|
Abe, A., T. Tonozuka, Y. Sakano, and S. Kamitori. 2004. Complex structures of Thermoactinomyces vulgaris R-47 alpha-amylase 1 with malto-oligosaccharides demonstrate the role of domain N acting as a starch-binding domain. J. Mol. Biol. 335: 811-22. Ali, M. K., H. Hayashi, S. Karita, M. Goto, T. Kimura, K. Sakka, and K. Ohmiya. 2001. Importance of the carbohydrate-binding module of Clostridium stercorarium Xyn10B to xylan hydrolysis. Biosci. Biotechnol. Biochem. 65: 41-7. Armstrong, C. G., M. J. Doherty, and P. T. Cohen. 1998. Identification of the separate domains in the hepatic glycogen-targeting subunit of protein phosphatase 1 that interact with phosphorylase a, glycogen and protein phosphatase 1. Biochem. J. 336 ( Pt 3): 699-704. Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl. 1995. Short protocols in molecular biology. Wiley. Bolam, D. N., A. Ciruela, S. McQueen-Mason, P. Simpson, M. P. Williamson, J. E. Rixon, A. Boraston, G. P. Hazlewood, and H. J. Gilbert. 1998. Pseudomonas cellulose-binding domains mediate their effects by increasing enzyme substrate proximity. Biochem. J. 331 ( Pt 3): 775-81. Boraston, A. B., D. N. Bolam, H. J. Gilbert, and G. J. Davies. 2004. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem. J. 382: 769-81. Boraston, A. B., M. Healey, J. Klassen, E. Ficko-Blean, A. Lammerts van Bueren, and V. Law. 2006. A structural and functional analysis of alpha-glucan recognition by family 25 and 26 carbohydrate-binding modules reveals a conserved mode of starch recognition. J. Biol. Chem. 281: 587-98. Brunger, A. T., P. D. Adams, G. M. Clore, W. L. Delano, P. Gros, R. W. Grosse-Kunstleve, J. S. Jiang, J. Kuszewski, M. Nilges, N. S. Pannu, R. J. Read, L. M. Rice, T. Simonson, and G. L. Warren. 1998. Crystallography & NMR System. Acta Cryst. D54: 905-921. Carvalho, A. L., A. Goyal, J. A. Prates, D. N. Bolam, H. J. Gilbert, V. M. Pires, L. M. Ferreira, A. Planas, M. J. Romao, and C. M. Fontes. 2004. The family 11 carbohydrate-binding module of Clostridium thermocellum Lic26A-Cel5E accommodates beta-1,4- and beta-1,3-1,4-mixed linked glucans at a single binding site. J. Biol. Chem. 279: 34785-93. Cavanagh, J., W. J. Fairbrother, G. A. Palmer, and N. J. Skelton. 1996. Protein NMR spectroscopy. Academic Press Inc. Chou, W. I., T. W. Pai, S. H. Liu, B. K. Hsiung, and M. D. Chang. 2006. The family 21 carbohydrate binding module of glucoamylase from Rhizopus oryzae consists of two sites playing distinct roles in ligand binding. Biochem. J. 396: 469-477. Christensen, T., B. Svensson, and B. W. Sigurskjold. 1999. Thermodynamics of reversible and irreversible unfolding and domain interactions of glucoamylase from Aspergillus niger studied by differential scanning and isothermal titration calorimetry. Biochemistry 38: 6300-10. Cordier, F., and S. Grzesiek. 1999. Direct Observation of Hydrogen Bonds in Proteins by Interresidue 3HJNC' Scalar Couplings. J. Am. Chem. Soc. 121: 1601-1602. Cornett, C. A., T. Y. Fang, P. J. Reilly, and C. Ford. 2003. Starch-binding domain shuffling in Aspergillus niger glucoamylase. Protein Eng. 16: 521-9. Cornilescu, G., F. Delaglio, and A. Bax. 1999. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13: 289-302. Crennell, S., E. Garman, G. Laver, E. Vimr, and G. Taylor. 1994. Crystal structure of Vibrio cholerae neuraminidase reveals dual lectin-like domains in addition to the catalytic domain. Structure 2: 535-44. Crossman, L., and J. M. Dow. 2004. Biofilm formation and dispersal in Xanthomonas campestris. Microbes Infect 6: 623-9. Davies, G. J., and B. Henrissat. 2002. Structural enzymology of carbohydrate-active enzymes: implications for the post-genomic era. Biochem. Soc. Trans. 