跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/07 04:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉佩芬
研究生(外文):Pei-Feng Liu
論文名稱:植物Ku蛋白生物資訊分析及植物荷爾蒙和環境逆境下Ku基因的調控
論文名稱(外文):Bioinformatic Analysis of Plant Ku and Regulation of Ku gene in Response to Plant Hormones and Abiotic Stresses
指導教授:潘榮隆潘榮隆引用關係
指導教授(外文):Rong-Long Pan
學位類別:博士
校院名稱:國立清華大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:208
中文關鍵詞:去氧核糖核酸修復去氧核糖核酸末端結合蛋白植物荷爾蒙植物逆境基因調控訊息傳遞生物資訊
外文關鍵詞:DNA repairDNA end-binding proteinPlant hormoneAbiotic stressGene regulationSignal transductionBioinformatics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:316
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:1
古氏-蛋白質是由一個質量為70千道頓與一個質量為80千道頓的蛋白質所組成的異型雙次體。這種類似蛋白質被發現在從酵母菌到人類之真核生物中。多功能古氏-蛋白質參與了許多細胞代謝功能,像是轉錄調控,染色體末端結構維持以及細胞週期調控。此外,身為一個開口結合蛋白的古氏-蛋白質作用在去氧核甘酸複製的初期。植物的古氏-蛋白質基因最近在阿拉伯芥菜中被發現。當有去氧核甘酸破壞劑的刺激下,阿拉伯芥古氏-蛋白質扮演了在非同源雙股末端結合的去氧核甘酸雙股斷裂修復的角色以及如果失去了古氏-蛋白質則會造成染色體末端長度控制的失調。阿拉伯芥80千道頓古氏-蛋白質次體在T-DNA嵌合的參與也被證明出。另外,類似華納癓候的阿拉伯芥核酸外切酵素 (AtWEX) 與阿拉伯芥古氏-蛋白質之間的關係被確認了。然而,直到目前有關它在植物上的功能及調控之研究仍然是有限的。
在我們研究的第一部份,古氏-蛋白質基因從綠豆下胚軸中被篩選出來。電腦資料顯示出許多有關植物古氏-蛋白質相關訊息,像是不同物種之古氏-蛋白質的演化關係、它的預測結構、與它結合的蛋白以及在不同發育階段下阿拉伯芥古氏-蛋白質基因的表現等等。
第二部份,我們繼續探討植物古氏-蛋白質基因如何受植物荷爾蒙-生長素的調控。兩個綠豆古氏-蛋白質次體基因在綠豆中的每個組織都有表現,但以下胚軸及葉子中最多。綠豆古氏-蛋白質基因表現會受生長素依時間及劑量的依賴模式下所刺激。這種刺激會被生長素流入載體抑制劑-萘基鄰氨甲酰苯甲酸和三碘苯甲酸所減弱,表示外加的生長激素的作用。更進一步,利用專一性的生長素訊號抑制劑發現綠豆古氏-蛋白質基因在二氯苯氧機乙酸刺激下會被細胞內鈣離子敖合劑,攜鈣素拮抗劑和鈣調素抑制劑所抑制,表示攜鈣素參與在這個調節路徑中。另外,外加性的吲哚乙酸和α-萘乙酸則是透過細胞絲裂原活化蛋白激酶/细胞外信號調節激酶路徑來調節綠豆古氏-蛋白質基因的表現。綜合來說,二氯苯氧機乙酸和吲哚乙酸(或α-萘乙酸)是透過不同的路徑來調節豆古氏-蛋白質基因的表現。
第三部份,我們又繼續探討三週大阿拉伯芥菜之古氏-蛋白質基因如何受另一種植物荷爾蒙-離層酸造成之緩慢生長下的調控。首先,生物資訊分析指出有離層酸反應片段及AREB6 和ATHB5轉錄因子的結合位置在阿拉伯芥菜古氏-蛋白質基因的啟動子序列中。在轉殖的阿拉伯芥古氏-蛋白質基因啟動子之活性分析中指出離層酸使古氏-蛋白質基因啟動子的活性減少。阿拉伯芥古氏-蛋白質基因表現會受離層酸依時間及劑量的依賴模式下所抑制。然而,加了離層酸生合成抑制劑-fluride 和tungate,卻不能破壞離層酸對阿拉伯芥古氏-蛋白質基因的抑制。此外,利用訊號抑制劑處理及離層酸反應突變株分析可知,阿拉伯芥古氏-蛋白質基因受離層酸的調控是藉由細胞外鈣離子、磷脂酶D alpha、p38類型細胞絲裂原活化蛋白激酶、細胞絲裂原活化蛋白激酶6和離層酸轉錄因子-ABI3和ABI5的路徑。最後,離層酸和其拮抗性荷爾蒙(生長素和吉貝素)之間對阿拉伯芥古氏-蛋白質基因的調控路徑是沒有交互作用的。
最後,我們著重在探討阿拉伯芥菜之古氏-蛋白質基因如何受環境逆境-熱休克的調控。首先,生物資訊分析指出有熱休克反應片段及熱休克轉錄因子的結合位置在阿拉伯芥菜古氏-蛋白質基因的啟動子序列中。利用即時反轉錄聚合酶連鎖反應和轉殖之阿拉伯芥古氏-蛋白質基因啟動子活性分析,三週大阿拉伯芥菜古氏-蛋白質基因表現會受熱逆境依時間的依賴模式下所抑制。另一方面,利用離層酸生合成突變株-aba3和逆相高效液相層析法分析指出阿拉伯芥古氏-蛋白質基因抑制的減弱以及離層酸生合成的增加,顯示出阿拉伯芥古氏-蛋白質基因受熱逆境的調控是藉由離層酸生合成的路徑。乙烯訊號傳遞、去氧核甘酸修復路徑和脂肪酸生合成也參與了阿拉伯芥古氏-蛋白質基因在熱逆境下的調控。更進一步,我們的結果指出熱逆境抑制較年輕植株中阿拉伯芥古氏-蛋白質基因的表現但卻促進較老植株中阿拉伯芥古氏-蛋白質基因的表現。
總結來說,生物資訊工具及網路資料庫給了我們更多與植物阿拉伯芥古氏-蛋白質有關的知識並且實驗結果也提出了植物阿拉伯芥古氏-蛋白質基因在受不同生長素,離層酸和熱休克調節之分子層次上的證據。
Ku is a heterodimer consisting of two related subunits, Ku70 and Ku80. Orthologues of both subunits have been found in many eukaryotes from yeast to man. This multifunctional protein is involved in many cellular metabolic processes, such as transcriptional regulation, telomeric maintenance, and cell cycle regulation. Moreover, Ku, being an origin binding-protein, acts at the initiation step of DNA replication. Plant Ku genes were recently identified in Arabidopsis thaliana (AtKu). AtKu has role in the repair of DNA double-strand breaks by non-homologous end joining in response to DNA damaging agents and lack of AtKu results in a deregulation of telomere length control. Involvement of AtKu80 in T-DNA integration was also verified. Moreover, an interaction between the Werner syndrome-like exonuclease AtWEX and the AtKu heterodimer was identified. However, studies about its function and regulation in plant are still limited until now.
Firstly, the cDNAs encoding Ku70 (VrKu70) and Ku80 (VrKu80) were isolated from mung bean (Vigna radiata L.) hypocotyls. Computational analysis showed a lot of information about plant Ku, such as phylogenetic relations of Ku proteins among different organisms, predicted its structure. The Ku-interacting proteins and Ku expression under different environmental conditions were studied.
