跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2025/01/16 18:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林谷峰
研究生(外文):Ku-Feng Lin
論文名稱:綠豆中非專一性脂質運輸蛋白質及植物防禦素之結構,功能與蛋白質工程之研究
論文名稱(外文):Structure, Function and Protein Engineering of Mung Bean Plant Nonspecific Lipid Transfer Protein and Plant Defensin
指導教授:呂平江
指導教授(外文):Ping-Chiang Lyu
學位類別:博士
校院名稱:國立清華大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:英文
論文頁數:104
中文關鍵詞:植物非專一性脂質運輸蛋白蛋白質穩定度疏水性中空腔同源結構模擬法蛋白質嵌合植物防禦素抗蟲功能核磁共振alpha-澱粉酶抑制能力蛋白質結構
外文關鍵詞:Plant non-specific lipid transfer proteinsProtein stabilityHydrophobic cavityHomology modellingProtein duckingPlant defensinInsecticidal activityNuclear magnetic resonanceAlpha-amylase inhibitory activityProtein structure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:294
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
嚴苛環境所造成的壓力,病原菌的感染,及倉儲害蟲的傷害一直是造成農作植物產量及品質受損之重要原因。而植物本身為了抵禦這些天然的生存競爭也發展出了各種重要的防衛策略,諸如:在外層形成以脂質為主要成份的角明質層(cutin)以抵禦外來侵犯,或是直接產生對病原菌或害蟲有毒的化合物及蛋白質。 近來,許多研究已經證明將一些在植物防禦中扮演重要角色的蛋白質(如:植物非專一性脂質運輸蛋白,植物防禦素…等等)以蛋白質工程做修飾可以增強其植物相關抵禦能力。因此,瞭解這些參與植物防禦的蛋白質的基本特性與其反應機制是相當重要的研究目標。
植物非專一性脂質運輸蛋白是一個可以在試管內(in vitro)實驗中細胞膜間傳輸脂質分子的熱穩定蛋白質。這個家族的蛋白曾被報導可能參與:植物防禦,授粉,發芽…等重要功能。但其在生物體內所扮演的真實功能及相關機制卻一直未被釐清。在本論文中,我們從綠豆中純化出一個新的非專一性脂質運輸蛋白並測定其氨基酸序列。藉由分析核磁共振方法所解出來的三級蛋白質結構,我們發現此蛋白質的C端與中空疏水腔的結構和稻米中的脂質運輸蛋白相當不同。因為此一中空疏水腔環境被認為在功能及結構上都具有相當重要的影響。因此,我們利用圓二色光譜,螢光光譜及蛋白質嵌合模擬來瞭解並分析他們的熱穩定特性和脂質運輸能力與三級結構的相關性。
植物防禦素也是一種多功能的植物重要蛋白質。他們已被報導的相關功能包括:酵素抑制,無細胞系統中抑制蛋白質合成,及最有名的抵抗植物病原菌的能力。在此論文中我們利用核磁共振解出一個新植物防禦素VrD2的三級結構。有趣的是此蛋白質雖然和之前被報導可抗蟲的VrD1蛋白質結構極為相似,VrD2卻完全沒有抗蟲能力。另外,在��-澱粉酶的抑制實驗中VrD2也和VrD1表現出不同的抑制能力。因為��-澱粉酶在目前被認為與抗蟲能力相關,因此我們進一步利用蛋白質工程方法以VrD2結構為主體去設計出具��-澱粉酶抑制能力的VrD2 chimera (VrD2c)。我們也利用同源模擬法和蛋白質嵌合分析比較VrD1,VrD2及VrD2c三級結構且討論VrD2c和澱粉酶結合模式。我們相信這些結果證明了植物防禦素適合利用於蛋白質工程且將有助於其在農作植物上的應用。
It is well recognized that environmental stresses, pathogenic infections, and insect damage significantly result in agricultural losses. Plants have developed defense mechanisms such as evolving stress-resistant system, developing barriers to entry and producing the plant poisons against these damage factors. Extensively studies have indicated that the modifications of the proteins related to the plant defense by protein engineering improve protein ability of defense functions. Thus, understanding the mechanisms as well as the biochemical properties of the proteins participate in regulating plant defense mechanisms is important.
Plant non-specific lipid transfer proteins (nsLTPs) are thermal stable proteins that are capable of transferring lipid molecules between membranes in vitro. This family of proteins is proposed to be involved in defense, pollination and germination; the in vivo biological function remains, however, elusive. Here we report the purification and sequencing of an nsLTP1 (Vr-nsLTP1) from sprouts of Vigna radiate (Vr). By determining and analyzing the solution structure of Vr-nsLTP1, some notable differences in the C-terminal tails and internal hydrophobic cavities were found between Vr-nsLTP1 and Os-nsLTP1 (purified from oryza sativa). Circular dichroism and fluorescence spectroscopy were used to compare the thermodynamics and lipid transfer properties of Vr-nsLTP1 with that of Os-nsLTP1. Docking of a lipid molecule into the solution structure of Vr-nsLTP1 reveals similar binding cavities and hydrophobic interactions as in Os-nsLTP1 consistent with their comparable lipid transfer properties measured experimentally.