30: 291-7. Dent, P., A. Lavoinne, S. Nakielny, F. B. Caudwell, P. Watt, and P. Cohen. 1990. The molecular mechanism by which insulin stimulates glycogen synthesis in mammalian skeletal muscle. Nature 348: 302-8. Evans, J.N.S. (1995) Biomolecular NMR Spectroscopy: Oxford University Press. Gessler, K., I. Uson, T. Takaha, N. Krauss, S. M. Smith, S. Okada, G. M. Sheldrick, and W. Saenger. 1999. V-Amylose at atomic resolution: X-ray structure of a cycloamylose with 26 glucose residues (cyclomaltohexaicosaose). Proc. Natl. Acad. Sci. U S A 96: 4246-51. Giardina, T., A. P. Gunning, N. Juge, C. B. Faulds, C. S. Furniss, B. Svensson, V. J. Morris, and G. Williamson. 2001. Both binding sites of the starch-binding domain of Aspergillus niger glucoamylase are essential for inducing a conformational change in amylose. J. Mol. Biol. 313: 1149-59. Gilkes, N. R., R. A. Warren, R. C. Miller, Jr., and D. G. Kilburn. 1988. Precise excision of the cellulose binding domains from two Cellulomonas fimi cellulases by a homologous protease and the effect on catalysis. J. Biol. Chem. 263: 10401-7. Goddard, T. D., and D. G. Kneller. 1999. SPARKY 3. Goto, M., T. Semimaru, K. Furukawa, and S. Hayashida. 1994. Analysis of the raw starch-binding domain by mutation of a glucoamylase from Aspergillus awamori var. kawachi expressed in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 60: 3926-30. Guan, L., Y. Hu, and H. R. Kaback. 2003. Aromatic stacking in the sugar binding site of the lactose permease. Biochemistry 42: 1377-82. Gunning, A. P., T. P. Giardina, C. B. Faulds, N. Juge, S. G. Ring, G. Williamson, and V. J. Morris. 2003. Surfactant-mediated solubilisation of amylose and visualisation by atomic force microscopy. Carbohydrate Polymers 51: 177-182. Henrissat, B., P. M. Coutinho, and G. J. Davies. 2001. A census of carbohydrate-active enzymes in the genome of Arabidopsis thaliana. Plant. Mol. Biol. 47: 55-72. Hostinova, E., A. Solovicova, R. Dvorsky, and J. Gasperik. 2003. Molecular cloning and 3D structure prediction of the first raw-starch-degrading glucoamylase without a separate starch-binding domain. Arch. Biochem. Biophys. 411: 189-95. Kamitori, S., S. Kondo, K. Okuyama, T. Yokota, Y. Shimura, T. Tonozuka, and Y. Sakano. 1999. Crystal structure of Thermoactinomyces vulgaris R-47 alpha-amylase II (TVAII) hydrolyzing cyclodextrins and pullulan at 2.6 A resolution. J. Mol. Biol. 287: 907-21. Katsuya, Y., Y. Mezaki, M. Kubota, and Y. Matsuura. 1998. Three-dimensional structure of Pseudomonas isoamylase at 2.2 A resolution. J. Mol. Biol. 281: 885-97. Kelly, G. S. 1998. The role of glucosamine sulfate and chondroitin sulfates in the treatment of degenerative joint disease. Altern. Med. Rev. 3: 27-39. Klein, C., and G. E. Schulz. 1991. Structure of cyclodextrin glycosyltransferase refined at 2.0 A resolution. J. Mol. Biol. 217: 737-50. Laskowski, R. A., M. W. MacArthur, D. S. Moss, and J. M. Thornton. 1993. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26: 283-291. Lawson, C. L., R. van Montfort, B. Strokopytov, H. J. Rozeboom, K. H. Kalk, G. E. de Vries, D. Penninga, L. Dijkhuizen, and B. W. Dijkstra. 1994. Nucleotide sequence and X-ray structure of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 in a maltose-dependent crystal form. J. Mol. Biol. 236: 590-600. Linge, J. P., M. A. Williams, C. A. Spronk, A. M. Bonvin, and M. Nilges. 2003. Refinement of protein structures in explicit solvent. Proteins 50: 496-506. Machovic, M., B. Svensson, E. A. MacGregor, and S. Janecek. 