Secondly, we investigated how plant Ku is regulated by plant hormone, auxin. Both VrKu genes were expressed widely among different tissues of mung bean with the highest levels in hypocotyls and leaves. The VrKu gene expression was stimulated by exogenous auxins in a concentration- and time-dependent manner. The stimulation could be abolished by auxin transport inhibitors, N-(1-naphthyl) phthalamic acid and 2,3,5-triiodobenzoic acid, implicating that exogenous auxins triggered the effects. Further analysis using specific inhibitors of auxin signaling showed that the stimulation of VrKu expression by 2,4-dichlorophenoxyacetic acid (2,4-D) was suppressed by intracellular Ca2+ chelators, calmodulin antagonists, and calcium/calmodulin dependent protein kinase inhibitors, suggesting the involvement of calmodulin in the signaling pathway. On the other hand, exogenous indole-3-acetic acid (IAA) and α-naphthalene acetic acid (NAA) stimulated VrKu expression through the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway. Altogether, it is thus proposed that 2,4-D and IAA (or NAA) regulate the expression of VrKu through two distinct pathways.
Thirdly, we continuously studied how AtKu is regulated during abscisic acid (ABA) induced slow growth in three-week-old seedlings. Bioinformatic analysis firstly predicted the existence of several ABA responsive elements and binding sites of transcription factor, AREB6 and ATHB5, on AtKu promoters. AtKu promoter-β-glucuronidase (GUS) analysis in transgenic Arabidopsis showed reduced activity of AtKu promoter upon ABA application. AtKu gene repression by ABA treatment is in a time- and concentration-dependent manner using GUS assay and real time quantitative reverse transcription polymerase chain reaction (RT-PCR) analysis. However, addition of ABA biosynthesis inhibitors, fluride and tungate, could not abolish the AtKu suppression. Moreover, AtKu repression in response to ABA was mediated through the pathway of extracellular Ca2+, phospholipase D alpha, p38-type mitogen-activated protein kinase (MAPK), MAPK6 and ABA transcription factors, ABI3 and ABI5 by analysis of inhibitor treatments and ABA responsive mutants. Finally, no cross-talk was found for modulating AtKu gene expression between ABA and antagonist hormones (auxins and gibberellic acid).
Finally, we focused on how AtKu is regulated by environmental stress-heat shock. Bioinformatic analysis found several heat shock responsive elements and heat shock transcription factor binding sites on AtKu promoters. The expression of AtKu is down-regulated by heat stress in a time course with real time RT-PCR and AtKu promoter-GUS (β-Glucuronidase) analysis using 3-week-old young seedlings. On the other hand, the high-temperature repression of AtKu is mediated through ABA biosynthesis, as shown by reversed repression of the AtKu in ABA-biosynthesis mutant, aba3 and increased ABA level analyzed by reverse high performance liquid chromatography. The involvement of ethylene signaling, DNA repair pathway and fatty acid synthesis in AtKu regulation by heat were also shown. Furthermore, our results showed heat regulated tissue-specific AtKu repression at different developmental stages.
Taken together, bioinformatics tools and online databases gave us extended knowledge about functions of plant Ku protein. In addition, the experimental results provided molecular evidence for plant Ku gene regulation by plant hormones and stress.
ACKNOWLEDGEMENTS ---------------------------------------I
ABSTRACT (IN CHINESE) --------------------------------III
ABSTRACT (IN ENGLISH) ---------------------------------VI
ABBREVIATIONS -----------------------------------------IX
LIST OF FIGURES --------------------------------------XIV
LIST OF TABLES -------------------------------------XVIII

