|
1.Horvath, B. M., Bachem, C. W., Trindade, L. M., Oortwijn, M. E., and Visser, R. G. (2002) Expression analysis of a family of nsLTP genes tissue specifically expressed throughout the plant and during potato tuber life cycle Plant Physiol 129, 1494-506. 2.Douliez, J. P., Michon, T., Elmorjani, K., and Marion, D. (2000) Structure, biological and technological functions of lipid transfer proteins and indolines, the major lipid binding proteins from cereal kernels J. Cereal Sci. 32, 1-20. 3.Kader, J. C. (1975) Proteins and the intracellular exchange of lipids. I. Stimulation of phospholipid exchange between mitochondria and microsomal fractions by proteins isolated from potato tuber Biochim Biophys Acta 380, 31-44. 4.Yu, Y. G., Chung, C. H., Fowler, A., and Suh, S. W. (1988) Amino acid sequence of a probable amylase/protease inhibitor from rice seeds Arch. Biochem. Biophys. 265, 466-75. 5.Douady, D., Grosbois, M., Guerbette, F., and Kader, J.C. (1985) Purification of phospholipid transfer protein from maize seeds using a two-step chromatographic procedure Physiol. Veg. 23, 373-380. 6.Desormeaux, A., Blochet, J. E., Pezolet, M., and Marion, D. (1992) Amino acid sequence of a non-specific wheat phospholipid transfer protein and its conformation as revealed by infrared and Raman spectroscopy. Role of disulfide bridges and phospholipids in the stabilization of the alpha-helix structure Biochim Biophys Acta 1121, 137-52. 7.Douliez, J. P., Jegou, S., Pato, C., Molle, D., Tran, V., and Marion, D. (2001) Binding of two mono-acylated lipid monomers by the barley lipid transfer protein, LTP1, as viewed by fluorescence, isothermal titration calorimetry and molecular modelling Eur. J. Biochem. 268, 384-8. 8.Bernhard, W. R., Thoma, S., Botella, J., and Somerville, C. R. (1991) Isolation of a cDNA Clone for Spinach Lipid Transfer Protein and Evidence that the Protein Is Synthesized by the Secretory Pathway Plant Physiol 95, 164-170. 9.Lin, K. F., Liu, Y. N., Hsu, S. T., Samuel, D., Cheng, C. S., Bonvin, A. M., and Lyu, P. C. (2005) Characterization and structural analyses of nonspecific lipid transfer protein 1 from mung bean Biochemistry 44, 5703-12. 10.Kader, J. C. (1996) Lipid transfer proteins in plants Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 627-654. 11.Torres-Schumann, S., Godoy, J. A., and Pintor-Toro, J. A. (1992) A probable lipid transfer protein gene is induced by NaCl in stems of tomato plants Plant Mol. Biol. 18, 749-57. 12.Dunn, M. A., Hughes, M. A., Zhang, L., Pearce, R. S., Quigley, A. S., and Jack, P. L. (1991) Nucleotide sequence and molecular analysis of the low temperature induced cereal gene, BLT4 Mol. Gen. Genet. 229, 389-94. 13.Trevino, M. B., and OConnell, M. A. (1998) Three drought-responsive members of the nonspecific lipid-transfer protein gene family in Lycopersicon pennellii show different developmental patterns of expression Plant Physiol. 116, 1461-8. 14.Hoffmann-Sommergruber, K. (2000) Plant allergens and pathogenesis-related proteins. What do they have in common? Int. Arch. Allergy Immunol. 122, 155-66. 15.Buhot, N., Douliez, J. P., Jacquemard, A., Marion, D., Tran, V., Maume, B. F., Milat, M. L., Ponchet, M., Mikes, V., Kader, J. C., and Blein, J. P. (2001) A lipid transfer protein binds to a receptor involved in the control of plant defence responses FEBS Lett. 509, 27-30. 16.Wang, S. Y., Wu, J. H., Ng, T. B., Ye, X. Y., and Rao, P. F. (2004) A non-specific lipid transfer protein with antifungal and antibacterial activities from the mung bean Peptides 25, 1235-42. 17.Maldonado, A. M., Doerner, P., Dixon, R. A., Lamb, C. J., and Cameron, R. K. (2002) A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis Nature 419, 399-403. 