2005. A new clan of CBM families based on bioinformatics of starch-binding domains from families CBM20 and CBM21. FEBS J. 272: 5497-513. Mikami, B., H. Iwamoto, D. Malle, H. J. Yoon, E. Demirkan-Sarikaya, Y. Mezaki, and Y. Katsuya. 2006. Crystal Structure of Pullulanase: Evidence for Parallel Binding of Oligosaccharides in the Active Site. J. Mol. Biol. 359: 690-707. Miyanaga, A., T. Koseki, H. Matsuzawa, T. Wakagi, H. Shoun, and S. Fushinobu. 2004. Crystal structure of a family 54 alpha-L-arabinofuranosidase reveals a novel carbohydrate-binding module that can bind arabinose. J. Biol. Chem. 279: 44907-14. Morris, G. M., Goodsell, D. S., Halliday, R.S., Huey, R., Hart, W. E., Belew, R. K. and Olson, A. J. 1998. Automated Docking Using a Lamarckian Genetic Algorithm and and Empirical Binding Free Energy Function. J. Computational Chemistry 19: 1639-1662. Morris, V. J., A. P. Gunning, C. B. Faulds, G. Williamson, and B. Svensson. 2005. AFM images of complexes between amylose and Aspergillus niger glucoamylase mutants, native and mutant starch binding domains: a model for the action of glucoamylase. Starke 57: 1-7. Moseley, H. N., G. Sahota, and G. T. Montelione. 2004. Assignment validation software suite for the evaluation and presentation of protein resonance assignment data. J. Biomol. NMR 28: 341-55. Nagai, Y. 1998. Cell regulatory function of glycosphingolipids: Carbohydrate recognition and biosignaling. Pure & Appl. Chem. 70: 49-53. Najmudin, S., C. I. Guerreiro, A. L. Carvalho, J. A. Prates, M. A. Correia, V. D. Alves, L. M. Ferreira, M. J. Romao, H. J. Gilbert, D. N. Bolam, and C. M. Fontes. 2006. Xyloglucan is recognized by carbohydrate-binding modules that interact with beta-glucan chains. J. Biol. Chem. 281: 8815-28. Nilges, M., G. M. Clore, and A. M. Gronenborn. 1988. Determination of three-dimensional structures of proteins from interproton distance data by dynamical simulated annealing from a random array of atoms. Circumventing problems associated with folding. FEBS Lett. 239: 129-36. Nilges, M., M. J. Macias, S. I. O'Donoghue, and H. Oschkinat. 1997. Automated NOESY interpretation with ambiguous distance restraints: the refined NMR solution structure of the pleckstrin homology domain from beta-spectrin. J. Mol. Biol. 269: 408-22. Pell, G., M. P. Williamson, C. Walters, H. Du, H. J. Gilbert, and D. N. Bolam. 2003. Importance of hydrophobic and polar residues in ligand binding in the family 15 carbohydrate-binding module from Cellvibrio japonicus Xyn10C. Biochemistry 42: 9316-23. Ponyi, T., L. Szabo, T. Nagy, L. Orosz, P. J. Simpson, M. P. Williamson, and H. J. Gilbert. 2000. Trp22, Trp24, and Tyr8 play a pivotal role in the binding of the family 10 cellulose-binding module from Pseudomonas xylanase A to insoluble ligands. Biochemistry 39: 985-91. Rocchia, W., D. Alexov, and B. Honig. 2001. Extending the Applicability of the Nonlinear Poisson-Boltzmann Equation: Multiple Dielectric Constants and Multivalent Ions. J. Phys. Chem. B 105: 6507-6514. Rodriguez-Sanoja, R., N. Oviedo, and S. Sanchez. 2005. Microbial starch-binding domain. Curr. Opin. Microbiol. 8: 260-7. Saitoh, T., T. Ikegami, M. Nakayama, K. Teshima, H. Akutsu, and T. Hase. 2006. NMR study of the electron transfer complex of plant ferredoxin and sulfite reductase: mapping the interaction sites of ferredoxin. J. Biol. Chem. 281: 10482-8. Seif, E., J. Leigh, Y. Liu, I. Roewer, L. Forget, and B. F. Lang. 2005. Comparative mitochondrial genomics in zygomycetes: bacteria-like RNase P RNAs, mobile elements and a close source of the group I intron invasion in angiosperms. Nucleic Acids Res. 33: 734-44. Sevcik, J., E. Hostinova, A. Solovicova, J. Gasperik, Z. Dauter, and K. S. Wilson. 