Plant defensins are important constituents of the innate immune systems of plants. They are multi-function proteins reported to inhibit protease, protein synthesis in cell-free system or act against microbe and fungi. Here, the structure of a novel plant defensin isolated from the seeds of the Vigna radiata has been determined by 1H nuclear magnetic resonance spectroscopy. Interestingly, this protein exhibits neither insecticidal activity nor alpha-amylase inhibitory activity in spite of showing a similar global fold to that of VrD1, an insecticidal plant defensin that has been suggested to function by inhibiting insect alpha-amylase. Structural analyses and surface charge comparisons of VrD1 and VrD2 revealed that the charged residues of L3 correlate with the observed difference in inhibitory activities of these proteins. A VrD2 chimera produced by substitution of the proposed functional loop of VrD1 onto the structurally equivalent loop of VrD2 supported this hypothesis. These results clarify the mode of alpha-amylase inhibition of plant defensins and also represent a possible approach for engineering novel alpha-amylase inhibitors. The application of protein engineering to this protein family may provide an efficient method for protection against crop losses.
Abstract in Chinese 1
Abstract 3

Chapter I. Introduction
1.1 Introduction 6
1.2 Non-specific Lipid Transfer Proteins 6
1.3 Plant Defensins 9
1.4 Figures and Tables 13

Chapter II. Experimental Procedures
2.1 Sequence Determination and Characterization of NsLTP1s 27
2.2 Structural Analyses of NsLTP1s 29
2.3 Lipid Transfer Assay of NsLTPs 30
2.4 NMR Experiments and Structure Calculations of Plant Defensin VrD2 30
2.5 Construction of VrD2 Derivative Expression Plasmids 32
2.6 Overproduction and Purification of Recombinant VrD2 and Derivatives 33
2.7 Plant Defensins Identification and Characterization 34
2.8 Purification and Activity Assay of Tenebrio Molitor α-Amylase 35
2.9 Model Building and Docking Study of Plant Defensin 35
2.10 Figures 36

Chapter III. Characterization and Structural Analyses of nonspecific Lipid Transfer Protein 1 from Mung Bean
3.1 Introduction 42
3.2 Result and Discussion 43
3.2.1 Purification and Sequencing of Vr-nsLTP1 43
3.2.2 Secondary Structure of Vr-nsLTP1 44
3.2.3 Comparison with Homologous NsLTP1s 44
3.2.4 Lipid Transfer Activity and Docking of a Lipid Molecule into Vr-nsLTP1 46
3.2.5 Comparisons of the Thermodynamic Properties of Vr- and Os-nsLTP1 48
3.2.6 Probable Role of NsLTP1 as Plant Defensin 48
3.3 Conclusion 49
3.4 Figures and Tables 51

Chapter IV. Structure-Based Protein Engineering for Alpha-amylase Inhibitory Activity of Plant Defensin
4.1 Introduction 69
4.2 Result and Discussion 70
4.2.1 Resonance Assignment and Secondary Structure of VrD2 70
4.2.2 Structure Calculation and Refinement 71
4.2.3 VrD2 Structure 72
4.2.4 Structural comparison of VrD2 with VrD1 73
4.2.5 VrD2 chimera 74
4.2.6 Insect alpha-Amylase Inhibitory activity 74
4.3 Discussion 75
4.4 Figures and Tables 79
Research Publications 94
References 95
1.Horvath, B. M., Bachem, C. W., Trindade, L. M., Oortwijn, M. E., and Visser, R. G. (2002) Expression analysis of a family of nsLTP genes tissue specifically expressed throughout the plant and during potato tuber life cycle Plant Physiol 129, 1494-506.
2.Douliez, J. P., Michon, T., Elmorjani, K., and Marion, D. (2000) Structure, biological and technological functions of lipid transfer proteins and indolines, the major lipid binding proteins from cereal kernels J. Cereal Sci. 32, 1-20.
3.Kader, J. C. (1975) Proteins and the intracellular exchange of lipids. I. Stimulation of phospholipid exchange between mitochondria and microsomal fractions by proteins isolated from potato tuber Biochim Biophys Acta 380, 31-44.
4.Yu, Y. G., Chung, C. H., Fowler, A., and Suh, S. W. (1988) Amino acid sequence of a probable amylase/protease inhibitor from rice seeds Arch. Biochem. Biophys. 265, 466-75.
5.Douady, D., Grosbois, M., Guerbette, F., and Kader, J.C. (1985) Purification of phospholipid transfer protein from maize seeds using a two-step chromatographic procedure Physiol. Veg. 23, 373-380.
6.Desormeaux, A., Blochet, J. E., Pezolet, M., and Marion, D. (1992) Amino acid sequence of a non-specific wheat phospholipid transfer protein and its conformation as revealed by infrared and Raman spectroscopy. Role of disulfide bridges and phospholipids in the stabilization of the alpha-helix structure Biochim Biophys Acta 1121, 137-52.
7.Douliez, J. P., Jegou, S., Pato, C., Molle, D., Tran, V., and Marion, D. (2001) Binding of two mono-acylated lipid monomers by the barley lipid transfer protein, LTP1, as viewed by fluorescence, isothermal titration calorimetry and molecular modelling Eur. J. Biochem. 268, 384-8.
8.Bernhard, W. R., Thoma, S., Botella, J., and Somerville, C. R. (1991) Isolation of a cDNA Clone for Spinach Lipid Transfer Protein and Evidence that the Protein Is Synthesized by the Secretory Pathway Plant Physiol 95, 164-170.
9.Lin, K. F., Liu, Y. N., Hsu, S. T., Samuel, D., Cheng, C. S., Bonvin, A. M., and Lyu, P. C. (2005) Characterization and structural analyses of nonspecific lipid transfer protein 1 from mung bean Biochemistry 44, 5703-12.
10.Kader, J. C. (1996) Lipid transfer proteins in plants Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 627-654.
11.Torres-Schumann, S., Godoy, J. A., and Pintor-Toro, J. A. (1992) A probable lipid transfer protein gene is induced by NaCl in stems of tomato plants Plant Mol. Biol. 18, 749-57.
