跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2025/01/14 06:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉育男
研究生(外文):Yu-Nan Liu
論文名稱:米根黴葡糖澱粉酶的第二十一族醣類結合模組水溶液結構之研究暨綠豆非專一性脂質轉運蛋白一型結構之研究
論文名稱(外文):Studies of Solution Structure of Family 21 Carbohydrate-binding Module from Rhizopus oryzae Glucoamylase and Solution Structure of Nonspecific Lipid Transfer Protien 1 from Mung Bean
指導教授:呂平江
指導教授(外文):Ping-Chiang Lyu
學位類別:博士
校院名稱:國立清華大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:英文
論文頁數:147
中文關鍵詞:核磁共振米根黴葡糖澱粉酶醣類結合模組
外文關鍵詞:NMRRhizopus oryzaeglucoamylasecarbohydrate-binding module
相關次數:
  • 被引用被引用:0
  • 點閱點閱:332
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:1
醣類結合模組 (carbohydrate-binding modules, CBM) 存在於醣類水解酵素等醣類活性酵素(carbohydrate-active enzymes) 的一段獨立區塊 (domain),有著多種輔助醣類活性蛋白的功用。其中有一大部分主要的作用是幫助這類酵素附著到非水溶性的醣類巨分子之上。 當失去醣類結合模組時,醣類活性蛋白保有著對水溶性的醣類受質之活性,但是對非水溶性的醣類受質卻幾乎完全喪失活性。
迄今,醣類活性酵素網站 (http://afmb.cnrs-mrs.fr/CAZY) 記載著四十五個家族 (families) 不同的醣類結合模組。 這些家族主要是由序列的相似性做分類。 其中已知有七個家族的成員參與澱粉的結合,分別是醣類結合模組第二十族(CBM20)、第二十一族(CBM21)、第二十五族 (CBM25)、第二十六族(CBM26)、第三十四族(CBM34)、第四十一族 (CBM41) 以及第四十五族(CBM45)。 在本篇論文中我們利用核磁共振(nuclear magnetic resonance)的方法解出米根黴的葡糖澱粉酶(glucoamylase, 此酵素在食品工業上常用於水解澱粉)之澱粉結合區段(Starch binding domain, SBD)的水溶液結構,此澱粉結合區段屬於第二十一族醣類結合模組(RoCBM21);而此結構為第一個第二十一族醣類結合模組的代表結構。
米根黴第二十一族醣類結合模組的結構是由八個反平行的貝他平股(b-strand)所構成的類免疫球蛋白結構; 將此結構與先前解出的澱粉結合區段的分子結構做比較,我們可以將澱粉結合區段的結構歸類成兩種摺疊拓墣圖形式(topologies) ;第一型(type I topology)包含醣類結合模組第二十族、第二十五族、第二十六族以及第四十一族 (CBM41)而第二型(type II topology)則包含醣類結合模組第二十一族(CBM21)及第三十四族(CBM34) 。 此二種摺疊拓墣圖形式大致上相近除了第一型包含著一對平行的貝他平股而第二型則完全由反平行的貝他平股所構成。
化學位移干擾(Chemical shift perturbation)及先前的研究指出,米根黴二十一族醣結合模組(RoCBM21)與麴菌二十族醣結合模組(CBM20 from Aspergillus niger glucoamylase)一樣具有兩個受質結合位(binding sites),且二者的第二結合位(site II)胺基酸組成較為相似,米根黴二十一族醣結合模組的第一結合位則由帶有多個天門冬胺酸的環圈(loops)所包圍。 此外利用電腦模擬分子泊合(docking)將由二十六個葡萄糖所組成具有結構的澱粉分子與米根黴二十一族醣結合模組進行結合模擬。在此模擬中我們看到了澱粉結合區段與澱粉自身的結構產生作用的可能性。 米根黴二十一族醣結合模的分子結構使我們能更進一步得瞭解蛋白質與醣類的結合作用。
Carbohydrate-binding modules (CBMs) function independently to assist carbohydrate-active enzymes. Family 21 CBMs contain ~100 amino acid residues, and some members have starch-binding functions or glycogen-binding activities. We report here the first structure of a family 21 CBM from the starch binding domain (SBD) of Rhizopus oryzae glucoamylase (RoCBM21) determined by nuclear magnetic resonance spectroscopy. This CBM has a ��-sandwich fold with an immunoglobulin-like structure. Ligand-binding properties of RoCBM21 were analyzed by chemical shift perturbations and automated docking. Structural comparisons with previously reported SBDs revealed two types of topologies, type I and type II, with CBM20, CBM25, CBM26, and CBM41 belonging to the type I topology group, whereas CBM21 and CBM34 belonging type II topology. According to the chemical shift perturbations, RoCBM21 contains two ligand-binding sites—as do most SBDs. Residues in site II are similar to those found in the family 20 CBM from Aspergillus niger glucoamylase (AnCBM20). Site I, however, is enclosed by two flexible asparagine-rich loops that are unique and only found in some members of CBM21s. Additionally, docking of a large amylose molecule (comprising 26 glucose residues) into RoCBM21 highlights possible mechanism that SBDs may interact with the structured portion of starch. The structure of RoCBM21 helps us characterize the structural features of SBDs and to understand the basis of protein-carbohydrate recognitions.