1.INTRODUCTION ----------------------------------------1

2. MATERIALS AND METHODS ------------------------------6
2.1. Molecular Cloning and Sequence Analysis of
VrKu cDNA ---------------------------------------6
2.2. Expression and Purification of Plant Ku --------7
2.3. Bioinformaitc Tools and Online Database --------8
2.4. Antibody Preparation ---------------------------9
2.5. Chemicals --------------------------------------9
2.6. Plant Materials and Chemical/Stress
Treatments ------------------------------------10
2.7. GUS Assay -------------------------------------11
2.8. RNA Isolation ---------------------------------12
2.9. Reverse Transcription Polymerase Chain
Reaction and Quantitative Real-time PCR -------12
2.10. Protein Extraction and Immunoblotting
Analysis -------------------------------------13
2.11. Electrophoretic Mobility-shift Assay ---------14
2.12. ABA Level Analysis ---------------------------15

3. RESULTS -------------------------------------------16
3.1. Cloning and Bioinformatic Characterizations
of Plant Ku------------------------------------16
3.1.1. Molecular Cloning of the Putative VrKu70
and VrKu80 cDNAs ---------------------------16
3.1.2. Bioinformatic Characterizations
of Plant Ku---------------------------------17
3.1.2.1. Sequence Comparison ---------------------17
3.1.2.2. Sequence Analysis -----------------------18
3.1.2.3. Transcriptome Analysis ------------------19
3.2. Differential Regulation of Ku Gene Expression
in Etiolated Mung Bean Hypocotyls by Auxins ---20
3.2.1. Expression of VrKu in Response to Auxins----20
3.2.2. Differential Regulation of VrKu Expression
in Response to Auxins ----------------------23
3.3. Signaling Pathways Mediating the Suppression
of Arabidopsis thaliana Ku Gene Expression by
Abscisic Acid ----------------------------------25
3.3.1. ABA-responsive Elements on AtKu Promoters
and the Modulation of Promoter Activity
by ABA -------------------------------------26
3.3.2. Down-regulation of AtKu Gene Expression by
ABA ----------------------------------------27
3.3.3. Signaling Pathways Mediating AtKu Gene
Suppression by ABA---------------------------29
3.3.4. Modulation of Plant Hormones for AtKu
Expression ----------------------------------31
3.4. Regulation of Arabidopsis thaliana Ku Genes at
Different Developmental Stages under
Heat Stress ------------------------------------32
3.4.1. Heat Shock-Responsive Elements on
AtKu Promoter and AtKu Promoter-GUS Fusion
Inactivation by Heat ------------------------32
3.4.2. Down-regulated of AtKu Expression by Heat---33
3.4.3. Signaling Pathways for AtKu Repression
by Heat Stress------------------------------34
3.4.4. AtKu Expression at Different Developmental
Stages in Response to Heat ------------------35

4. DISCUSSIONS ---------------------------------------36
4.1. Cloning and Bioinformatic Characterizations of
Plant Ku ---------------------------------------36
4.2. Differential Regulation of Ku Gene Expression
in Etiolated Mung Bean Hypocotyls by Auxins----37
4.3. Signaling Pathways Mediating the Suppression
of Arabidopsisthaliana Ku Gene Expression by
Abscisic Acid ---------------------------------42
4.4. Regulation of Arabidopsis thaliana Ku Genes at
Different Developmental Stages under
Heat Stress ------------------------------------45

5. CONCLUSION ----------------------------------------49

6. REFERENCES ----------------------------------------50

7. FIGURE LEGENDS ------------------------------------65
7.1. Cloning and Bioinformatic Characterizations of
Plant Ku --------------------------------------65
7.2. Differential Regulation of Ku Gene Expression
in Etiolated Mung Bean Hypocotyls by Auxins ---70
7.3. Signaling Pathways Mediating the Suppression
of Arabidopsisthaliana Ku Gene Expression
by Abscisic Acid ------------------------------80
7.4. Regulation of Arabidopsis thaliana Ku Genes
at Different Developmental Stages under
Heat Stress------------------------------------89
7.5. Conclusion ------------------------------------95