18.Kalla, R., Shimamoto, K., Potter, R., Nielsen, P. S., Linnestad, C., and Olsen, O. A. (1994) The promoter of the barley aleurone-specific gene encoding a putative 7 kDa lipid transfer protein confers aleurone cell-specific expression in transgenic rice Plant J. 6, 849-60. 19.Lee, J. Y., Min, K., Cha, H., Shin, D. H., Hwang, K. Y., and Suh, S. W. (1998) Rice non-specific lipid transfer protein: the 1.6 A crystal structure in the unliganded state reveals a small hydrophobic cavity J. Mol. Biol. 276, 437-48. 20.Samuel, D., Liu, Y. J., Cheng, C. S., and Lyu, P. C. (2002) Solution structure of plant nonspecific lipid transfer protein-2 from rice (Oryza sativa) J. Biol. Chem. 277, 35267-73. 21.Cheng, H. C., Cheng, P. T., Peng, P., Lyu, P. C., and Sun, Y. J. (2004) Lipid binding in rice nonspecific lipid transfer protein-1 complexes from Oryza sativa Protein Sci. 13, 2304-15. 22.Hoh, F., Pons, J. L., Gautier, M. F., de Lamotte, F., and Dumas, C. (2005) Structure of a liganded type 2 non-specific lipid-transfer protein from wheat and the molecular basis of lipid binding Acta Crystallogr D Biol Crystallogr 61, 397-406. 23.Davis, B. D., Dulbecco, R., Eisen, H. N., Ginsberg, H. S., & Wood, B., Jr. (1968) Principles of microbiology and immyunology, Harper International, New YORK. 24.Thomma, B. P., Cammue, B. P., and Thevissen, K. (2002) Plant defensins Planta 216, 193-202. 25.Broekaert, W. F., Terras, F. R., Cammue, B. P., and Osborn, R. W. (1995) Plant defensins: novel antimicrobial peptides as components of the host defense system Plant Physiol 108, 1353-8. 26.Colilla, F. J., Rocher, A., and Mendez, E. (1990) gamma-Purothionins: amino acid sequence of two polypeptides of a new family of thionins from wheat endosperm FEBS Lett 270, 191-4. 27.Garcia-Olmedo, F., Molina, A., Alamillo, J. M., and Rodriguez-Palenzuela, P. (1998) Plant defense peptides Biopolymers 47, 479-91. 28.Moreno, M., Segura, A., and Garcia-Olmedo, F. (1994) Pseudothionin-St1, a potato peptide active against potato pathogens Eur J Biochem 223, 135-9. 29.Pelegrini, P. B., and Franco, O. L. (2005) Plant gamma-thionins: novel insights on the mechanism of action of a multi-functional class of defense proteins Int J Biochem Cell Biol 37, 2239-53. 30.Chen, K. C., Lin, C. Y., Kuan, C. C., Sung, H. Y., and Chen, C. S. (2002) A novel defensin encoded by a mungbean cDNA exhibits insecticidal activity against bruchid J Agric Food Chem 50, 7258-63. 31.Bloch, C., Jr., and Richardson, M. (1991) A new family of small (5 kDa) protein inhibitors of insect alpha-amylases from seeds or sorghum (Sorghum bicolar (L) Moench) have sequence homologies with wheat gamma-purothionins FEBS Lett 279, 101-4. 32.Melo, F. R., Rigden, D. J., Franco, O. L., Mello, L. V., Ary, M. B., Grossi de Sa, M. F., and Bloch, C., Jr. (2002) Inhibition of trypsin by cowpea thionin: characterization, molecular modeling, and docking Proteins 48, 311-9. 33.Liu, Y. J., Cheng, C. S., Lai, S. M., Hsu, M. P., Chen, C. S., and Lyu, P. C. (2006) Solution structure of the plant defensin VrD1 from mung bean and its possible role in insecticidal activity against bruchids Proteins 63, 777-86. 34.Kushmerick, C., de Souza Castro, M., Santos Cruz, J., Bloch, C., Jr., and Beirao, P. S. (1998) Functional and structural features of gamma-zeathionins, a new class of sodium channel blockers FEBS Lett 440, 302-6. 35.Titarenko, E., Lopez-Solanilla, E., Garcia-Olmedo, F., and Rodriguez-Palenzuela, P. (1997) Mutants of Ralstonia (Pseudomonas) solanacearum sensitive to antimicrobial peptides are altered in their lipopolysaccharide structure and are avirulent in tobacco J Bacteriol 179, 6699-704. 