Part I Solution Structure of Family 21 Carbohydrate-binding Module from Rhizopus oryzae Glucoamylase....................................................................................1
Abstract (in Chinese)................................................................................................2
Abstract (in English).................................................................................................4
Abbreviations.............................................................................................................6
Chapter One: Introduction......................................................................................7
1.1. Carbohydrates.................................................................................................7
1.2. Starch and Glycogen.......................................................................................8
1.3. Carbohydrate-active Enzymes.......................................................................9
1.4. Carbohydrate-binding Modules...................................................................10
1.5. Rhizopus oryzae..............................................................................................11
1.6. Glucoamylase.................................................................................................13
1.7. Starch-binding Domain (SBD) ....................................................................14
Tables....................................................................................................................17
Figures...................................................................................................................20
Chapter Two: Materials & methods.....................................................................29
2.1. Clone Construction.......................................................................................29
2.2. Sample Purification.......................................................................................29
2.3. NMR Spectroscopy for Structure Determination......................................30
2.4. Structure Calculation and Structural Analyses.........................................33
2.5. Chemical Shift Perturbations.......................................................................35
2.6. Docking Simulations.....................................................................................36
Sequence details about RoCBM21......................................................................38
Figures...................................................................................................................39
Chapter Three: Results...........................................................................................53
3.1. NMR Spectra and Molecular Structure......................................................53
3.2. Structural Comparisons to SBDs.................................................................56
3.3. Ligand-binding and Chemical Shift Perturbation.....................................56
Tables....................................................................................................................60
Figures...................................................................................................................66
Chapter Four: Discussions.....................................................................................83
Two topology types of SBDs................................................................................83
Aromatic residues and poly-N loops in RoCBM21...........................................84
Interpretation of C-terminal deletions of glucoamylase...................................85
Diversity of SBDs..................................................................................................86
Interactions with starch and models of AFM images.......................................87
Models and studies of other CBM21s.................................................................88
Prospects...............................................................................................................89
Figures...................................................................................................................90
Reference................................................................................................................100
Part II Characterization and structural analyses of nsLTP1 from mung bean..............................................................................................................108
Abstract (in Chinese)........................................................................................... 109
Abstract (in English) ............................................................................................110
Abbreviations.........................................................................................................111
Chapter One: Introduction .................................................................................112
Figures..................................................................................................................115
Chapter Two: Materials & methods...................................................................117
Protein Purification........................................................................................117
NMR Experiments and Assignments............................................................118
Structural Calculation and Analysis.............................................................119
Figures.................................................................................................................120
Chapter Three: Results and Discussions
Assignment of NMR Spectra and Structure Calculation of nsLTP1.........123
Comparison with homologous nsLTP1s........................................................124
Tables...................................................................................................................128
Figures.................................................................................................................131
Chapter Four: Conclusions..................................................................................137
Lipid transfer activity, cavity and disulfide bonds......................................137
Probable Role of nsLTP1 as Plant Defensin.................................................139
Reference.............................................................................................................141
Abe, A., T. Tonozuka, Y. Sakano, and S. Kamitori. 2004. Complex structures of Thermoactinomyces vulgaris R-47 alpha-amylase 1 with malto-oligosaccharides demonstrate the role of domain N acting as a starch-binding domain. J. Mol. Biol. 335: 811-22.