12.Dunn, M. A., Hughes, M. A., Zhang, L., Pearce, R. S., Quigley, A. S., and Jack, P. L. (1991) Nucleotide sequence and molecular analysis of the low temperature induced cereal gene, BLT4 Mol. Gen. Genet. 229, 389-94.
13.Trevino, M. B., and OConnell, M. A. (1998) Three drought-responsive members of the nonspecific lipid-transfer protein gene family in Lycopersicon pennellii show different developmental patterns of expression Plant Physiol. 116, 1461-8.
14.Hoffmann-Sommergruber, K. (2000) Plant allergens and pathogenesis-related proteins. What do they have in common? Int. Arch. Allergy Immunol. 122, 155-66.
15.Buhot, N., Douliez, J. P., Jacquemard, A., Marion, D., Tran, V., Maume, B. F., Milat, M. L., Ponchet, M., Mikes, V., Kader, J. C., and Blein, J. P. (2001) A lipid transfer protein binds to a receptor involved in the control of plant defence responses FEBS Lett. 509, 27-30.
16.Wang, S. Y., Wu, J. H., Ng, T. B., Ye, X. Y., and Rao, P. F. (2004) A non-specific lipid transfer protein with antifungal and antibacterial activities from the mung bean Peptides 25, 1235-42.
17.Maldonado, A. M., Doerner, P., Dixon, R. A., Lamb, C. J., and Cameron, R. K. (2002) A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis Nature 419, 399-403.
18.Kalla, R., Shimamoto, K., Potter, R., Nielsen, P. S., Linnestad, C., and Olsen, O. A. (1994) The promoter of the barley aleurone-specific gene encoding a putative 7 kDa lipid transfer protein confers aleurone cell-specific expression in transgenic rice Plant J. 6, 849-60.
19.Lee, J. Y., Min, K., Cha, H., Shin, D. H., Hwang, K. Y., and Suh, S. W. (1998) Rice non-specific lipid transfer protein: the 1.6 A crystal structure in the unliganded state reveals a small hydrophobic cavity J. Mol. Biol. 276, 437-48.
20.Samuel, D., Liu, Y. J., Cheng, C. S., and Lyu, P. C. (2002) Solution structure of plant nonspecific lipid transfer protein-2 from rice (Oryza sativa) J. Biol. Chem. 277, 35267-73.
21.Cheng, H. C., Cheng, P. T., Peng, P., Lyu, P. C., and Sun, Y. J. (2004) Lipid binding in rice nonspecific lipid transfer protein-1 complexes from Oryza sativa Protein Sci. 13, 2304-15.
22.Hoh, F., Pons, J. L., Gautier, M. F., de Lamotte, F., and Dumas, C. (2005) Structure of a liganded type 2 non-specific lipid-transfer protein from wheat and the molecular basis of lipid binding Acta Crystallogr D Biol Crystallogr 61, 397-406.
23.Davis, B. D., Dulbecco, R., Eisen, H. N., Ginsberg, H. S., & Wood, B., Jr. (1968) Principles of microbiology and immyunology, Harper International, New YORK.
24.Thomma, B. P., Cammue, B. P., and Thevissen, K. (2002) Plant defensins Planta 216, 193-202.
25.Broekaert, W. F., Terras, F. R., Cammue, B. P., and Osborn, R. W. (1995) Plant defensins: novel antimicrobial peptides as components of the host defense system Plant Physiol 108, 1353-8.
26.Colilla, F. J., Rocher, A., and Mendez, E. (1990) gamma-Purothionins: amino acid sequence of two polypeptides of a new family of thionins from wheat endosperm FEBS Lett 270, 191-4.
27.Garcia-Olmedo, F., Molina, A., Alamillo, J. M., and Rodriguez-Palenzuela, P. (1998) Plant defense peptides Biopolymers 47, 479-91.
28.Moreno, M., Segura, A., and Garcia-Olmedo, F. (1994) Pseudothionin-St1, a potato peptide active against potato pathogens Eur J Biochem 223, 135-9.
29.Pelegrini, P. B., and Franco, O. L. (2005) Plant gamma-thionins: novel insights on the mechanism of action of a multi-functional class of defense proteins Int J Biochem Cell Biol 37, 2239-53.
30.Chen, K. C., Lin, C. Y., Kuan, C. C., Sung, H. Y., and Chen, C. S. (2002) A novel defensin encoded by a mungbean cDNA exhibits insecticidal activity against bruchid J Agric Food Chem 50, 7258-63.
31.Bloch, C., Jr., and Richardson, M. (1991) A new family of small (5 kDa) protein inhibitors of insect alpha-amylases from seeds or sorghum (Sorghum bicolar (L) Moench) have sequence homologies with wheat gamma-purothionins FEBS Lett 279, 101-4.
32.Melo, F. R., Rigden, D. J., Franco, O. L., Mello, L. V., Ary, M. B., Grossi de Sa, M. F., and Bloch, C., Jr. (2002) Inhibition of trypsin by cowpea thionin: characterization, molecular modeling, and docking Proteins 48, 311-9.
33.Liu, Y. J., Cheng, C. S., Lai, S. M., Hsu, M. P., Chen, C. S., and Lyu, P. C. (2006) Solution structure of the plant defensin VrD1 from mung bean and its possible role in insecticidal activity against bruchids Proteins 63, 777-86.
34.Kushmerick, C., de Souza Castro, M., Santos Cruz, J., Bloch, C., Jr., and Beirao, P. S. (1998) Functional and structural features of gamma-zeathionins, a new class of sodium channel blockers FEBS Lett 440, 302-6.