36.Thevissen, K., Ghazi, A., De Samblanx, G. W., Brownlee, C., Osborn, R. W., and Broekaert, W. F. (1996) Fungal membrane responses induced by plant defensins and thionins J Biol Chem 271, 15018-25. 37.Thevissen, K., Warnecke, D. C., Francois, I. E., Leipelt, M., Heinz, E., Ott, C., Zahringer, U., Thomma, B. P., Ferket, K. K., and Cammue, B. P. (2004) Defensins from insects and plants interact with fungal glucosylceramides J Biol Chem 279, 3900-5. 38.Spelbrink, R. G., Dilmac, N., Allen, A., Smith, T. J., Shah, D. M., and Hockerman, G. H. (2004) Differential antifungal and calcium channel-blocking activity among structurally related plant defensins Plant Physiol 135, 2055-67. 39.De Samblanx, G. W., Goderis, I. J., Thevissen, K., Raemaekers, R., Fant, F., Borremans, F., Acland, D. P., Osborn, R. W., Patel, S., and Broekaert, W. F. (1997) Mutational analysis of a plant defensin from radish (Raphanus sativus L.) reveals two adjacent sites important for antifungal activity J Biol Chem 272, 1171-9. 40.Schaaper, W. M., Posthuma, G. A., Plasman, H. H., Sijtsma, L., Fant, F., Borremans, F. A., Thevissen, K., Broekaert, W. F., Meloen, R. H., and van Amerongen, A. (2001) Synthetic peptides derived from the beta2-beta3 loop of Raphanus sativus antifungal protein 2 that mimic the active site J Pept Res 57, 409-18. 41.Bruix, M., Jimenez, M. A., Santoro, J., Gonzalez, C., Colilla, F. J., Mendez, E., and Rico, M. (1993) Solution structure of gamma 1-H and gamma 1-P thionins from barley and wheat endosperm determined by 1H-NMR: a structural motif common to toxic arthropod proteins Biochemistry 32, 715-24. 42.Fant, F., Vranken, W. F., and Borremans, F. A. (1999) The three-dimensional solution structure of Aesculus hippocastanum antimicrobial protein 1 determined by 1H nuclear magnetic resonance Proteins 37, 388-403. 43.Fant, F., Vranken, W., Broekaert, W., and Borremans, F. (1998) Determination of the three-dimensional solution structure of Raphanus sativus antifungal protein 1 by 1H NMR J Mol Biol 279, 257-70. 44.Bloch, C., Jr., Patel, S. U., Baud, F., Zvelebil, M. J., Carr, M. D., Sadler, P. J., and Thornton, J. M. (1998) 1H NMR structure of an antifungal gamma-thionin protein SIalpha1: similarity to scorpion toxins Proteins 32, 334-49. 45.Almeida, M. S., Cabral, K. M., Kurtenbach, E., Almeida, F. C., and Valente, A. P. (2002) Solution structure of Pisum sativum defensin 1 by high resolution NMR: plant defensins, identical backbone with different mechanisms of action J Mol Biol 315, 749-57. 46.Janssen, B. J., Schirra, H. J., Lay, F. T., Anderson, M. A., and Craik, D. J. (2003) Structure of Petunia hybrida defensin 1, a novel plant defensin with five disulfide bonds Biochemistry 42, 8214-22. 47.Lay, F. T., Schirra, H. J., Scanlon, M. J., Anderson, M. A., and Craik, D. J. (2003) The three-dimensional solution structure of NaD1, a new floral defensin from Nicotiana alata and its application to a homology model of the crop defense protein alfAFP J Mol Biol 325, 175-88. 48.Chen, J. J., Chen, G. H., Hsu, H. C., Li, S. S., and Chen, C. S. (2004) Cloning and functional expression of a mungbean defensin VrD1 in Pichia pastoris J Agric Food Chem 52, 2256-61. 49.Lin, C., Chen, C. S., and Horng, S. B. (2005) Characterization of resistance to Callosobruchus maculatus (Coleoptera: Bruchidae) in mungbean variety VC6089A and its resistance-associated protein VrD1 J Econ Entomol 98, 1369-73. 50.Shiau Y.S., H. S. B., Chen C.S., Huang P.T., Lin C., Hsueh Y.C., Lou K.L. (2006) Structural analysis of the unique insecticidal activity of novel mungbean defensin VrD1 reveals possibility of homoplasy evolution between plant defensins and scorpion J. Mol. Recognit. 