Ali, M. K., H. Hayashi, S. Karita, M. Goto, T. Kimura, K. Sakka, and K. Ohmiya. 2001. Importance of the carbohydrate-binding module of Clostridium stercorarium Xyn10B to xylan hydrolysis. Biosci. Biotechnol. Biochem. 65: 41-7.
Armstrong, C. G., M. J. Doherty, and P. T. Cohen. 1998. Identification of the separate domains in the hepatic glycogen-targeting subunit of protein phosphatase 1 that interact with phosphorylase a, glycogen and protein phosphatase 1. Biochem. J. 336 ( Pt 3): 699-704.
Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl. 1995. Short protocols in molecular biology. Wiley.
Bolam, D. N., A. Ciruela, S. McQueen-Mason, P. Simpson, M. P. Williamson, J. E. Rixon, A. Boraston, G. P. Hazlewood, and H. J. Gilbert. 1998. Pseudomonas cellulose-binding domains mediate their effects by increasing enzyme substrate proximity. Biochem. J. 331 ( Pt 3): 775-81.
Boraston, A. B., D. N. Bolam, H. J. Gilbert, and G. J. Davies. 2004. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem. J. 382: 769-81.
Boraston, A. B., M. Healey, J. Klassen, E. Ficko-Blean, A. Lammerts van Bueren, and V. Law. 2006. A structural and functional analysis of alpha-glucan recognition by family 25 and 26 carbohydrate-binding modules reveals a conserved mode of starch recognition. J. Biol. Chem. 281: 587-98.
Brunger, A. T., P. D. Adams, G. M. Clore, W. L. Delano, P. Gros, R. W. Grosse-Kunstleve, J. S. Jiang, J. Kuszewski, M. Nilges, N. S. Pannu, R. J. Read, L. M. Rice, T. Simonson, and G. L. Warren. 1998. Crystallography & NMR System. Acta Cryst. D54: 905-921.
Carvalho, A. L., A. Goyal, J. A. Prates, D. N. Bolam, H. J. Gilbert, V. M. Pires, L. M. Ferreira, A. Planas, M. J. Romao, and C. M. Fontes. 2004. The family 11 carbohydrate-binding module of Clostridium thermocellum Lic26A-Cel5E accommodates beta-1,4- and beta-1,3-1,4-mixed linked glucans at a single binding site. J. Biol. Chem. 279: 34785-93.
Cavanagh, J., W. J. Fairbrother, G. A. Palmer, and N. J. Skelton. 1996. Protein NMR spectroscopy. Academic Press Inc.
Chou, W. I., T. W. Pai, S. H. Liu, B. K. Hsiung, and M. D. Chang. 2006. The family 21 carbohydrate binding module of glucoamylase from Rhizopus oryzae consists of two sites playing distinct roles in ligand binding. Biochem. J. 396: 469-477.
Christensen, T., B. Svensson, and B. W. Sigurskjold. 1999. Thermodynamics of reversible and irreversible unfolding and domain interactions of glucoamylase from Aspergillus niger studied by differential scanning and isothermal titration calorimetry. Biochemistry 38: 6300-10.
Cordier, F., and S. Grzesiek. 1999. Direct Observation of Hydrogen Bonds in Proteins
by Interresidue 3HJNC' Scalar Couplings. J. Am. Chem. Soc. 121: 1601-1602.
Cornett, C. A., T. Y. Fang, P. J. Reilly, and C. Ford. 2003. Starch-binding domain shuffling in Aspergillus niger glucoamylase. Protein Eng. 16: 521-9.
Cornilescu, G., F. Delaglio, and A. Bax. 1999. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13: 289-302.
Crennell, S., E. Garman, G. Laver, E. Vimr, and G. Taylor. 1994. Crystal structure of Vibrio cholerae neuraminidase reveals dual lectin-like domains in addition to the catalytic domain. Structure 2: 535-44.
Crossman, L., and J. M. Dow. 2004. Biofilm formation and dispersal in Xanthomonas campestris. Microbes Infect 6: 623-9.
Davies, G. J., and B. Henrissat. 2002. Structural enzymology of carbohydrate-active enzymes: implications for the post-genomic era. Biochem. Soc. Trans. 30: 291-7.
Dent, P., A. Lavoinne, S. Nakielny, F. B. Caudwell, P. Watt, and P. Cohen. 1990. The molecular mechanism by which insulin stimulates glycogen synthesis in mammalian skeletal muscle. Nature 348: 302-8.
Evans, J.N.S. (1995) Biomolecular NMR Spectroscopy: Oxford University Press.