8. FIGURES -------------------------------------------97
8.1. Cloning and Bioinformatic Characterizations
of Plant Ku -----------------------------------97
8.2. Differential Regulation of Ku Gene Expression
in Etiolated Mung Bean Hypocotyls by Auxins ---124
8.3. Signaling Pathways Mediating the Suppression
of Arabidopsis thaliana Ku Gene Expression by
Abscisic Acid ---------------------------------141
8.4. Regulation of Arabidopsis thaliana Ku Genes at
Different Developmental Stages under
Heat Stress------------------------------------155
8.5. Conclusion ------------------------------------169

9. TABLES---------------------------------------------170
9.1. Cloning and Bioinformatic Characterizations
of Plant Ku -----------------------------------170
9.2. Signaling Pathways Mediating the Suppression
of Arabidopsis thaliana Ku Gene Expression by
Abscisic Acid ---------------------------------180
9.3. Regulation of Arabidopsis thaliana Ku Genes
at Different Developmental Stages under
Heat Stress------------------------------------188

10. APPENDIXES ---------------------------------------182
10.1. Plasmid Constructs ---------------------------182
10.1.1. Constructs for Sequencing Full Length
of VrKu Gene.------------------------------182
10.1.2. Constructs for Expression of His6 Fusion
Proteins. ---------------------------------183
10.1.3. Constructs for Expression of GST Fusion
Proteins. ---------------------------------184
10.2. Chemicals ------------------------------------185
10.3. Primer Sets ----------------------------------186
10.3.1. Primers for Ku Fusion Protein Expression.-186
10.3.2. Primers for RT-PCR. ----------------------187
10.3.3. Primers for Real-time RT-PCR.-------------188
10.4. Arabidopsis Mutants --------------------------189
Arimura, G., Ozawa, R., Shimoda, T., Nishioka, T., Boland, W. and Takabayashi, J. (2000) Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406: 512-515.

Baier, M., Ströher, E. and Dietz, K-J. (2004) The acceptor availability at photosystem I and ABA control nuclear expression of 2-Cys peroxiredoxin-A in Arabidopsis thaliana. Plant Cell Physiol. 45: 997-1006.

Banks, S., King, S.A., Irvine, D.S. and Saunders, P.T.K. (2005) Impact of a mild scrotal heat stress on DNA integrity in murine spermatozoa. Reproduction 129: 505-514.

Bechoua, S. and Daniel, L.W. (2001) Phospholipase D Is required in the signaling pathway leading to p38 MAPK activation in neutrophil-like HL-60 cells, stimulated by N-Formyl-methionyl-leucyl-phenylalanine. J. Biol. Chem. 276: 31752-31759.

Beck, B.D. and Dynlacht, J.R. (2001) Heat-induced aggregation of XRCC5 (Ku80) in nontolerant and thermotolerant cells. Radiat Res.156: 767-774.

Bertrand, C., Benhamed, M., Li, Y.F., Ayadi, M., Lemonnier, G., Renou, J.P., Delarue, M. and Zhou, D.X. (2005) Arabidopsis HAF2 gene encoding TATA-binding protein (TBP)-associated factor TAF1, is required to integrate light signals to regulate gene expression and growth. J. Biol. Chem. 280: 1465-1473.

Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.

Bundock, P., van Attikum, H. and Hooykaas, P. (2002) Increased telomere length and hypersensitivity to DNA damaging agents in an Arabidopsis KU70 mutant. Nucleic Acids Res. 30: 3395-3400.

Burgman, P., Ouyang, H., Peterson, S., Chen, D.J. and Li, G.C. (1997) Heat inactivation of Ku autoantigen: possible role in hyperthermic radiosensitization. Cancer Res.157: 2847-2850.

Busk, P.K. and Pages, M. (1998) Regulation of abscisic acid-induced transcription. Plant Mol. Biol. 37: 425-435.

Butler, E.D. and Gallagher, T.F. (2000) Characterization of auxin-induced ARRO-1 expression in the primary root of Malus domestica. J. Exp. Bot. 51: 1765-1766.

Campanoni, P. and Nick, P. (2005) Auxin-dependent cell division and cell elongation. 1-Naphthaleneacetic acid and 2,4-dichlorophenoxyacetic acid activate different pathways. Plant Physiol. 137: 939-948.

Cheikh, N. and Jones, R.J. (1994) Disruption of Maize Kernel Growth and Development by Heat Stress. Plant Physiol 106: 45-51.

Downs, J.A. and Jackson, S.P. (2004) A means to a DNA end: the many roles of Ku. Nat. Rev. Mol. Cell Biol. 5: 367-378.

Dynlacht, J.R, Bittner, M.E., Bethel, J.A., Beck, B.D. (2003) The non-homologous end-joining pathway is not involved in the radiosensitization of mammalian cells by heat shock. J. Cell Physiol.196: 557-564.

Eckardt, N.A. (2002) Abscisic acid biosynthesis gene underscores the complexity of sugar, stress, and hormone interactions. Plant Cell 14: 2645–2649.