35.Titarenko, E., Lopez-Solanilla, E., Garcia-Olmedo, F., and Rodriguez-Palenzuela, P. (1997) Mutants of Ralstonia (Pseudomonas) solanacearum sensitive to antimicrobial peptides are altered in their lipopolysaccharide structure and are avirulent in tobacco J Bacteriol 179, 6699-704.
36.Thevissen, K., Ghazi, A., De Samblanx, G. W., Brownlee, C., Osborn, R. W., and Broekaert, W. F. (1996) Fungal membrane responses induced by plant defensins and thionins J Biol Chem 271, 15018-25.
37.Thevissen, K., Warnecke, D. C., Francois, I. E., Leipelt, M., Heinz, E., Ott, C., Zahringer, U., Thomma, B. P., Ferket, K. K., and Cammue, B. P. (2004) Defensins from insects and plants interact with fungal glucosylceramides J Biol Chem 279, 3900-5.
38.Spelbrink, R. G., Dilmac, N., Allen, A., Smith, T. J., Shah, D. M., and Hockerman, G. H. (2004) Differential antifungal and calcium channel-blocking activity among structurally related plant defensins Plant Physiol 135, 2055-67.
39.De Samblanx, G. W., Goderis, I. J., Thevissen, K., Raemaekers, R., Fant, F., Borremans, F., Acland, D. P., Osborn, R. W., Patel, S., and Broekaert, W. F. (1997) Mutational analysis of a plant defensin from radish (Raphanus sativus L.) reveals two adjacent sites important for antifungal activity J Biol Chem 272, 1171-9.
40.Schaaper, W. M., Posthuma, G. A., Plasman, H. H., Sijtsma, L., Fant, F., Borremans, F. A., Thevissen, K., Broekaert, W. F., Meloen, R. H., and van Amerongen, A. (2001) Synthetic peptides derived from the beta2-beta3 loop of Raphanus sativus antifungal protein 2 that mimic the active site J Pept Res 57, 409-18.
41.Bruix, M., Jimenez, M. A., Santoro, J., Gonzalez, C., Colilla, F. J., Mendez, E., and Rico, M. (1993) Solution structure of gamma 1-H and gamma 1-P thionins from barley and wheat endosperm determined by 1H-NMR: a structural motif common to toxic arthropod proteins Biochemistry 32, 715-24.
42.Fant, F., Vranken, W. F., and Borremans, F. A. (1999) The three-dimensional solution structure of Aesculus hippocastanum antimicrobial protein 1 determined by 1H nuclear magnetic resonance Proteins 37, 388-403.
43.Fant, F., Vranken, W., Broekaert, W., and Borremans, F. (1998) Determination of the three-dimensional solution structure of Raphanus sativus antifungal protein 1 by 1H NMR J Mol Biol 279, 257-70.
44.Bloch, C., Jr., Patel, S. U., Baud, F., Zvelebil, M. J., Carr, M. D., Sadler, P. J., and Thornton, J. M. (1998) 1H NMR structure of an antifungal gamma-thionin protein SIalpha1: similarity to scorpion toxins Proteins 32, 334-49.
45.Almeida, M. S., Cabral, K. M., Kurtenbach, E., Almeida, F. C., and Valente, A. P. (2002) Solution structure of Pisum sativum defensin 1 by high resolution NMR: plant defensins, identical backbone with different mechanisms of action J Mol Biol 315, 749-57.
46.Janssen, B. J., Schirra, H. J., Lay, F. T., Anderson, M. A., and Craik, D. J. (2003) Structure of Petunia hybrida defensin 1, a novel plant defensin with five disulfide bonds Biochemistry 42, 8214-22.
47.Lay, F. T., Schirra, H. J., Scanlon, M. J., Anderson, M. A., and Craik, D. J. (2003) The three-dimensional solution structure of NaD1, a new floral defensin from Nicotiana alata and its application to a homology model of the crop defense protein alfAFP J Mol Biol 325, 175-88.
48.Chen, J. J., Chen, G. H., Hsu, H. C., Li, S. S., and Chen, C. S. (2004) Cloning and functional expression of a mungbean defensin VrD1 in Pichia pastoris J Agric Food Chem 52, 2256-61.
49.Lin, C., Chen, C. S., and Horng, S. B. (2005) Characterization of resistance to Callosobruchus maculatus (Coleoptera: Bruchidae) in mungbean variety VC6089A and its resistance-associated protein VrD1 J Econ Entomol 98, 1369-73.
50.Shiau Y.S., H. S. B., Chen C.S., Huang P.T., Lin C., Hsueh Y.C., Lou K.L. (2006) Structural analysis of the unique insecticidal activity of novel mungbean defensin VrD1 reveals possibility of homoplasy evolution between plant defensins and scorpion J. Mol. Recognit.
51.Pereira, P. J., Lozanov, V., Patthy, A., Huber, R., Bode, W., Pongor, S., and Strobl, S. (1999) Specific inhibition of insect alpha-amylases: yellow meal worm alpha-amylase in complex with the amaranth alpha-amylase inhibitor at 2.0 A resolution Structure Fold Des 7, 1079-88.
52.Strobl, S., Maskos, K., Wiegand, G., Huber, R., Gomis-Ruth, F. X., and Glockshuber, R. (1998) A novel strategy for inhibition of alpha-amylases: yellow meal worm alpha-amylase in complex with the Ragi bifunctional inhibitor at 2.5 A resolution Structure 6, 911-21.
53.Nahoum, V., Farisei, F., Le-Berre-Anton, V., Egloff, M. P., Rouge, P., Poerio, E., and Payan, F. (1999) A plant-seed inhibitor of two classes of alpha-amylases: X-ray analysis of Tenebrio molitor larvae alpha-amylase in complex with the bean Phaseolus vulgaris inhibitor Acta Crystallogr D Biol Crystallogr 55 ( Pt 1), 360-2.