2006. Structure of the complex of a yeast glucoamylase with acarbose reveals the presence of a raw starch binding site on the catalytic domain. FEBS J. 273: 2161-71. Smith, A. M., K. Denyer, and C. R. Martin. 1995. What Controls the Amount and Structure of Starch in Storage Organs? Plant Physiol. 107: 673-677. Sorimachi, K., A. J. Jacks, M. F. Le Gal-Coeffet, G. Williamson, D. B. Archer, and M. P. Williamson. 1996. Solution structure of the granular starch binding domain of glucoamylase from Aspergillus niger by nuclear magnetic resonance spectroscopy. J. Mol. Biol. 259: 970-87. Sorimachi, K., M. F. Le Gal-Coeffet, G. Williamson, D. B. Archer, and M. P. Williamson. 1997. Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to beta-cyclodextrin. Structure 5: 647-61. Souchet, M., M. Legave, N. Jullian, H. O. Bertrand, A. Bril, and I. Berrebi-Bertrand. 1999. Structure of the human glycogen-associated protein phosphatase 1 regulatory subunit hGM: homology modeling revealed an (alpha/beta)8-barrel-like fold in the multidomain protein. Protein Sci. 8: 2570-9. Southall, S. M., P. J. Simpson, H. J. Gilbert, G. Williamson, and M. P. Williamson. 1999. The starch-binding domain from glucoamylase disrupts the structure of starch. FEBS Lett. 447: 58-60. Takahashi, T., K. Kato, Y. Ikegami, and M. Irie. 1985. Different behavior towards raw starch of three forms of glucoamylase from a Rhizopus sp. J. Biochem. (Tokyo) 3: 663-71. Tanaka, A., S. Karita, Y. Kosuge, K. Senoo, H. Obata, and N. Kitamoto. 1998. Thermal unfolding of the starch binding domain of Aspergillus niger glucoamylase. Biosci. Biotechnol. Biochem. 62: 2127-32. Tomme, P., and M. Claeyssens. 1989. Identification of the functional important carboxylgroup in cellobiohydrolase I from Trichoderma reesei: a chemical modification study. FEBS Lett. 243: 239-243. Tunnicliffe, R. B., D. N. Bolam, G. Pell, H. J. Gilbert, and M. P. Williamson. 2005. Structure of a mannan-specific family 35 carbohydrate-binding module: evidence for significant conformational changes upon ligand binding. J. Mol. Biol. 347: 287-96. Vaaje-Kolstad, G., D. R. Houston, A. H. Riemen, V. G. Eijsink, and D. M. van Aalten. 2005. Crystal structure and binding properties of the Serratia marcescens chitin-binding protein CBP21. J. Biol. Chem. 280: 11313-9. Varki, A., R. Cummings, J. Esko, H. Freeze, G. Hart, and J. Marth. 1999. Essentials of glycobiology. Cold Spring Harbor Laboratory Press. Xia, J., S. W. Scherer, P. T. Cohen, M. Majer, T. Xi, R. A. Norman, W. C. Knowler, C. Bogardus, and M. Prochazka. 1998. A common variant in PPP1R3 associated with insulin resistance and type 2 diabetes. Diabetes 47: 1519-24. Xie, H., D. N. Bolam, T. Nagy, L. Szabo, A. Cooper, P. J. Simpson, J. H. Lakey, M. P. Williamson, and H. J. Gilbert. 2001. Role of hydrogen bonding in the interaction between a xylan binding module and xylan. Biochemistry 40: 5700-7. Yamazaki, T., J. D. Forman-Kay, and L. E. Kay. 1993. Two-Dimensional NMR Experiments for Correlating 13C�� and 1H��/�� Chemical Shifts of Aromatic Residues in 13C-Labeled Proteins via Scalar Couplings. J. Am. Chem. Soc. 115: 11054-11055. Yokota, T., T. Tonozuka, Y. Shimura, K. Ichikawa, S. Kamitori, and Y. Sakano. 2001. Structures of Thermoactinomyces vulgaris R-47 alpha-amylase II complexed with substrate analogues. Biosci. Biotechnol. Biochem. 65: 619-26. Yoon, H. J., H. Akira, A. Motoyasu, S. Atsushi, U. Shigeru, and M. Bunzo. 1999. Structure of the starch-binding domain of Bacillus cereus beta-amylase. J Microbiol. Biotechnol. 9: 619-623. Zhu, J., and Z. Weng. 2005. FAST: a novel protein structure alignment algorithm. Proteins 58: 618-27.
|