Gessler, K., I. Uson, T. Takaha, N. Krauss, S. M. Smith, S. Okada, G. M. Sheldrick, and W. Saenger. 1999. V-Amylose at atomic resolution: X-ray structure of a cycloamylose with 26 glucose residues (cyclomaltohexaicosaose). Proc. Natl. Acad. Sci. U S A 96: 4246-51.
Giardina, T., A. P. Gunning, N. Juge, C. B. Faulds, C. S. Furniss, B. Svensson, V. J. Morris, and G. Williamson. 2001. Both binding sites of the starch-binding domain of Aspergillus niger glucoamylase are essential for inducing a conformational change in amylose. J. Mol. Biol. 313: 1149-59.
Gilkes, N. R., R. A. Warren, R. C. Miller, Jr., and D. G. Kilburn. 1988. Precise excision of the cellulose binding domains from two Cellulomonas fimi cellulases by a homologous protease and the effect on catalysis. J. Biol. Chem. 263: 10401-7.
Goddard, T. D., and D. G. Kneller. 1999. SPARKY 3.
Goto, M., T. Semimaru, K. Furukawa, and S. Hayashida. 1994. Analysis of the raw starch-binding domain by mutation of a glucoamylase from Aspergillus awamori var. kawachi expressed in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 60: 3926-30.
Guan, L., Y. Hu, and H. R. Kaback. 2003. Aromatic stacking in the sugar binding site of the lactose permease. Biochemistry 42: 1377-82.
Gunning, A. P., T. P. Giardina, C. B. Faulds, N. Juge, S. G. Ring, G. Williamson, and V. J. Morris. 2003. Surfactant-mediated solubilisation of amylose and visualisation by atomic force microscopy. Carbohydrate Polymers 51: 177-182.
Henrissat, B., P. M. Coutinho, and G. J. Davies. 2001. A census of carbohydrate-active enzymes in the genome of Arabidopsis thaliana. Plant. Mol. Biol. 47: 55-72.
Hostinova, E., A. Solovicova, R. Dvorsky, and J. Gasperik. 2003. Molecular cloning and 3D structure prediction of the first raw-starch-degrading glucoamylase without a separate starch-binding domain. Arch. Biochem. Biophys. 411: 189-95.
Kamitori, S., S. Kondo, K. Okuyama, T. Yokota, Y. Shimura, T. Tonozuka, and Y. Sakano. 1999. Crystal structure of Thermoactinomyces vulgaris R-47 alpha-amylase II (TVAII) hydrolyzing cyclodextrins and pullulan at 2.6 A resolution. J. Mol. Biol. 287: 907-21.
Katsuya, Y., Y. Mezaki, M. Kubota, and Y. Matsuura. 1998. Three-dimensional structure of Pseudomonas isoamylase at 2.2 A resolution. J. Mol. Biol. 281: 885-97.
Kelly, G. S. 1998. The role of glucosamine sulfate and chondroitin sulfates in the treatment of degenerative joint disease. Altern. Med. Rev. 3: 27-39.
Klein, C., and G. E. Schulz. 1991. Structure of cyclodextrin glycosyltransferase refined at 2.0 A resolution. J. Mol. Biol. 217: 737-50.
Laskowski, R. A., M. W. MacArthur, D. S. Moss, and J. M. Thornton. 1993. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26: 283-291.
Lawson, C. L., R. van Montfort, B. Strokopytov, H. J. Rozeboom, K. H. Kalk, G. E. de Vries, D. Penninga, L. Dijkhuizen, and B. W. Dijkstra. 1994. Nucleotide sequence and X-ray structure of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 in a maltose-dependent crystal form. J. Mol. Biol. 236: 590-600.
Linge, J. P., M. A. Williams, C. A. Spronk, A. M. Bonvin, and M. Nilges. 2003. Refinement of protein structures in explicit solvent. Proteins 50: 496-506.
Machovic, M., B. Svensson, E. A. MacGregor, and S. Janecek. 2005. A new clan of CBM families based on bioinformatics of starch-binding domains from families CBM20 and CBM21. FEBS J. 272: 5497-513.
Mikami, B., H. Iwamoto, D. Malle, H. J. Yoon, E. Demirkan-Sarikaya, Y. Mezaki, and Y. Katsuya. 2006. Crystal Structure of Pullulanase: Evidence for Parallel Binding of Oligosaccharides in the Active Site. J. Mol. Biol. 359: 690-707.