54.Vallee, F., Kadziola, A., Bourne, Y., Juy, M., Rodenburg, K. W., Svensson, B., and Haser, R. (1998) Barley alpha-amylase bound to its endogenous protein inhibitor BASI: crystal structure of the complex at 1.9 A resolution Structure 6, 649-59.
55.Blein, J. P., Coutos-Thevenot, P., Marion, D., and Ponchet, M. (2002) From elicitins to lipid-transfer proteins: a new insight in cell signalling involved in plant defence mechanisms Trends Plant Sci 7, 293-6.
56.Hanks, J. N., Snyder, A. K., Graham, M. A., Shah, R. K., Blaylock, L. A., Harrison, M. J., and Shah, D. M. (2005) Defensin gene family in Medicago truncatula: structure, expression and induction by signal molecules Plant Mol Biol 58, 385-99.
57.Osborn, R. W., De Samblanx, G. W., Thevissen, K., Goderis, I., Torrekens, S., Van Leuven, F., Attenborough, S., Rees, S. B., and Broekaert, W. F. (1995) Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae FEBS Lett 368, 257-62.
58.Terras, F. R., Schoofs, H. M., De Bolle, M. F., Van Leuven, F., Rees, S. B., Vanderleyden, J., Cammue, B. P., and Broekaert, W. F. (1992) Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds J Biol Chem 267, 15301-9.
59.Chen, G. H., Hsu, M. P., Tan, C. H., Sung, H. Y., Kuo, C. G., Fan, M. J., Chen, H. M., Chen, S., and Chen, C. S. (2005) Cloning and characterization of a plant defensin VaD1 from azuki bean J Agric Food Chem 53, 982-8.
60.Liu, Y. J., Samuel, D., Lin, C. H., and Lyu, P. C. (2002) Purification and characterization of a novel 7-kDa non-specific lipid transfer protein-2 from rice (Oryza sativa) Biochem. Biophys. Res. Commun. 294, 535-40.
61.Coligan, J. E., Dunn, B. M., Ploegh, H. L., Speicher, D. W., and Wingfield, P. T. (1998) in Currently protocols in protein science, John Wiley&Sons, Inc., New York.
62.Edman, P., and Begg, G. (1967) A protein sequenator Eur. J. Biochem. 1, 80-91.
63.Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C. (1985) Measurement of protein using bicinchoninic acid Anal. Biochem. 150, 76-85.
64.Kamal, J. K., and Behere, D. V. (2002) Thermal and conformational stability of seed coat soybean peroxidase Biochemistry 41, 9034-42.
65.Guex, N., and Peitsch, M. C. (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling Electrophoresis 18, 2714-23.
66.Kleywegt GJ, J. T. (1994) Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Cryst D50, 178-185.
67.Sanner, M. F., Olson, A. J., and Spehner, J. C. (1996) Reduced surface: an efficient way to compute molecular surfaces Biopolymers 38, 305-20.
68.Wallace, A. C., Laskowski, R. A., and Thornton, J. M. (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions Protein Eng. 8, 127-34.
69.Marion, D., Ikura, M., Tschudin, R. and Bax, A. (1989) Rapid recording of 2D NMR spectra without phase cycling. Application to the study of hydrogen exchange in proteins. J. Magn. Reson. 85, 393-399.
70.Goddard, T. D., and Kneller, D. G. (1999), University of California, San Francisco.
71.Wuthrich, K. (1986) NMR of Proteins and Nucleic Acids, Wiley-Interscience, New York.
72.Brunger, A. T., Adams, P. D., Clore, G. M., Delano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T., and Warren, G. L. (1998) Crystallography & NMR System (CNS) : A new software system for macromolecular structure determination Acta Cryst. D54, 905-921.
73.Linge, J. P., Williams, M. A., Spronk, C. A., Bonvin, A. M., and Nilges, M. (2003) Refinement of protein structures in explicit solvent Proteins 50, 496-506.
74.Nederveen, A. J., Doreleijers, J. F., Vranken, W., Miller, Z., Spronk, C. A., Nabuurs, S. B., Guntert, P., Livny, M., Markley, J. L., Nilges, M., Ulrich, E. L., Kaptein, R., and Bonvin, A. M. (2005) RECOORD: a recalculated coordinate database of 500+ proteins from the PDB using restraints from the BioMagResBank Proteins 59, 662-72.
75.Laskowski, R. A., MacArthur, M. W., Moss, D. S., and Thornton, J. M. (1993) PROCHECK: a program to check the stereochemical quality of protein structures J. Appl. Cryst. 26, 283-291.
76.Young, L., and Dong, Q. (2004) Two-step total gene synthesis method Nucleic Acids Res. 32, e59.
77.Khalil, E., Vrnessa, L.,Andre, L.,Helene, R.,and Didier, M. (2004) A bacterial expression system revised for the recombinant production of cystine-rich plant lipid transfer proteins Biochem. Biophys. Res. Commun. 316, 1202-1209.
78.Landon. (1977) Cleavage at aspartyl-prolyl bonds Methods Enzymol 47, 145-9.
79.Strobl, S., Gomis-Ruth, F. X., Maskos, K., Frank, G., Huber, R., and Glockshuber, R. (1997) The alpha-amylase from the yellow meal worm: complete primary structure, crystallization and preliminary X-ray analysis FEBS Lett 409, 109-14.
80.Strobl, S., Maskos, K., Betz, M., Wiegand, G., Huber, R., Gomis-Ruth, F. X., and Glockshuber, R. (1998) Crystal structure of yellow meal worm alpha-amylase at 1.64 A resolution J Mol Biol 278, 617-28.