Falcone, D.L., Ogas, J.P. and Somerville, C.R. (2004). Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition. BMC Plant Biol. 4:17.

Fernandez-Pascual, M., Lucas, M.M., de Felipe, M.R., Boscá, L., Hirt, H. and Golvano, M.P. (2006) Involvement of mitogen-activated protein kinases in the symbiosis Bradyrhizobium–Lupinus. J. Exp. Bot. 57: 2735-2742.

Finkelstein, R.R., Gampala, S.S.L. and Rock, C.D. (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14: S15-45.

Fisher, T.S., Taggart, A.K.P. and Zakian, V.A. (2004) Cell cycle-dependent regulation of yeast telomerase by Ku. Nat. Struct. Mol. Biol. 11 1198-1205.

Foo, E., Bullier, E., Goussot, M., Foucher, F., Rameau, C. and Beveridgea, C.A. (2005) The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea. Plant Cell 17: 464-474.

Fujita, Y., Tohda, H., Giga-Hama, Y. and Takegawa, K. (2006) Heat shock-inducible expression vectors for use in Schizosaccharomyces pombe. FEMS Yeast Res. 6: 883-887.

Gallego, M.E., Jalut, N. and White, C.I. (2003). Telomerase dependence of telomere lengthening in Ku80 mutant Arabidopsis. Plant Cell 15: 782-789.

Gampala, S.S.L., Finkelstein, R.R., Sun, S.S.M. and Rock, C.D. (2002) ABA insensitive-5 interacts with ABA signaling effectors in rice protoplasts. J. Biol. Chem. 277:1689-1694.

Ghelis, T., Dellis O., Jeannette, E., Bardat, F., Cornel, D., Miginiac, E., Rona, J.P. and Sotta, B. (2000a) Abscisic acid specific expression of RAB18 involves activation of anion channels in Arabidopsis thaliana suspension cells. FEBS Letters 474: 43-47.

Ghelis, T., Dellis, O., Jeannette, E., Bardat, F., Miginiac, E. and Sotta, B. (2000b) Abscisic acid plasmalemma perception triggers a calcium influx essential for RAB18 gene expression in Arabidopsis thaliana suspension cells. FEBS Letters 483: 67-70.

Ghoshal, K. and Jacob, S.T. (1996) Heat shock selectively inhibits ribosomal RNA gene transcription and down-regulates E1BF/Ku in mouse lymphosarcoma cells. Biochem. J. 317, 689–695.

González-Darόs, F., Carrasco-Luna, J., Calatayud, A., Salguero, J. and del Valle-Tascόn, S. (1993) Effects of calmodulin antagonists on auxin-stimulated proton extrusion in Avena sativa coleoptile segments. Physiol. Plantarum 87: 68-76.

Gorbunova, V. and Levy, A.A. (1999) How plants make ends meet: DNA double-strand break repair. Trends Plant Sci. 4: 263-269.

Hagen, G. and Guilfoyle, T. J. (1985) Rapid induction of selective transcription by auxins. Mol. Cell Biol. 5: 1197-1203.

Hallouin, M., Ghelis, T., Brault, M., Bardat, F., Cornel, D., Miginiac, E., Rona, J-P., Sotta, B. and Jeannette, E. (2002) Plasmalemma abscisic acid perception leads to RAB18 expression via phospholipase D activation in Arabidopsis suspension cells. Plant Physiol. 130: 265-272.

Hidaka, H., Inagaki, M., Kawamoto, S. and Sasaki, Y.I. (1984) soquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and kinase C. Biochemistry 23: 5036-5041.

Himanen, K., Boucheron, E., Vanneste, S., de Almeida Engler, J., Inzé, D. and Beeckman, T. (2002) Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell 14: 2339-2351.

Himmelbach, A., Iten, M. and Grill, E. (1998) Signalling of abscisic acid to regulate plant growth. Phi. Trans. R. Soc. B 353:1439-1444.

Himmelbach, A., Yang, Y. and Grill, E. (2003) Relay and control of abscisic acid signaling. Curr. Opin. Plant Biol. 6: 470–479.

Hoth, S., Morgante, M., Sanchez, J.P., Hanafey, M.K., Tingey, S.V. and Chua, N.H. (2002) Genome-wide gene expression profiling in Arabidopsis thaliana reveals new targets of abscisic acid and largely impaired gene regulation in the abi1-1 mutant. J. Cell Sci. 115: 4891-4900.

Hudmon, A. and Schulman, H. (2002) Neuronal Ca2+/calmodulin-dependent protein kinase II. Ann. Rev. Biochem. 71 473-510.
Iba K (2002) Acclimative response to temperature stress in higher plants: approaches of gene engineering for
temperature tolerance. Annu. Rev. Plant Biol. 53: 225–245.

Jefferson, R.A. (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5: 387-405.

Jiang, J., An, G.Y., Wang, P.C., Wang, P.T., Han, J.F., Jin, Y.B. and Song, C.P. (2003) MAP kinase specifically mediates the ABA-induced H2O2 generation in guard cells of Vicia faba L. Chinese Science Bulletin 48: 1919-1926.