Miyanaga, A., T. Koseki, H. Matsuzawa, T. Wakagi, H. Shoun, and S. Fushinobu. 2004. Crystal structure of a family 54 alpha-L-arabinofuranosidase reveals a novel carbohydrate-binding module that can bind arabinose. J. Biol. Chem. 279: 44907-14.
Morris, G. M., Goodsell, D. S., Halliday, R.S., Huey, R., Hart, W. E., Belew, R. K. and Olson, A. J. 1998. Automated Docking Using a Lamarckian Genetic Algorithm and and Empirical Binding Free Energy Function. J. Computational Chemistry 19: 1639-1662.
Morris, V. J., A. P. Gunning, C. B. Faulds, G. Williamson, and B. Svensson. 2005. AFM images of complexes between amylose and Aspergillus niger glucoamylase mutants, native and mutant starch binding domains: a model for the action of glucoamylase. Starke 57: 1-7.
Moseley, H. N., G. Sahota, and G. T. Montelione. 2004. Assignment validation software suite for the evaluation and presentation of protein resonance assignment data. J. Biomol. NMR 28: 341-55.
Nagai, Y. 1998. Cell regulatory function of glycosphingolipids: Carbohydrate recognition and biosignaling. Pure & Appl. Chem. 70: 49-53.
Najmudin, S., C. I. Guerreiro, A. L. Carvalho, J. A. Prates, M. A. Correia, V. D. Alves, L. M. Ferreira, M. J. Romao, H. J. Gilbert, D. N. Bolam, and C. M. Fontes. 2006. Xyloglucan is recognized by carbohydrate-binding modules that interact with beta-glucan chains. J. Biol. Chem. 281: 8815-28.
Nilges, M., G. M. Clore, and A. M. Gronenborn. 1988. Determination of three-dimensional structures of proteins from interproton distance data by dynamical simulated annealing from a random array of atoms. Circumventing problems associated with folding. FEBS Lett. 239: 129-36.
Nilges, M., M. J. Macias, S. I. O'Donoghue, and H. Oschkinat. 1997. Automated NOESY interpretation with ambiguous distance restraints: the refined NMR solution structure of the pleckstrin homology domain from beta-spectrin. J. Mol. Biol. 269: 408-22.
Pell, G., M. P. Williamson, C. Walters, H. Du, H. J. Gilbert, and D. N. Bolam. 2003. Importance of hydrophobic and polar residues in ligand binding in the family 15 carbohydrate-binding module from Cellvibrio japonicus Xyn10C. Biochemistry 42: 9316-23.
Ponyi, T., L. Szabo, T. Nagy, L. Orosz, P. J. Simpson, M. P. Williamson, and H. J. Gilbert. 2000. Trp22, Trp24, and Tyr8 play a pivotal role in the binding of the family 10 cellulose-binding module from Pseudomonas xylanase A to insoluble ligands. Biochemistry 39: 985-91.
Rocchia, W., D. Alexov, and B. Honig. 2001. Extending the Applicability of the Nonlinear Poisson-Boltzmann Equation: Multiple Dielectric Constants and Multivalent Ions. J. Phys. Chem. B 105: 6507-6514.
Rodriguez-Sanoja, R., N. Oviedo, and S. Sanchez. 2005. Microbial starch-binding domain. Curr. Opin. Microbiol. 8: 260-7.
Saitoh, T., T. Ikegami, M. Nakayama, K. Teshima, H. Akutsu, and T. Hase. 2006. NMR study of the electron transfer complex of plant ferredoxin and sulfite reductase: mapping the interaction sites of ferredoxin. J. Biol. Chem. 281: 10482-8.
Seif, E., J. Leigh, Y. Liu, I. Roewer, L. Forget, and B. F. Lang. 2005. Comparative mitochondrial genomics in zygomycetes: bacteria-like RNase P RNAs, mobile elements and a close source of the group I intron invasion in angiosperms. Nucleic Acids Res. 33: 734-44.
Sevcik, J., E. Hostinova, A. Solovicova, J. Gasperik, Z. Dauter, and K. S. Wilson. 2006. Structure of the complex of a yeast glucoamylase with acarbose reveals the presence of a raw starch binding site on the catalytic domain. FEBS J. 273: 2161-71.