81.Bernfeld, P. (1955) in Methods Ensymol. pp 149-158.
82.Sali, A., and Blundell, T. L. (1993) Comparative protein modelling by satisfaction of spatial restraints J Mol Biol 234, 779-815.
83.Schneidman-Duhovny, D., Inbar, Y., Polak, V., Shatsky, M., Halperin, I., Benyamini, H., Barzilai, A., Dror, O., Haspel, N., Nussinov, R., and Wolfson, H. J. (2003) Taking geometry to its edge: fast unbound rigid (and hinge-bent) docking Proteins 52, 107-12.
84.Jones, S., and Thornton, J. M. (1996) Principles of protein-protein interactions Proc Natl Acad Sci U S A 93, 13-20.
85.Sterk, P., Booij, H., Schellekens, G. A., Van Kammen, A., and De Vries, S. C. (1991) Cell-specific expression of the carrot EP2 lipid transfer protein gene Plant Cell 3, 907-21.
86.Garcia-Olmedo, F., Molina, A., Segura, A., and Moreno, M. (1995) The defensive role of nonspecific lipid-transfer proteins in plants Trends Microbiol 3, 72-4.
87.Park, S. Y., and Lord, E. M. (2003) Expression studies of SCA in lily and confirmation of its role in pollen tube adhesion Plant Mol. Biol. 51, 183-9.
88.Edqvist, J., and Farbos, I. (2002) Characterization of germination-specific lipid transfer proteins from Euphorbia lagascae Planta 215, 41-50.
89.Kalla, R., Shimamoto, K., Potter, R., Nielsen, P. S., Linnestad, C., and Olsen, O. A. (1994) The promoter of the barley aleurone-specific gene encoding a putative 7 kDa lipid transfer protein confers aleurone cell-specific expression in transgenic rice Plant J 6, 849-60.
90.Guiderdoni, E., Cordero, M. J., Vignols, F., Garcia-Garrido, J. M., Lescot, M., Tharreau, D., Meynard, D., Ferriere, N., Notteghem, J. L., and Delseny, M. (2002) Inducibility by pathogen attack and developmental regulation of the rice Ltp1 gene Plant Mol. Biol. 49, 683-99.
91.Gincel, E., Simorre, J. P., Caille, A., Marion, D., Ptak, M., and Vovelle, F. (1994) Three-dimensional structure in solution of a wheat lipid-transfer protein from multidimensional 1H-NMR data. A new folding for lipid carriers Eur. J. Biochem. 226, 413-22.
92.Shin, D. H., Lee, J. Y., Hwang, K. Y., Kim, K. K., and Suh, S. W. (1995) High-resolution crystal structure of the non-specific lipid-transfer protein from maize seedlings Structure 3, 189-99.
93.Heinemann, B., Andersen, K. V., Nielsen, P. R., Bech, L. M., and Poulsen, F. M. (1996) Structure in solution of a four-helix lipid binding protein Protein Sci. 5, 13-23.
94.Gomar, J., Petit, M. C., Sodano, P., Sy, D., Marion, D., Kader, J. C., Vovelle, F., and Ptak, M. (1996) Solution structure and lipid binding of a nonspecific lipid transfer protein extracted from maize seeds Protein Sci. 5, 565-77.
95.Lerche, M. H., Kragelund, B. B., Bech, L. M., and Poulsen, F. M. (1997) Barley lipid-transfer protein complexed with palmitoyl CoA: the structure reveals a hydrophobic binding site that can expand to fit both large and small lipid-like ligands Structure 5, 291-306.
96.Lee, J. Y., Min, K., Cha, H., Shin, D. H., Hwang, K. Y., and Suh, S. W. (1998) Rice non-specific lipid transfer protein: the 1.6 A crystal structure in the unliganded state reveals a small hydrophobic cavity J Mol Biol 276, 437-48.
97.Lerche, M. H., and Poulsen, F. M. (1998) Solution structure of barley lipid transfer protein complexed with palmitate. Two different binding modes of palmitate in the homologous maize and barley nonspecific lipid transfer proteins Protein Sci. 7, 2490-8.
98.Poznanski, J., Sodano, P., Suh, S. W., Lee, J. Y., Ptak, M., and Vovelle, F. (1999) Solution structure of a lipid transfer protein extracted from rice seeds. Comparison with homologous proteins Eur. J. Biochem. 259, 692-708.
99.Charvolin, D., Douliez, J. P., Marion, D., Cohen-Addad, C., and Pebay-Peyroula, E. (1999) The crystal structure of a wheat nonspecific lipid transfer protein (ns-LTP1) complexed with two molecules of phospholipid at 2.1 A resolution Eur. J. Biochem. 264, 562-8.
100.Tassin-Moindrot, S., Caille, A., Douliez, J. P., Marion, D., and Vovelle, F. (2000) The wide binding properties of a wheat nonspecific lipid transfer protein. Solution structure of a complex with prostaglandin B2 Eur. J. Biochem. 267, 1117-24.
101.Han, G. W., Lee, J. Y., Song, H. K., Chang, C., Min, K., Moon, J., Shin, D. H., Kopka, M. L., Sawaya, M. R., Yuan, H. S., Kim, T. D., Choe, J., Lim, D., Moon, H. J., and Suh, S. W. (2001) Structural basis of non-specific lipid binding in maize lipid-transfer protein complexes revealed by high-resolution X-ray crystallography J. Mol. Biol. 308, 263-78.
102.Pastorello, E. A., Farioli, L., Pravettoni, V., Giuffrida, M. G., Ortolani, C., Fortunato, D., Trambaioli, C., Scibola, E., Calamari, A. M., Robino, A. M., and Conti, A. (2001) Characterization of the major allergen of plum as a lipid transfer protein J. Chromatogr., B, Biomed. Sci. Appl. 756, 95-103.