51.Pereira, P. J., Lozanov, V., Patthy, A., Huber, R., Bode, W., Pongor, S., and Strobl, S. (1999) Specific inhibition of insect alpha-amylases: yellow meal worm alpha-amylase in complex with the amaranth alpha-amylase inhibitor at 2.0 A resolution Structure Fold Des 7, 1079-88. 52.Strobl, S., Maskos, K., Wiegand, G., Huber, R., Gomis-Ruth, F. X., and Glockshuber, R. (1998) A novel strategy for inhibition of alpha-amylases: yellow meal worm alpha-amylase in complex with the Ragi bifunctional inhibitor at 2.5 A resolution Structure 6, 911-21. 53.Nahoum, V., Farisei, F., Le-Berre-Anton, V., Egloff, M. P., Rouge, P., Poerio, E., and Payan, F. (1999) A plant-seed inhibitor of two classes of alpha-amylases: X-ray analysis of Tenebrio molitor larvae alpha-amylase in complex with the bean Phaseolus vulgaris inhibitor Acta Crystallogr D Biol Crystallogr 55 ( Pt 1), 360-2. 54.Vallee, F., Kadziola, A., Bourne, Y., Juy, M., Rodenburg, K. W., Svensson, B., and Haser, R. (1998) Barley alpha-amylase bound to its endogenous protein inhibitor BASI: crystal structure of the complex at 1.9 A resolution Structure 6, 649-59. 55.Blein, J. P., Coutos-Thevenot, P., Marion, D., and Ponchet, M. (2002) From elicitins to lipid-transfer proteins: a new insight in cell signalling involved in plant defence mechanisms Trends Plant Sci 7, 293-6. 56.Hanks, J. N., Snyder, A. K., Graham, M. A., Shah, R. K., Blaylock, L. A., Harrison, M. J., and Shah, D. M. (2005) Defensin gene family in Medicago truncatula: structure, expression and induction by signal molecules Plant Mol Biol 58, 385-99. 57.Osborn, R. W., De Samblanx, G. W., Thevissen, K., Goderis, I., Torrekens, S., Van Leuven, F., Attenborough, S., Rees, S. B., and Broekaert, W. F. (1995) Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae FEBS Lett 368, 257-62. 58.Terras, F. R., Schoofs, H. M., De Bolle, M. F., Van Leuven, F., Rees, S. B., Vanderleyden, J., Cammue, B. P., and Broekaert, W. F. (1992) Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds J Biol Chem 267, 15301-9. 59.Chen, G. H., Hsu, M. P., Tan, C. H., Sung, H. Y., Kuo, C. G., Fan, M. J., Chen, H. M., Chen, S., and Chen, C. S. (2005) Cloning and characterization of a plant defensin VaD1 from azuki bean J Agric Food Chem 53, 982-8. 60.Liu, Y. J., Samuel, D., Lin, C. H., and Lyu, P. C. (2002) Purification and characterization of a novel 7-kDa non-specific lipid transfer protein-2 from rice (Oryza sativa) Biochem. Biophys. Res. Commun. 294, 535-40. 61.Coligan, J. E., Dunn, B. M., Ploegh, H. L., Speicher, D. W., and Wingfield, P. T. (1998) in Currently protocols in protein science, John Wiley&Sons, Inc., New York. 62.Edman, P., and Begg, G. (1967) A protein sequenator Eur. J. Biochem. 1, 80-91. 63.Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C. (1985) Measurement of protein using bicinchoninic acid Anal. Biochem. 150, 76-85. 64.Kamal, J. K., and Behere, D. V. (2002) Thermal and conformational stability of seed coat soybean peroxidase Biochemistry 41, 9034-42. 65.Guex, N., and Peitsch, M. C. (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling Electrophoresis 18, 2714-23. 66.Kleywegt GJ, J. T. (1994) Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Cryst D50, 178-185. 67.Sanner, M. F., Olson, A. J., and Spehner, J. C. (1996) Reduced surface: an efficient way to compute molecular surfaces Biopolymers 38, 305-20. 68.Wallace, A. C., Laskowski, R. A., and Thornton, J. M. (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions Protein Eng. 8, 127-34. 69.Marion, D., Ikura, M., Tschudin, R. and Bax, A. (1989) Rapid recording of 2D NMR spectra without phase cycling. Application to the study of hydrogen exchange in proteins. J. Magn. Reson. 