J. B., Collingridge, G. L., and Henley, J. M. (1999) Surface expression of AMPA receptors in hippocampal neurons is regulated by an NSF-dependent mechanism. Neuron 23, 365-376.
Ohtsuka, K., and Suzuki, T. (2000) Roles of molecular chaperones in the nervous system. Brain Res. Bull. 53, 141-146.
Okabe, T., Nakamura, T., Nishimura, Y. N., Kohu, K., Ohwada, S., Morishita, Y., and Akiyama, T. (2003) RICS, a novel GTPase-activating protein for Cdc42 and Rac1, is involved in the β-catenin-N-cadherin and NMDA receptor signaling. J. Biol. Chem. 278, 9920-9927.
Palay, S. L. (1958) The morphology of synapses in the central nervous system. Exp. Cell Res. 5, 275-293.
Pardee, J. D., and Spudich, J. A. (1982) Purification of muscle actin. Methods in Enzymology 85, 164-181.
Peng, J., Kim, M. J., Cheng, D., Duong, D. M., Gygi, S. P., and Sheng, M. (2004) Semiquantitative proteomic analysis of rat forebrain postsynapic density fractions by mass spectrometry. J. Biol. Chem. 279, 21003-21011.
Peters, A., Palay, S. L., and Webster, H. D. (1991) The fine structure of the nervous system: neurons and their supporting cells, Synapses, Oxford University Press, NY.
Petersen, J. D., Chen, X., Vinade, L., Dosemeci, A., Lisman, J. E., and Reese, T. S. (2003) Distribution of postsynaptic density (PSD)-95 and Ca2+/calmodulin-dependent protein kinase II at the PSD. J. Neurosci. 23, 11270-11278.
Pullikuth, A. K., and Gill, S. S. (1999) Identification of a Manduca sexta NSF ortholog, a member of the AAA family of ATPases. Gene 240, 343-354.
Ratner, N., and Mahler, H. R. (1983) Structural organization of filamentous proteins in postsynaptic density. Biochemistry 22, 2446-2453.
Riederer, B. M., Zagon, I. S., and Goodman, S. R. (1986) Brain spectrin(240/235) and brain spectrin(240/235E): Two distinct spectrin subtypes with different location within mammalian neural cells. J. Cell Biol. 102, 2088-2097.
Ruoho, A. H., Rashidbaigi, A., and Roeder, R. E. (1984) Approaches to the identification of receptors ultilizing photoaffinity labeling. In “Membranes, detergents, and receptors solubilization” J.C. Venter and L.C. Harrison eds., 119-160, Alan R. Liss , Inc., New York.
Sanchez, C., Padilla, R., Paciucci, R., Zabala, J. C., and Avila, J. (1994) Binding of heat-shock protein 70 (hsp 70) to tubulin. Arch. Biochem. Biophys. 310, 428-432.
Satoh, K., Takeuchi, M., Oda, Y., Deguchi-Tawarada, M., Sakamoto, Y., Matsubara, K., Nagasu, T., and Takai, Y. (2002) Identification of activity-regulated proteins in the postsynaptic density fraction. Genes Cells 7, 187-197.
Scott, C., Keating, L., Bellamy, M., and Baines, A. J. (2001) Protein 4.1 in forebrain postsynaptic density preparations. Eur. J. Biochem. 268, 1084-1094.
Shen, K., Teruel, M. N., Subramanian, K., and Meyer, T. (1998) CaMKIIb functions as an F-actin targeting module that localizes CaMKIIa/b heterooligomers to dendritic spines. Neuron 21, 593-606.
Sheng, M., and Sala, C. (2001) PDZ domains and the organization of supramolecular complexes. Annu. Rev. Neurosci. 24, 1-29.
Shevchenko, A., Wilm, M., Vorm, O., and Mann, M. (1996) Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal. Chem. 68, 850-858.
Siekevitz, P. (1985) The postsynaptic density: a possible role in long-lasting effects in the central nervous system. Proc. Natl. Acad. Sci. U.S.A. 82, 3494-3498.
Suzuki, Y., Yoshitomo-Nakagawa, K., Maruyama, K., Suyama, A., and Sugano, S. (1997) Construction and characterization of a full length-enriched and a 5’-end-enriched cDNA library. Gene 200, 149-156.
Thaler, C. D., and Haimo, L. T. (1996) Microtubules and microtubule motors: mechanisms of regulation. Int. Rev. Cytol. 164, 269-327.
Thevenin, B. J. M., Shahrokh, Z., Williard, R. L., Fujimoto, E. K., Kang, J. J., Ikemoto, N., and Shohet, S. B. (1992) A novel photoactivatable cross-linker for the functionally-directed region-specific fluorescent labeling of proteins. Eur. J. Biochem. 206, 471-477.
Toni, N., Buchs, P. -A., Nikonenko, I., Bron, C. R., and Muller, D. (1999) LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402, 421-425
Toni, N., Buchs, P. -A., Nikonenko, I., Povilaitite, P., Parisi, L., and Muller, D. (2001) Remodeling of synaptic membranes after induction of long-term potentiation. J. Neurosci. 21, 6245-6251.
Valtschanoff, J. G., and Weinberg, R. J. (2001) Laminar organization of the NMDA receptor complex within the postsynaptic density. J. Neurosci. 21, 1211-1217.
Van Rossum, D., and Hanisch, U. K. (1999) Cytoskeletal dynamics in dendritic spines: direct modulation by glutamate receptors? Trends Neurosci. 22:290-295.
Van Rossum, D., Kuhse, J., and Betz, H. (1999) Dynamic interaction between soluble tubulin and C-terminal domains of N-methyl-D-aspartate receptor subunits. J. Neurochem. 72, 962-973.
Walikonis, R. S., Jensen, O. N., Mann, M., Provance Jr, D. W., Mercer, J. A., and Kennedy, M. B. (2000) Identification of proteins in the postsynaptic density fraction by mass spectrometry. J. Neurosci. 20, 4069-4080.
Walsh, M. J., and Kuruc, N. (1992) The postsynaptic density: constituent and associated proteins characterized by electrophoresis, immunoblotting, and peptide sequencing. J. Neurochem. 59, 667-678.
Weber, K., and Osborn, M. (1969) The Reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J. Biol. Chem. 244, 4406-4412.
Williams, Jr, R.C. and Lee, J.C. (1982) Preparation of tubulin from brain. Methods Enzymol. 85, 376-380.
Wu, T. Y., Liu, C. I., and Chang, Y. C. (1996) A study of the oligomeric state of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-preferring glutamate receptors in the synaptic junctions of porcine brain. Biochem. J. 319, 731-739.
Wyszynski, M., Lin, J., Rao, A., Nigh, E., Beggs, A. H., Craig, A. M., and Sheng, M. (1997) Competitive binding of a-actinin and calmodulin to the NMDA receptor. Nature 385, 439-442.
Yoshimura,Y., Yamauchi, Y., Shinkawa, T., Taoka, M., Donai, H., Takahashi, N., Isobe, T., and Yamauchi, T. (2004) Molecular constituents of the postsynaptic density fraction revealed by proteomic analysis using multidimensional liquid chromatography tandem mass spectrometry. J. Neurochem. 88, 759-768.
Ziff, E. B. (1997) Enlightening the postsynaptic density. Neuron 19, 1163-1174.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top