103.Conti, A., Fortunato, D., Ortolani, C., Giuffrida, M. G., Pravettoni, V., Napolitano, L., Farioli, L., Perono Garoffo, L., Trambaioli, C., and Pastorello, E. A. (2001) Determination of the primary structure of two lipid transfer proteins from apricot (Prunus armeniaca) J. Chromatogr., B, Biomed. Sci. Appl. 756, 123-9.
104.Pastorello, E. A., Ortolani, C., Baroglio, C., Pravettoni, V., Ispano, M., Giuffrida, M. G., Fortunato, D., Farioli, L., Monza, M., Napolitano, L., Sacco, M., Scibola, E., and Conti, A. (1999) Complete amino acid sequence determination of the major allergen of peach (Prunus persica) Pru p 1 Biol. Chem. 380, 1315-20.
105.Tassin, S., Broekaert, W. F., Marion, D., Acland, D. P., Ptak, M., Vovelle, F., and Sodano, P. (1998) Solution structure of Ace-AMP1, a potent antimicrobial protein extracted from onion seeds. Structural analogies with plant nonspecific lipid transfer proteins Biochemistry 37, 3623-37.
106.Baud, F., Pebay-Peyroula, E., Cohen-Addad, C., Odani, S., and Lehmann, M. S. (1993) Crystal structure of hydrophobic protein from soybean; a member of a new cysteine-rich family J. Mol. Biol. 231, 877-87.
107.Guerbette, F., Grosbois, M., Jolliot-Croquin, A., Kader, J. C., and Zachowski, A. (1999) Comparison of lipid binding and transfer properties of two lipid transfer proteins from plants Biochemistry 38, 14131-7.
108.van Paridon, P. A., Gadella, T. W., Jr., Somerharju, P. J., and Wirtz, K. W. (1988) Properties of the binding sites for the sn-1 and sn-2 acyl chains on the phosphatidylinositol transfer protein from bovine brain Biochemistry 27, 6208-14.
109.Eriksson, A. E., Baase, W. A., Zhang, X. J., Heinz, D. W., Blaber, M., Baldwin, E. P., and Matthews, B. W. (1992) Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect Science 255, 178-83.
110.Xu, J., Baase, W. A., Baldwin, E., and Matthews, B. W. (1998) The response of T4 lysozyme to large-to-small substitutions within the core and its relation to the hydrophobic effect Protein Sci 7, 158-77.
111.Santoro, M. M., and Bolen, D. W. (1988) Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants Biochemistry 27, 8063-8.
112.Agashe, V. R., and Udgaonkar, J. B. (1995) Thermodynamics of denaturation of barstar: evidence for cold denaturation and evaluation of the interaction with guanidine hydrochloride Biochemistry 34, 3286-99.
113.Sivaraman, T., Kumar, T. K., Tu, Y. T., Peng, H. J., and Yu, C. (1999) Structurally homologous toxins isolated from the Taiwan cobra (Naja naja atra) differ significantly in their structural stability Arch Biochem Biophys 363, 107-15.
114.Molina, A., and Garcia-Olmedo, F. (1993) Developmental and pathogen-induced expression of three barley genes encoding lipid transfer proteins Plant J. 4, 983-91.
115.Carvalho, A. O., Machado, O. L. T., Cunha, M. D., Sants, I. S., and Gomes, V. M. (2001) Antimicrobial peptides and immunolocalization of a LTP in Vigna unguiculata seeds Plant Physiol. Biochem. 39, 137-146.
116.Nielsen, K. K., Nielsen, J. E., Madrid, S. M., and Mikkelsen, J. D. (1996) New antifungal proteins from sugar beet (Beta vulgaris L.) showing homology to non-specific lipid transfer proteins Plant Mol. Biol. 31, 539-52.
117.Segura, A., Moreno, M., and Garcia-Olmedo, F. (1993) Purification and antipathogenic activity of lipid transfer proteins (LTPs) from the leaves of Arabidopsis and spinach FEBS Lett. 332, 243-6.
118.Zasloff, M. (2002) Antimicrobial peptides of multicellular organisms Nature 415, 389-95.
119.Mendez, E., Moreno, A., Colilla, F., Pelaez, F., Limas, G. G., Mendez, R., Soriano, F., Salinas, M., and de Haro, C. (1990) Primary structure and inhibition of protein synthesis in eukaryotic cell-free system of a novel thionin, gamma-hordothionin, from barley endosperm Eur J Biochem 194, 533-9.
120.Almeida, M. S., Cabral, K. M., Zingali, R. B., and Kurtenbach, E. (2000) Characterization of two novel defense peptides from pea (Pisum sativum) seeds Arch Biochem Biophys 378, 278-86.
121.Wijaya, R., Neumann, G. M., Condron, R., Hughes, A. B., and Polya, G. M. (2000) Defense proteins from seed of Cassia fistula include a lipid transfer protein homologue and a protease inhibitory plant defensin Plant Science 159, 243-255.
122.Mendez, E., Rocher, A., Calero, M., Girbes, T., Citores, L., and Soriano, F. (1996) Primary structure of omega-hordothionin, a member of a novel family of thionins from barley endosperm, and its inhibition of protein synthesis in eukaryotic and prokaryotic cell-free systems Eur J Biochem 239, 67-73.
123.Landon, C., Sodano, P., Hetru, C., Hoffmann, J., and Ptak, M. (1997) Solution structure of drosomycin, the first inducible antifungal protein from insects Protein Sci 6, 1878-84.