85, 393-399. 70.Goddard, T. D., and Kneller, D. G. (1999), University of California, San Francisco. 71.Wuthrich, K. (1986) NMR of Proteins and Nucleic Acids, Wiley-Interscience, New York. 72.Brunger, A. T., Adams, P. D., Clore, G. M., Delano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T., and Warren, G. L. (1998) Crystallography & NMR System (CNS) : A new software system for macromolecular structure determination Acta Cryst. D54, 905-921. 73.Linge, J. P., Williams, M. A., Spronk, C. A., Bonvin, A. M., and Nilges, M. (2003) Refinement of protein structures in explicit solvent Proteins 50, 496-506. 74.Nederveen, A. J., Doreleijers, J. F., Vranken, W., Miller, Z., Spronk, C. A., Nabuurs, S. B., Guntert, P., Livny, M., Markley, J. L., Nilges, M., Ulrich, E. L., Kaptein, R., and Bonvin, A. M. (2005) RECOORD: a recalculated coordinate database of 500+ proteins from the PDB using restraints from the BioMagResBank Proteins 59, 662-72. 75.Laskowski, R. A., MacArthur, M. W., Moss, D. S., and Thornton, J. M. (1993) PROCHECK: a program to check the stereochemical quality of protein structures J. Appl. Cryst. 26, 283-291. 76.Young, L., and Dong, Q. (2004) Two-step total gene synthesis method Nucleic Acids Res. 32, e59. 77.Khalil, E., Vrnessa, L.,Andre, L.,Helene, R.,and Didier, M. (2004) A bacterial expression system revised for the recombinant production of cystine-rich plant lipid transfer proteins Biochem. Biophys. Res. Commun. 316, 1202-1209. 78.Landon. (1977) Cleavage at aspartyl-prolyl bonds Methods Enzymol 47, 145-9. 79.Strobl, S., Gomis-Ruth, F. X., Maskos, K., Frank, G., Huber, R., and Glockshuber, R. (1997) The alpha-amylase from the yellow meal worm: complete primary structure, crystallization and preliminary X-ray analysis FEBS Lett 409, 109-14. 80.Strobl, S., Maskos, K., Betz, M., Wiegand, G., Huber, R., Gomis-Ruth, F. X., and Glockshuber, R. (1998) Crystal structure of yellow meal worm alpha-amylase at 1.64 A resolution J Mol Biol 278, 617-28. 81.Bernfeld, P. (1955) in Methods Ensymol. pp 149-158. 82.Sali, A., and Blundell, T. L. (1993) Comparative protein modelling by satisfaction of spatial restraints J Mol Biol 234, 779-815. 83.Schneidman-Duhovny, D., Inbar, Y., Polak, V., Shatsky, M., Halperin, I., Benyamini, H., Barzilai, A., Dror, O., Haspel, N., Nussinov, R., and Wolfson, H. J. (2003) Taking geometry to its edge: fast unbound rigid (and hinge-bent) docking Proteins 52, 107-12. 84.Jones, S., and Thornton, J. M. (1996) Principles of protein-protein interactions Proc Natl Acad Sci U S A 93, 13-20. 85.Sterk, P., Booij, H., Schellekens, G. A., Van Kammen, A., and De Vries, S. C. (1991) Cell-specific expression of the carrot EP2 lipid transfer protein gene Plant Cell 3, 907-21. 86.Garcia-Olmedo, F., Molina, A., Segura, A., and Moreno, M. (1995) The defensive role of nonspecific lipid-transfer proteins in plants Trends Microbiol 3, 72-4. 87.Park, S. Y., and Lord, E. M. (2003) Expression studies of SCA in lily and confirmation of its role in pollen tube adhesion Plant Mol. Biol. 51, 183-9. 88.Edqvist, J., and Farbos, I. (2002) Characterization of germination-specific lipid transfer proteins from Euphorbia lagascae Planta 215, 41-50. 89.Kalla, R., Shimamoto, K., Potter, R., Nielsen, P. S., Linnestad, C., and Olsen, O. A. (1994) The promoter of the barley aleurone-specific gene encoding a putative 7 kDa lipid transfer protein confers aleurone cell-specific expression in transgenic rice Plant J 6, 849-60. 90.Guiderdoni, E., Cordero, M. J., Vignols, F., Garcia-Garrido, J. M., Lescot, M., Tharreau, D., Meynard, D., Ferriere, N., Notteghem, J. L., and Delseny, M. (2002) Inducibility by pathogen attack and developmental regulation of the rice Ltp1 gene Plant Mol. Biol. 49, 683-99. 