Johannesson, H., Wang, Y., Hanson, J. and Engström, P. (2003) The Arabidopsis thaliana homeobox gene ATHB5 is a potential regulator of abscisic acid responsiveness in developing seedlings. Plant Mol. Biol. 51: 719-729.

Jung, T., Lee, J.H., Cho, M.H. and Kim, W.T. (2000) Induction of 1-aminocyclopropane-1-carboxylate oxidase mRNA by ethylene in mung bean roots: possible involvement of Ca2+ and phosphoinositides in ethylene signaling, Plant Cell Environ. 23: 205-213.

Kaplan, F., Kopka, J., Haskell, D.W., Zhao, W., Schille, K.C., Gatzke, N., Sung, D.Y. and Guy, C.L. (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol, 136: 4159-4168.

Kawano, N., Kawano, T. and Lapeyrie, F. (2003) Inhibition of the indole-3-acetic acid-induced epinastic curvature in tobacco leaf strips by 2,4-dichlorophenoxyacetic acid. Ann. Bot. 91: 465–471.

Kirat, K.E., Besson, F., Prigent, A-F., Chauvet, J-P. and Roux, B (2002) Role of calcium and membrane organization on phospholipase D localization and activity. competition between a soluble and an insoluble substrate. J. Biol. Chem. 277: 21231-21236.

Koike, M., Matsuda, Y., Mimori, T., Harada, Y.N., Shiomi, N. and Shiomi, T. (1996) Chromosomal localization of the mouse and rat DNA double-strand break repair genes Ku p70 and Ku p80/XRCC5 and their mRNA expression in various mouse tissues. Genomics 38: 38-44.

Larkindale, J., Hall, J.D., Knight, M.R. and Vierling, E. (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol.138: 882-97.

Larkindale, J. and Knight, M.R. (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol. 128: 682-695.

Lecourieux, D., Mazars, C., Pauly, N., Ranjeva, R and Pugin, A. (2002) Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells. Plant Cell 14: 2627-2641.

Lee, S., Hirt, H. and Lee, Y. (2001) Phosphatidic acid activates a wound-activated MAPK in Glycine max. Plant J. 26: 479-486.
Li, B., Conway N., Navarro, S., Comai, L. and Comai, L. (2005) A conserved and species-specific functional interaction between the Werner syndrome-like exonuclease atWEX and the Ku heterodimer in Arabidopsis. Nucleic Acids Res. 33: 6861-6867.

Li, G. C., Yang, S.-H., Kim, D., Nussenzweig, A., Ouyang, H., Wei, J., Burgman, P., and Li, L. (1995) Suppression of heat-induced hsp70 Expression by the 70-kDa subunit of the human Ku autoantigen. Proc. Natl. Acad. Sci. U. S. A. 92: 4512-4516.

Li, J.X., Vaidya, M.J., Charles White, C., Vainstein, A., Citovsky, V., and Tzfira, T. (2005) Involvement of KU80 in T-DNA integration in plant cells. Proc. Natl. Acad. Sci. USA 102: 19231–19236.

Lim, J.W., Kim, H. and Kim, K.H. (2002) Expression of Ku70 and Ku80 mediated by NF-κB and cyclooxygenase-2 is related to proliferation of human gastric cancer cells. J. Biol. Chem. 277: 46093-46100.

Liu, P.F., Chang, W.C., Wang, Y.K., Munisamy, S.B., Hsu, S.H., Chang, H.Y., Wu, S.H. and Pan, R.L. (2007) Differential regulation of Ku gene expression in etiolated mung bean hypocotyls by auxins. Biochim. Biophys. Acta (In Press)

Lu, C., Han, M.H., Guevara-Garcia, A. and Fedoroff, N.V. (2002) Mitogen-activated protein kinase signaling in postgermination arrest of development by abscisic acid. Proc. Natl. Acad. Sci. USA 99: 15812–15817.

Long, C., Wang, X.J. and Pan, R.C. (1998) The effect of external Ca2+ and Ca2+-channel modulators on red-light-induced swelling of protoplasts of Phaseolus radiatus L. Cell Res. 8: 41-50.

Matsumura, H., Nirasawa, S., Kiba, A., Urasaki, N., Saitoh, H., Ito, M., Kawai-Yamada, M., Uchimiya, H. and Terauchi, R. (2003) Overexpression of Bax inhibitor suppresses the fungal elicitor-induced cell death in rice (Oryza sativa L) cells. Plant J. 33: 425–434.

Michel, B., Ehrlich, S.D. and Uzest, M. (1997) DNA double-strand breaks caused by replication arrest. EMBO J. 16: 430-438.

Michel, D., Salamini, F., Bartels, D., Dale, P., Baga, M. and Szalay, A. (1993) Analysis of a desiccation and ABA-responsive promoter isolated from the resurrection plant Craterostigma plantagineum. Plant J. 4: 29–40.