124.Bontems, F., Roumestand, C., Gilquin, B., Menez, A., and Toma, F. (1991) Refined structure of charybdotoxin: common motifs in scorpion toxins and insect defensins Science 254, 1521-3.
125.Caldwell, J. E., Abildgaard, F., Dzakula, Z., Ming, D., Hellekant, G., and Markley, J. L. (1998) Solution structure of the thermostable sweet-tasting protein brazzein Nat Struct Biol 5, 427-31.
126.Zhu, S., Gao, B., and Tytgat, J. (2005) Phylogenetic distribution, functional epitopes and evolution of the CSalphabeta superfamily Cell Mol Life Sci 62, 2257-69.
127.Chen, k. C. L., C. Y.; Chung, M. C.; Kuang, C. C.; Sung, H. Y.; Tsou, S. C.; Kuo, C. G.; Chen, C. S. (2002) Cloning and characterization of a cDNA encoding an antimicrobial protein from mung bean seeds. Bot. Bull. Acad. Sin. 43, 251-259.
128.Morton, R. L., Schroeder, H. E., Bateman, K. S., Chrispeels, M. J., Armstrong, E., and Higgins, T. J. (2000) Bean alpha-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions Proc Natl Acad Sci U S A 97, 3820-5.
129.Richardson, M. (1990) Seed storage proteins: the enzyme inhibitors, Vol. 5, Rogers, L. ed., Academic Press, London, UK.
130.Svensson, B., Fukuda, K., Nielsen, P. K., and Bonsager, B. C. (2004) Proteinaceous alpha-amylase inhibitors Biochim Biophys Acta 1696, 145-56.
131.Franco, O. L., Rigden, D. J., Melo, F. R., and Grossi-De-Sa, M. F. (2002) Plant alpha-amylase inhibitors and their interaction with insect alpha-amylases Eur J Biochem 269, 397-412.
132.Paulraj K, L., and Koundal, K. R. (2002) Plant protease inhibitors in control of phytophagous insects Electronic Journal of Biotechnology 5, 93-109.
133.Macleod, R. A., and Onofrey, E. (1954) Cation antagonism of the antibacterial action of amines J Biol Chem 210, 193-201.
134.Jin, Z., Danilova, V., Assadi-Porter, F. M., Aceti, D. J., Markley, J. L., and Hellekant, G. (2003) Critical regions for the sweetness of brazzein FEBS Lett 544, 33-7.
135.Cohen, L., Karbat, I., Gilles, N., Ilan, N., Benveniste, M., Gordon, D., and Gurevitz, M. (2005) Common features in the functional surface of scorpion beta-toxins and elements that confer specificity for insect and mammalian voltage-gated sodium channels J Biol Chem 280, 5045-53.
136.Romestand, B., Molina, F., Richard, V., Roch, P., and Granier, C. (2003) Key role of the loop connecting the two beta strands of mussel defensin in its antimicrobial activity Eur J Biochem 270, 2805-13.
137.Vita, C., Roumestand, C., Toma, F., and Menez, A. (1995) Scorpion toxins as natural scaffolds for protein engineering Proc Natl Acad Sci U S A 92, 6404-8.
138.Drakopoulou, E., Zinn-Justin, S., Guenneugues, M., Gilqin, B., Menez, A., and Vita, C. (1996) Changing the structural context of a functional beta-hairpin. Synthesis and characterization of a chimera containing the curaremimetic loop of a snake toxin in the scorpion alpha/beta scaffold J Biol Chem 271, 11979-87.
139.Koradi, R., Billeter, M., and Wuthrich, K. (1996) MOLMOL: a program for display and analysis of macromolecular structures J Mol Graph 14, 51-5, 29-32.
140.Myers, E. W., and Miller, W. (1988) Optimal alignments in linear space Comput Appl Biosci 4, 11-7.
141.DiscoveryStudio. (2002), Accelrys Ins, San Diego, CA.
142.DeLano, W. L. (2002), DeLano Scientific, San Carlos, CA, USA.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. IEEE802.15.4基頻收發機之設計與實現
2. 利用光注入半導體雷射非線性動態產生線性啾頻訊號及其於雷射測距的應用
3. 分子內Diels-Alder反應應用於天然物GuanacastepeneA之七、六駢環合成研究
4. 三維高分子微製程技術於微光學生物感測與微流體反應晶片之應用
5. 以分析邏輯電路光罩佈局對晶片標準單元內部之橋接錯誤之診斷方法
6. 酪胺酸激脢抑制劑AG490於9L大鼠腦瘤細胞中引起葡萄糖調控蛋白78及94之誘發表現-透過引發細胞內鈣離子擾動及過氧化逆境壓力的機制
7. 利用X光/中子反射法及布魯斯角顯微儀和原子力顯微鏡研究DNA分子和氣液界面分子單層膜吸附作用之研究
8. 以奈米碳纖維頂端合成懸掛式單壁奈米碳管之元件製作與接觸力分析
9. 應用於無線區域網路具有切換電感式壓控震盪器之四頻帶頻率合成器
10. 折射式微透鏡應用於微光電整合系統
11. 使用最小基底細胞與模組化架構自動產生積體電路之奈米金屬互連測試結構軟體
12. 稀磁半導體材料開發及其特性研究
13. 鉭矽化物和耐火金屬氧化物奈米材料合成、結構鑑定及物理性質研究
14. 米根黴葡糖澱粉酶的第二十一族醣類結合模組水溶液結構之研究暨綠豆非專一性脂質轉運蛋白一型結構之研究
15. 聚茀系高分子之分子堆疊結構與光電性質關係之研究:高效率穩定純藍光高分子發光二極體與光色調控方法之探討