91.Gincel, E., Simorre, J. P., Caille, A., Marion, D., Ptak, M., and Vovelle, F. (1994) Three-dimensional structure in solution of a wheat lipid-transfer protein from multidimensional 1H-NMR data. A new folding for lipid carriers Eur. J. Biochem. 226, 413-22. 92.Shin, D. H., Lee, J. Y., Hwang, K. Y., Kim, K. K., and Suh, S. W. (1995) High-resolution crystal structure of the non-specific lipid-transfer protein from maize seedlings Structure 3, 189-99. 93.Heinemann, B., Andersen, K. V., Nielsen, P. R., Bech, L. M., and Poulsen, F. M. (1996) Structure in solution of a four-helix lipid binding protein Protein Sci. 5, 13-23. 94.Gomar, J., Petit, M. C., Sodano, P., Sy, D., Marion, D., Kader, J. C., Vovelle, F., and Ptak, M. (1996) Solution structure and lipid binding of a nonspecific lipid transfer protein extracted from maize seeds Protein Sci. 5, 565-77. 95.Lerche, M. H., Kragelund, B. B., Bech, L. M., and Poulsen, F. M. (1997) Barley lipid-transfer protein complexed with palmitoyl CoA: the structure reveals a hydrophobic binding site that can expand to fit both large and small lipid-like ligands Structure 5, 291-306. 96.Lee, J. Y., Min, K., Cha, H., Shin, D. H., Hwang, K. Y., and Suh, S. W. (1998) Rice non-specific lipid transfer protein: the 1.6 A crystal structure in the unliganded state reveals a small hydrophobic cavity J Mol Biol 276, 437-48. 97.Lerche, M. H., and Poulsen, F. M. (1998) Solution structure of barley lipid transfer protein complexed with palmitate. Two different binding modes of palmitate in the homologous maize and barley nonspecific lipid transfer proteins Protein Sci. 7, 2490-8. 98.Poznanski, J., Sodano, P., Suh, S. W., Lee, J. Y., Ptak, M., and Vovelle, F. (1999) Solution structure of a lipid transfer protein extracted from rice seeds. Comparison with homologous proteins Eur. J. Biochem. 259, 692-708. 99.Charvolin, D., Douliez, J. P., Marion, D., Cohen-Addad, C., and Pebay-Peyroula, E. (1999) The crystal structure of a wheat nonspecific lipid transfer protein (ns-LTP1) complexed with two molecules of phospholipid at 2.1 A resolution Eur. J. Biochem. 264, 562-8. 100.Tassin-Moindrot, S., Caille, A., Douliez, J. P., Marion, D., and Vovelle, F. (2000) The wide binding properties of a wheat nonspecific lipid transfer protein. Solution structure of a complex with prostaglandin B2 Eur. J. Biochem. 267, 1117-24. 101.Han, G. W., Lee, J. Y., Song, H. K., Chang, C., Min, K., Moon, J., Shin, D. H., Kopka, M. L., Sawaya, M. R., Yuan, H. S., Kim, T. D., Choe, J., Lim, D., Moon, H. J., and Suh, S. W. (2001) Structural basis of non-specific lipid binding in maize lipid-transfer protein complexes revealed by high-resolution X-ray crystallography J. Mol. Biol. 308, 263-78. 102.Pastorello, E. A., Farioli, L., Pravettoni, V., Giuffrida, M. G., Ortolani, C., Fortunato, D., Trambaioli, C., Scibola, E., Calamari, A. M., Robino, A. M., and Conti, A. (2001) Characterization of the major allergen of plum as a lipid transfer protein J. Chromatogr., B, Biomed. Sci. Appl. 756, 95-103. 103.Conti, A., Fortunato, D., Ortolani, C., Giuffrida, M. G., Pravettoni, V., Napolitano, L., Farioli, L., Perono Garoffo, L., Trambaioli, C., and Pastorello, E. A. (2001) Determination of the primary structure of two lipid transfer proteins from apricot (Prunus armeniaca) J. Chromatogr., B, Biomed. Sci. Appl. 756, 123-9. 104.Pastorello, E. A., Ortolani, C., Baroglio, C., Pravettoni, V., Ispano, M., Giuffrida, M. G., Fortunato, D., Farioli, L., Monza, M., Napolitano, L., Sacco, M., Scibola, E., and Conti, A. (1999) Complete amino acid sequence determination of the major allergen of peach (Prunus persica) Pru p 1 Biol. Chem. 380, 1315-20. 