Smith, A. M., K. Denyer, and C. R. Martin. 1995. What Controls the Amount and Structure of Starch in Storage Organs? Plant Physiol. 107: 673-677.
Sorimachi, K., A. J. Jacks, M. F. Le Gal-Coeffet, G. Williamson, D. B. Archer, and M. P. Williamson. 1996. Solution structure of the granular starch binding domain of glucoamylase from Aspergillus niger by nuclear magnetic resonance spectroscopy. J. Mol. Biol. 259: 970-87.
Sorimachi, K., M. F. Le Gal-Coeffet, G. Williamson, D. B. Archer, and M. P. Williamson. 1997. Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to beta-cyclodextrin. Structure 5: 647-61.
Souchet, M., M. Legave, N. Jullian, H. O. Bertrand, A. Bril, and I. Berrebi-Bertrand. 1999. Structure of the human glycogen-associated protein phosphatase 1 regulatory subunit hGM: homology modeling revealed an (alpha/beta)8-barrel-like fold in the multidomain protein. Protein Sci. 8: 2570-9.
Southall, S. M., P. J. Simpson, H. J. Gilbert, G. Williamson, and M. P. Williamson. 1999. The starch-binding domain from glucoamylase disrupts the structure of starch. FEBS Lett. 447: 58-60.
Takahashi, T., K. Kato, Y. Ikegami, and M. Irie. 1985. Different behavior towards raw starch of three forms of glucoamylase from a Rhizopus sp. J. Biochem. (Tokyo) 3: 663-71.
Tanaka, A., S. Karita, Y. Kosuge, K. Senoo, H. Obata, and N. Kitamoto. 1998. Thermal unfolding of the starch binding domain of Aspergillus niger glucoamylase. Biosci. Biotechnol. Biochem. 62: 2127-32.
Tomme, P., and M. Claeyssens. 1989. Identification of the functional important carboxylgroup in cellobiohydrolase I from Trichoderma reesei: a chemical modification study. FEBS Lett. 243: 239-243.
Tunnicliffe, R. B., D. N. Bolam, G. Pell, H. J. Gilbert, and M. P. Williamson. 2005. Structure of a mannan-specific family 35 carbohydrate-binding module: evidence for significant conformational changes upon ligand binding. J. Mol. Biol. 347: 287-96.
Vaaje-Kolstad, G., D. R. Houston, A. H. Riemen, V. G. Eijsink, and D. M. van Aalten. 2005. Crystal structure and binding properties of the Serratia marcescens chitin-binding protein CBP21. J. Biol. Chem. 280: 11313-9.
Varki, A., R. Cummings, J. Esko, H. Freeze, G. Hart, and J. Marth. 1999. Essentials of glycobiology. Cold Spring Harbor Laboratory Press.
Xia, J., S. W. Scherer, P. T. Cohen, M. Majer, T. Xi, R. A. Norman, W. C. Knowler, C. Bogardus, and M. Prochazka. 1998. A common variant in PPP1R3 associated with insulin resistance and type 2 diabetes. Diabetes 47: 1519-24.
Xie, H., D. N. Bolam, T. Nagy, L. Szabo, A. Cooper, P. J. Simpson, J. H. Lakey, M. P. Williamson, and H. J. Gilbert. 2001. Role of hydrogen bonding in the interaction between a xylan binding module and xylan. Biochemistry 40: 5700-7.
Yamazaki, T., J. D. Forman-Kay, and L. E. Kay. 1993. Two-Dimensional NMR Experiments for Correlating 13C�� and 1H��/�� Chemical Shifts of Aromatic Residues in 13C-Labeled Proteins via Scalar Couplings. J. Am. Chem. Soc. 115: 11054-11055.
Yokota, T., T. Tonozuka, Y. Shimura, K. Ichikawa, S. Kamitori, and Y. Sakano. 2001. Structures of Thermoactinomyces vulgaris R-47 alpha-amylase II complexed with substrate analogues. Biosci. Biotechnol. Biochem. 65: 619-26.
Yoon, H. J., H. Akira, A. Motoyasu, S. Atsushi, U. Shigeru, and M. Bunzo. 1999. Structure of the starch-binding domain of Bacillus cereus beta-amylase. J Microbiol. Biotechnol. 9: 619-623.
Zhu, J., and Z. Weng. 2005. FAST: a novel protein structure alignment algorithm. Proteins 58: 618-27.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top