Novac, O., Matheos, D., Araujo, F.D., Price, G.B. and Zannis-Hadjopoulos, M. (2001) In vivo association of Ku with mammalian origins of DNA replication. Mol. Biol. Cell 12: 3386-3401.

Reddy, A.S.N. (2001) Calcium: silver bullet in signaling. Plant Sci. 160: 381-404.

Pagnussat, G..C., Lanteri, M.L., Lombardo, M.C. and Lamattina, L. (2004) Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. Plant Physiol. 135: 279–286.

Paul, R.U., Holk, A. and Scherer, G..F.E. (1998) Fatty acids and lysophospholipids as potential second messengers in auxin action: rapid activation of phospholipase A2 activity by auxin in suspension-cultured parsley and soybean cells. Plant J. 16: 601-611.

Petitot, A.S., Blein, J.P., Pugin, A. and Suty, L. (1997) Cloning of two plant cDNAs encoding β-type proteasome subunit and a transformer-2-like SR-related protein: early induction of the corresponding genes in tobacco cells treated with cryptogein. Plant Mol. Biol. 35: 261-269.

Polit, J.T., Maszewski, J. and Kazmierczak, A. (2003) Effect of BAP and IAA on the expression of G1 and G2 control points and G1-S and G2-M transitions in root meristem cells of Vicia faba. Cell Biol. Int. 27: 559–566.

Pufky, J., Qiu, Y., Rao, M.V., Hurban, P. and Jones, A.M. (2003) The auxin-induced transcriptome for etiolated Arabidopsis seedlings using a structure/function approach. Funct. Integr. Genomics 3: 135–143.

Raghothama, K.G., Mizrahi, Y. and Poovaiah, B.W. (1985) Effect of calmodulin antagonists on auxin induced elongation. Plant Physiol. 79: 28-33.

Rahman, A., Amakawa, T., Goto, N. and Tsurumi, S. (2001) Auxin is a positive regulator for ethylene-mediated response in the growth of Arabidopsis roots. Plant Cell Physiol. 42: 301-307.

Rahman, A., Nakasone, A., Chhun, T., Ooura, C., Biswas, K. K., Uchimiya, H., Tsurumi, S., Baskin, T. I., Tanaka, A. and Oono, Y. (2006) A small acidic protein 1 (SMAP1) mediates responses of the Arabidopsis root to the synthetic auxin 2,4-dichlorophenoxyacetic acid. Plant J. 47: 788-801.

Ribnicky, D.M., Ilic, N., Cohen, J.D. and. Cooke, T.J. (1996) The Effects of exogenous auxins on endogenous indole-3-acetic acid metabolism. Plant Physiol.112: 549-558.

Riha, K., Watson, J.M., Parkey, J. and Shippen, D.E. (2002) Telomere length deregulation and enhanced sensitivity to genotoxic stress in Arabidopsis mutants deficient in Ku70. EMBO J. 21: 2819-2826.

Rock, C.D. (2001) Pathways to abscisic acid-regulated gene expression. New Phytol. 148: 357-396.

Rojas, A., Almoguera, C. and Jordano, J. (1999)Transcriptional activation of a heat shock gene promoter in sunflower embryos: synergism between ABI3 and heat shock factors. Plant J. 20: 601–610.

Roth, D.B., Potter, T.N. and Wilson, J.H. (1985) Mechanisms of nonhomologous recombination in mammalian cells. Mol. Cell Biol. 5: 2599-2607.

Roudier, F., Fedorova, E., Lebris, M., Lecomte, P., Györgyey, J., Vaubert, D., Horvath, G.., Abad, P., Kondorosi, A. and Kondorosi, E. (2003) The Medicago species A2-type cyclin is auxin regulated and involved in meristem formation but dispensable for endoreduplication-associated developmental programs. Plant Physiol. 131 1091–1103.

Ruiz, M.T., Matheos, D., Price, G.B. and Zannis-Hadjopoulos, M. (1999) OBA/Ku86: DNA binding specificity and involvement in mammalian DNA replication. Mol. Biol. Cell 10: 567-580.

Scherer, G.F.E. (2002) Secondary messengers and phospholipase A2 in auxin signal transduction. Plant Mol. Biol. 49: 357–372.

Schussler, J.R., Brenner, M.L., Brun, W.A. (1984) Abscisic acid and its relationship to seed filling in soybeans. Plant Physiol 76: 301-306.

Schuurink, R.C., Chan, P.V., and Jones, R. (1996) Modulation of calmodulin mRNA and protein levels in barley aleurone. Plant Physiol. 111:371-380.

Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., Nakajima, M., Enju, A. and Sakurai, T. (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J. 31: 279–292.

Shen, Q., Chen, C-N., Brands, A., Pan, S-M. and Ho, T.H.D. (2001) The stress- and abscisic acid-induced barley gene HVA22: developmental regulation and homologues in diverse organisms. Plant Mol. Biol. 45: 327–340.

Sugaya, S., Ohmiya, A., Kikuchi, M. and Hayashi, T. (2000) Isolation and characterization of a 60 kDa 2,4-D-binding protein from the shoot apices of peach trees (Prunus persica L.); It is a homologue of protein disulfide isomerase. Plant Cell Physiol. 41: 503–508.