105.Tassin, S., Broekaert, W. F., Marion, D., Acland, D. P., Ptak, M., Vovelle, F., and Sodano, P. (1998) Solution structure of Ace-AMP1, a potent antimicrobial protein extracted from onion seeds. Structural analogies with plant nonspecific lipid transfer proteins Biochemistry 37, 3623-37. 106.Baud, F., Pebay-Peyroula, E., Cohen-Addad, C., Odani, S., and Lehmann, M. S. (1993) Crystal structure of hydrophobic protein from soybean; a member of a new cysteine-rich family J. Mol. Biol. 231, 877-87. 107.Guerbette, F., Grosbois, M., Jolliot-Croquin, A., Kader, J. C., and Zachowski, A. (1999) Comparison of lipid binding and transfer properties of two lipid transfer proteins from plants Biochemistry 38, 14131-7. 108.van Paridon, P. A., Gadella, T. W., Jr., Somerharju, P. J., and Wirtz, K. W. (1988) Properties of the binding sites for the sn-1 and sn-2 acyl chains on the phosphatidylinositol transfer protein from bovine brain Biochemistry 27, 6208-14. 109.Eriksson, A. E., Baase, W. A., Zhang, X. J., Heinz, D. W., Blaber, M., Baldwin, E. P., and Matthews, B. W. (1992) Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect Science 255, 178-83. 110.Xu, J., Baase, W. A., Baldwin, E., and Matthews, B. W. (1998) The response of T4 lysozyme to large-to-small substitutions within the core and its relation to the hydrophobic effect Protein Sci 7, 158-77. 111.Santoro, M. M., and Bolen, D. W. (1988) Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants Biochemistry 27, 8063-8. 112.Agashe, V. R., and Udgaonkar, J. B. (1995) Thermodynamics of denaturation of barstar: evidence for cold denaturation and evaluation of the interaction with guanidine hydrochloride Biochemistry 34, 3286-99. 113.Sivaraman, T., Kumar, T. K., Tu, Y. T., Peng, H. J., and Yu, C. (1999) Structurally homologous toxins isolated from the Taiwan cobra (Naja naja atra) differ significantly in their structural stability Arch Biochem Biophys 363, 107-15. 114.Molina, A., and Garcia-Olmedo, F. (1993) Developmental and pathogen-induced expression of three barley genes encoding lipid transfer proteins Plant J. 4, 983-91. 115.Carvalho, A. O., Machado, O. L. T., Cunha, M. D., Sants, I. S., and Gomes, V. M. (2001) Antimicrobial peptides and immunolocalization of a LTP in Vigna unguiculata seeds Plant Physiol. Biochem. 39, 137-146. 116.Nielsen, K. K., Nielsen, J. E., Madrid, S. M., and Mikkelsen, J. D. (1996) New antifungal proteins from sugar beet (Beta vulgaris L.) showing homology to non-specific lipid transfer proteins Plant Mol. Biol. 31, 539-52. 117.Segura, A., Moreno, M., and Garcia-Olmedo, F. (1993) Purification and antipathogenic activity of lipid transfer proteins (LTPs) from the leaves of Arabidopsis and spinach FEBS Lett. 332, 243-6. 118.Zasloff, M. (2002) Antimicrobial peptides of multicellular organisms Nature 415, 389-95. 119.Mendez, E., Moreno, A., Colilla, F., Pelaez, F., Limas, G. G., Mendez, R., Soriano, F., Salinas, M., and de Haro, C. (1990) Primary structure and inhibition of protein synthesis in eukaryotic cell-free system of a novel thionin, gamma-hordothionin, from barley endosperm Eur J Biochem 194, 533-9. 120.Almeida, M. S., Cabral, K. M., Zingali, R. B., and Kurtenbach, E. (2000) Characterization of two novel defense peptides from pea (Pisum sativum) seeds Arch Biochem Biophys 378, 278-86. 121.Wijaya, R., Neumann, G. M., Condron, R., Hughes, A. B., and Polya, G. M. (2000) Defense proteins from seed of Cassia fistula include a lipid transfer protein homologue and a protease inhibitory plant defensin Plant Science 159, 243-255. 