Sung, D-Y., Kaplan1, F., Lee, K-J. and Guy, C.L. (2003) Acquired tolerance to temperature extremes. Trends Plant Sci. 8: 179-187.

Suzuki, M., Ketterling, M.G., Li, Q-B. and McCarty, D.R. (2003) Viviparous1 alters global gene expression patterns through regulation of abscisic acid signaling. Plant Physiol. 132:1664-1677.

S´wia¸tek, A., Lenjou, M., Van Bockstaele, D., Inze´, D. and van Onckelen, H. (2002) Differential effect of jasmonic acid and abscisic acid on cell cycle progression in tobacco BY-2 cells. Plant Physiol. 128: 201–211.

Tamura, K., Adachi, Y., Chiba, K., Oguchi, K. and Takahashi, H. (2002) Identification of Ku70 and Ku80 homologues in Arabidopsis thaliana: evidence for a role in the repair of DNA double-strand breaks. Plant J. 29: 771-781.

Tamura, K., Liu, H. and Takahashi, H. (1999) Auxin induction of cell cycle regulated activity of tobacco telomerase. J. Biol. Chem. 274: 20997–21002.

Tanoue, T., Yamamoto, T. and Nishida, E. (2002) Modular structure of a docking surface on MAPK phosphatases. J. Biol. Chem. 277: 22942-22949.

Taybi, T. and Cushman, J.C. (1999) Signaling events leading to crassulacean acid metabolism (CAM) induction in the common ice plant. Plant Physiol. 121: 545-555.

Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) CLUSTAL–W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weigh matrix choice. Nucl. Acid Res. 22: 4673-4680.

Tuteja, R. and Tuteja, N. (2000) Ku autoantigen: a multifunctional DNA-binding protein. Crit. Rev. Biochem. Mol. Biol. 35: 1–33.

Wang, Y., Guan, J., Wang, H., Wang, Y., Leeper, D. and Iliakis, G. (2001) Regulation of DNA replication after heat shock by replication protein a-nucleolin interactions. J. Biol. Chem.: 276: 20579-20588.

Webb, A.A.R., Larman, M.G., Montgomery, L.T., Taylor, J.E. and Hetherington, A.M. (2001) The role for calcium during ABA-induced gene expression and stomatal movements. Plant J.26: 351-362.

Woodward, A.W. and Bartel, B. (2005) Auxin: regulation, action, and interaction. Ann. Bot. 95: 707–735.

Yagura, T. and Sumi, K. (1999) Molecular cloning and sequencing of cDNAs encoding homologues of human Ku70 and Ku80 autoantigen from Xenopus and their expression in various Xenopus tissues. Biochim. Biophys. Acta 1445: 160-164.

Yamagami, M., Haga, K., Napier, R.M. and Iino, M. (2004) Two distinct signaling pathways participate in auxin-induced swelling of pea epidermal protoplasts. Plant Physiol. 134: 735-747.

Yan, K.H., Liu, P.F., Tzeng, H.T., Chang, W.C., Chou, W.G. and Pan, R.L. (2004) Characterization of DNA end-binding activities in higher plants. Plant Physiol. Biochem. 42: 617–622.

Yang, G.. and Komatsu, S. (2000) Involvement of calcium-dependent protein kinase in rice (Oryza sativa L.) lamina inclination caused by brassinolide. Plant Cell Physiol. 41: 1243–1250.

Yang, S.W., Jin, E.S., Chung, I.K. and Kim, W.T. (2002) Cell cycle-dependent regulation of telomerase activity by auxin, abscisic acid and protein phosphorylation in tobacco BY-2 suspension culture cells. Plant J. 29: 617-626.

Yang, T. and Poovaiah, B.W. (2000) Molecular and biochemical evidence for the involvement of calcium/calmodulin in auxin action. J. Biol. Chem. 275: 3137-3143.

Yi, H.C., Joo, S., Nam, K.H., Lee, J.S., Kang, B.G.. and Kim, W.T. (1999) Auxin and brassinosteroid differentially regulate the expression of three members of the 1-aminocyclopropane-1-carboxylate synthase gene family in mung bean (Vigna radiata L.). Plant Mol. Biol. 41: 443–454.

Yoon, I.S., Mori, H., Kim, J. H., Kang, B.G.. and Imaseki, H. (1997) VR-ACS6 is an auxin-inducible l-aminocyclopropane-l-carboxylate synthase gene in mung bean (Vigna radiata). Plant Cell Physiol. 38: 217-224.

Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L. and Gruissem, W. (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol. 136: 2621-2632.

Zocchi, E., Carpaneto, A., Cerrano, C., Bavestrello, G., Giovine, M., Bruzzone, S., Guida, L., Franco, L. and Usai, C. (2001) The temperature-signaling cascade in sponges involves a heat-gated cation channel, abscisic acid, and cyclic ADP-ribose. Proc. Natl. Acad. Sci. U. S. A. 98:14859-14864.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top