122.Mendez, E., Rocher, A., Calero, M., Girbes, T., Citores, L., and Soriano, F. (1996) Primary structure of omega-hordothionin, a member of a novel family of thionins from barley endosperm, and its inhibition of protein synthesis in eukaryotic and prokaryotic cell-free systems Eur J Biochem 239, 67-73. 123.Landon, C., Sodano, P., Hetru, C., Hoffmann, J., and Ptak, M. (1997) Solution structure of drosomycin, the first inducible antifungal protein from insects Protein Sci 6, 1878-84. 124.Bontems, F., Roumestand, C., Gilquin, B., Menez, A., and Toma, F. (1991) Refined structure of charybdotoxin: common motifs in scorpion toxins and insect defensins Science 254, 1521-3. 125.Caldwell, J. E., Abildgaard, F., Dzakula, Z., Ming, D., Hellekant, G., and Markley, J. L. (1998) Solution structure of the thermostable sweet-tasting protein brazzein Nat Struct Biol 5, 427-31. 126.Zhu, S., Gao, B., and Tytgat, J. (2005) Phylogenetic distribution, functional epitopes and evolution of the CSalphabeta superfamily Cell Mol Life Sci 62, 2257-69. 127.Chen, k. C. L., C. Y.; Chung, M. C.; Kuang, C. C.; Sung, H. Y.; Tsou, S. C.; Kuo, C. G.; Chen, C. S. (2002) Cloning and characterization of a cDNA encoding an antimicrobial protein from mung bean seeds. Bot. Bull. Acad. Sin. 43, 251-259. 128.Morton, R. L., Schroeder, H. E., Bateman, K. S., Chrispeels, M. J., Armstrong, E., and Higgins, T. J. (2000) Bean alpha-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions Proc Natl Acad Sci U S A 97, 3820-5. 129.Richardson, M. (1990) Seed storage proteins: the enzyme inhibitors, Vol. 5, Rogers, L. ed., Academic Press, London, UK. 130.Svensson, B., Fukuda, K., Nielsen, P. K., and Bonsager, B. C. (2004) Proteinaceous alpha-amylase inhibitors Biochim Biophys Acta 1696, 145-56. 131.Franco, O. L., Rigden, D. J., Melo, F. R., and Grossi-De-Sa, M. F. (2002) Plant alpha-amylase inhibitors and their interaction with insect alpha-amylases Eur J Biochem 269, 397-412. 132.Paulraj K, L., and Koundal, K. R. (2002) Plant protease inhibitors in control of phytophagous insects Electronic Journal of Biotechnology 5, 93-109. 133.Macleod, R. A., and Onofrey, E. (1954) Cation antagonism of the antibacterial action of amines J Biol Chem 210, 193-201. 134.Jin, Z., Danilova, V., Assadi-Porter, F. M., Aceti, D. J., Markley, J. L., and Hellekant, G. (2003) Critical regions for the sweetness of brazzein FEBS Lett 544, 33-7. 135.Cohen, L., Karbat, I., Gilles, N., Ilan, N., Benveniste, M., Gordon, D., and Gurevitz, M. (2005) Common features in the functional surface of scorpion beta-toxins and elements that confer specificity for insect and mammalian voltage-gated sodium channels J Biol Chem 280, 5045-53. 136.Romestand, B., Molina, F., Richard, V., Roch, P., and Granier, C. (2003) Key role of the loop connecting the two beta strands of mussel defensin in its antimicrobial activity Eur J Biochem 270, 2805-13. 137.Vita, C., Roumestand, C., Toma, F., and Menez, A. (1995) Scorpion toxins as natural scaffolds for protein engineering Proc Natl Acad Sci U S A 92, 6404-8. 138.Drakopoulou, E., Zinn-Justin, S., Guenneugues, M., Gilqin, B., Menez, A., and Vita, C. (1996) Changing the structural context of a functional beta-hairpin. Synthesis and characterization of a chimera containing the curaremimetic loop of a snake toxin in the scorpion alpha/beta scaffold J Biol Chem 271, 11979-87. 139.Koradi, R., Billeter, M., and Wuthrich, K. (1996) MOLMOL: a program for display and analysis of macromolecular structures J Mol Graph 14, 51-5, 29-32. 140.Myers, E. W., and Miller, W. (1988) Optimal alignments in linear space Comput Appl Biosci 4, 11-7. 141.DiscoveryStudio. (2002), Accelrys Ins, San Diego, CA. 142.DeLano, W. L. (2002), DeLano Scientific, San Carlos, CA, USA.
|